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Abstract

Introduction: Limbic age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) 

is common in advanced age and can underlie a clinical presentation mimicking Alzheimer’s 

disease (AD). We studied whether an autopsy-derived fluorodeoxyglucose positron emission 

tomography (FDG-PET) signature of LATE-NC provides clinical utility for differential diagnosis 

of amnestic dementia patients.

Methods: Ante mortem FDG-PET patterns from autopsy-confirmed LATE-NC (N = 7) and AD 

(N = 23) patients were used to stratify an independent cohort of clinically diagnosed AD dementia 

patients (N = 242) based on individual FDG-PET profiles.

Results: Autopsy-confirmed LATE-NC and AD groups showed markedly distinct temporo-

limbic and temporo-parietal FDG-PET patterns, respectively. Clinically diagnosed AD dementia 

patients showing a LATE-NC–like FDG-PET pattern (N = 25, 10%) were significantly older, 

showed less abnormal AD biomarker levels, lower APOE ε4, and higher TMEM106B risk allele 

load. Clinically, they exhibited a more memory-predominant profile and a generally slower disease 

course.

Discussion: An autopsy-derived temporo-limbic FDG-PET signature identifies older amnestic 

patients whose clinical, genetic, and molecular biomarker features are consistent with underlying 

LATE-NC.

Keywords

amyloid; apolipoprotein E; autopsy; fluorodeoxyglucose positron emission tomography; 
hippocampal sclerosis; limbic age-related TDP-43 encephalopathy; tau; TDP-43; TMEM106B

1 INTRODUCTION

Although Alzheimer’s disease (AD) is the most common neurodegenerative pathology 

underlying dementia in the elderly, several other age-related pathologies may result in 

similar memory-predominant dementia syndromes, and large-scale autopsy series have 

estimated that approximately 15% to 30% of clinically diagnosed AD dementia patients 

do not meet neuropathologic criteria for AD.1,2 One of the most common neurodegenerative 

pathologies that may mimic AD clinically in older patients is limbic TDP-43 proteinopathy, 

which has recently been categorized as a distinct disease entity called limbicpredominant 

age-related TDP-43 encephalopathy (LATE).3 LATE neuropathologic change (LATE-NC) 

is particularly frequent at advanced age and is often accompanied by severe hippocampal 

degeneration disproportionate to the amount of tangle pathology (i.e., hippocampal sclerosis 

[HS]), as well as with amnestic deficits that are indistinguishable from those caused by AD 

in standard clinical evaluations.3,4 While the condition is most often comorbid with AD 

pathology,5,6 a significant portion of clinically diagnosed AD dementia patients are found to 

have LATE-NC without fulfilling neuropathologic criteria for AD, indicating that LATE-NC 

is the main pathologic driver of the amnestic deficits in these cases.7–10

Pathologic association studies have revealed some characteristic clinical and genetic features 

of LATE-NC in the absence of significant AD pathology, including a more memory-
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predominant neuropsychological profile with relative sparing of executive functions and a 

generally more protracted course of global cognitive decline compared to AD.3,11 In contrast 

to AD, LATE-NC also associates with the TMEM106B and GRN risk alleles previously 

linked to TDP-43 pathology in frontotemporal lobar degeneration.12–14 The apolipoprotein 

E (APOE) ε4 allele was also found to be associated with LATE-NC, although to a lesser 

degree compared to AD.15,16

To date, no validated molecular imaging or fluid biomarker specific for TDP-43 

pathology exists that would allow detecting LATE-NC during lifetime.3 However, recent 

neuroimaging–pathologic correlation studies could provide evidence that limbic TDP-43 

pathology associates with specific neurodegenerative features that could be used as indirect 

neuroimaging biomarkers to detect the condition in vivo.17–21 Particularly, a recent ante 
mortem fluorodeoxyglucose positron emission tomography (FDG-PET) imaging study 

found that amnestic patients with limbic TDP-43 pathology and HS were characterized 

by a specific temporolimbic-predominant neurodegeneration pattern that distinguished them 

from autopsy-confirmed AD cases without comorbid TDP-43.21

Here, we reassessed the LATE-NC–associated FDG-PET pattern in an independent autopsy 

cohort, and then further studied the clinical utility of this pattern as a topographic imaging 

biomarker for in vivo stratification of a larger sample of clinically diagnosed AD dementia 

patients.

2 METHODS

2.1 Study participants

Participants included in this study were enrolled in the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) cohort. For the identification of LATE-NC- and AD-typical FDG-PET 

patterns, we examined data from the subsample of ADNI participants who had been 

followed to autopsy and who had standardized data from neuropathological examinations. In 

this “autopsy cohort” (data freeze: 17/05/2021), we identified a total of 58 participants who 

had a clinical diagnosis of AD dementia (N = 50) or amnestic mild cognitive impairment 

(MCI; N = 8) at last clinical evaluation and available ante mortem FDG-PET scans. These 

participants were further classified according to their neuropathological characteristics (see 

the Neuropathological Assessments section). We restricted our analyses to participants with 

cognitive impairment because early, clinically silent pathology may have only subtle, or 

even reverse, effects on the FDG-PET signal22 (see Figure S1 in supporting information for 

a flowchart of patient selection). The average interval between last clinical evaluation and 

death was 1.9 ± 1.7 years, and between last available FDG-PET acquisition and death 3.3 ± 

2.3 years.

To study the utility of the autopsy-derived FDG-PET patterns for in vivo patient 

stratification, we analyzed data from a separate “in vivo cohort” of 242 clinically diagnosed 

AD dementia patients, corresponding to all ADNI participants with a baseline diagnosis of 

AD dementia and availability of an FDG-PET scan (query date: 10/07/2018), who were not 

included in the autopsy sample used to define the pathology-specific FDG-PET patterns. 

The average interval between FDG-PET scanning and clinical assessment was 9 ± 18 days.
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For reference, we included normative FDG-PET data of a group of 179 healthy controls in 

ADNI that was also used in our previous FDG-PET analyses.23 This group had Mini-Mental 

State Examination (MMSE) scores between 26 and 30 (average: 29.1 ± 1.2), ranged in age 

from 60 to 90 years (average: 73.8 ± 6.5), and had equal sex distribution (50% female).

All participants provided written informed consent and data collection and sharing were 

approved by the institutional review board of each institution participating in ADNI.

2.2 Neuropathological assessments

Neuropathological assessments were performed by the ADNI Neuropathology Core, 

which provides standardized neuropathologic assessments of autopsied ADNI participants 

(http://adni.loni.usc.edu/about/#core-container).24 According to National Institute on Aging–

Alzheimer’s Association guidelines,25 evidence of AD neuropathologic change (ADNC) 

is classified as absent, low, intermediate, or high based on combined information from 

Thal amyloid beta (Aβ) phases, Braak neurofibrillary tau tangle staging, and Consortium 

to Establish a Registry for Alzheimer’s Disease (CERAD) score for density of neuritic 

plaques. Assessment of TDP-43 pathology follows a standardized regional evaluation of 

TDP-43-immunoreactive inclusions in the spinal cord, amygdala, hippocampus, entorhinal 

cortex/inferior temporal gyrus, and frontal neocortex.26 In the present study, presence of 

limbic TDP-43 pathology was defined based on TDP-43-immunoreactive inclusions in any 

of the following regions: amygdala, hippocampus, and/or entorhinal cortex/inferior temporal 

gyrus.

A total of 27 autopsy cases had evidence of limbic TDP-43 pathology indicative of LATE-

NC, including 7 cases without comorbid AD (i.e., absent or low ADNC; “pure LATE-NC”), 

and 20 cases who also had intermediate to high ADNC (“AD+LATE-NC”). In addition, 23 

cases had relatively pure AD pathology without comorbid TDP-43 pathology. Three of the 

pure LATE-NC cases (43%), two of the AD+LATE-NC cases (10%), and none of the pure 

AD cases had pathologically confirmed HS.

2.3 Determination of pathology-specific FDG-PET patterns

All FDG-PET scans used in this study were downloaded from the ADNI server in fully 

pre-processed format (see http://adni.loni.usc.edu/methods/documents/ for details) and then 

spatially normalized to a customized FDG-PET template in Montreal Neurological Institute 

(MNI) standard space using SPM8.27 We estimated LATE-NC-typical and AD-typical FDG-

PET patterns by contrasting FDG-PET data of the pure LATE-NC and AD groups against 

normative data from healthy controls using voxel-wise 2-sample t-tests in SPM.23 To better 

under stand the effect of comorbid pathology on the FDG-PET pattern, we also studied 

the FDG-PET pattern of the AD+LATE-NC group compared to healthy controls as well 

as compared to the pure AD group. FDG-PET images were scaled to a pons reference 

region (manually drawn in MNI space), smoothed with an 8mm isotropic kernel, and 

regions with less than 50% gray matter probability in the segmented MNI152 template 

were excluded.23,28 Statistical parametric maps of the group differences were expressed 

as Cohen’s d effect size maps to reveal the brain-wide hypometabolic patterns (using the 

formula d = t ∗ 1
n1 + 1

n2 ).29
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We further conducted region-of-interest (ROI) analyses of medial temporal (amygdala and 

hippocampus) and inferior temporal ROIs, which were defined using the Harvard-Oxford 

anatomical atlas (with 25% probability threshold). These ROIs had previously been found 

to constitute prominent features of the LATE-NC/HS-associated FDG-PET pattern, and the 

inferior-to-medial temporal metabolism (IMT) ratio was proposed as a simplified biomarker 

metric to capture this pattern.20,21 ROI values were extracted from unsmoothed pons-scaled 

FDG-PET images and differences were compared between groups using t-tests. The IMT 

ratio was further used in a receiver operating characteristic (ROC) curve analysis to assess 

its accuracy for pathologic group separation.20

2.4 Classification of individual FDG-PET patterns in the in vivo cohort

We assessed the correspondence between an individual patient’s hypometabolic pattern 

and the LATE-NC-typical and AD-typical patterns using an automated pattern matching 

approach based on spatial correlation.28,30 First, for each patient in the in vivo cohort we 

calculated the individual’s hypometabolic profile based on regional z-scores (referenced 

to the healthy control data) across all 52 cortical and subcortical gray matter regions 

defined in the Harvard-Oxford atlas. For individuals with hypometabolism (defined as z 

≤ –1.5) in any of the relevant brain areas associated with AD or LATE-NC (Table S1 in 

supporting information), we then assessed the spatial correlation between the individual’s 

regional z-scores and the respective regional effect size scores of the pathology-specific 

patterns (note that for robustness we chose to use ROI-wise instead of voxel-wise spatial 

correlations).28,30,31 Patients showing a statistically significant correlation (i.e., r > 0.28, 

P < 0.05) with any of the two patterns were then ordered along a continuum from most 

AD-like to most LATE-NC-like hypometabolism, quantified by the delta score between 

the respective spatial correlation coefficients (Δr = r[AD] – r[LATE-NC]; see Figure S2 in 

supporting information). Finally, aiming to maximize the difference in patterns between the 

stratified groups we applied a cutoff of |Δr|>0.28 to classify the upper and lower parts of the 

Δr spectrum as clearly “LATE-NC-like” and clearly “AD-like.” While naturally arbitrary, 

this |Δr|> 0.28 cutoff ensures that the same topographic threshold is used for the AD-like 

and LATE-NC-like pattern classifications. In complementary analyses we also explored an 

alternative Gaussian mixture model approach for patient stratification (Figure S3, Table S2 

in supporting information), and further studied the Δr value as a continuous variable.

In addition, we also stratified the patients according to the previously proposed IMT ratio,21 

using the cutoff that provided best group separation between the pathologically defined 

groups in the autopsy cohort.

2.5 Neuropsychological evaluation

We used MMSE scores for characterizing global cognitive impairment, as well as 

previously established composite cognitive scores for assessing memory (ADNI-MEM) and 

executive function (ADNI-EF) impairment (see supporting information).32,33 In addition, we 

calculated a “cognitive profile” variable as the difference between the ADNI-MEM and the 

ADNI-EF composite scores (ΔMEM-EXEC) to characterize relative impairments in these 

two domains.23 In addition to baseline assessments, 223 patients (92%) had at least one 

follow-up cognitive assessment, and the average follow-up time was 1.5 ± 0.9 years.
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2.6 Molecular biomarkers and genetics

A subset of 175 patients (72%) in the in vivo cohort had complete cerebrospinal fluid (CSF) 

biomarker data available. In the present study, we included peptide levels of Aβ1–42 and 

tau phosphorylated at threonine 181 (p-tau181) measured using the fully automated Roche 

Elecsys electrochemiluminescence immunoassays as described previously.34

APOE genotype was determined by Cogenics using standard methods to genotype the 

two APOE ε4-defining single nucleotide polymorphisms (SNPs; rs429358, rs7412).35 This 

information was available for all but one individual in the in vivo cohort. Genotyping of 

the GRN (rs5848) and TMEM106B risk SNPs (rs1990622) was performed using Illumina 

genome-wide association study genotyping assays as described in detail previously.35,36 

Quality-controlled genotyping results for the rs5848 and rs1990622 SNPs were available for 

87% (210/242) of the study sample.

2.7 Statistical analysis

Demographic, clinical, and biomarker characteristics were compared between the stratified 

patient groups using two-sample t-tests, Mann-Whitney U tests, or Fisher’s exact tests 

depending on the assessed variable. Differences in cognitive trajectories between LATE-

NC-like and AD-like patient groups were assessed using linear mixed effects models, 

which included participant-specific intercepts and slopes. Group differences in APOE ε4, 

TMEM106B “T,” and GRN “T” risk alleles were analyzed under additive models using 

logistic regression. Associations with LATE-NC-like versus AD-like pattern expression 

on a continuous scale were assessed using Pearson’s correlation analysis with the Δr 

score. Statistical analyses were carried out using IBM SPSS Statistics (version 21) and 

Matlab; the significance threshold was set at P < 0.05. We did not apply a correction for 

multiple comparisons in this hypothesis-driven study with a limited number of planned 

comparisons.37

3 RESULTS

3.1 Pathology-specific FDG-PET patterns

Demographics and neuropathological details for the pathology-defined groups are shown in 

Table 1. Compared to healthy controls, the AD group showed the well-described pattern of 

AD-typical hypometabolism that is most pronounced in temporo-parietal areas, while also 

affecting the medial temporal lobe (Figure 1A). Interestingly, the hypometabolic pattern of 

the AD+LATE-NC group was highly similar to the AD group (Figure 1B). By contrast, 

the LATE-NC group showed a strikingly different pattern characterized by a much more 

pronounced involvement of the medial temporal lobe and related limbic areas, and less 

pronounced involvement of inferior temporal and parietal areas (Figure 1C). Highest effect 

sizes (d = 0.5 to 1) of group differences between LATE-NC and AD were observed in 

the medial temporal lobe and insula/fronto-opercular cortex (LATE-NC<AD), as well as in 

inferior temporal and lateral parietal areas (AD<LATE-NC; Figure 1D).

ROI analysis confirmed that medial temporal FDG-PET signal was lower in LATE-NC 

compared to AD (d = 0.90, P = 0.046), whereas inferior temporal FDG-PET signal was 
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lower in AD compared to LATE-NC (d = –0.91, P = 0.044; Figure 2). Accordingly, the IMT 

ratio was higher in LATE-NC compared to AD (d = –1.72, P < 0.001) and distinguished 

between the groups with an area under the curve (AUC) of 0.85 (P = 0.007). ROI values 

and IMT ratio of the AD+LATE-NC group did not differ significantly from the AD group 

(P = 0.21). However, the two HS cases in this group had IMT ratios at or above the average 

of the LATE-NC group, and their brain-wide hypometabolic pattern also showed a high 

correspondence to the LATE-NC pattern (Figure S4 in supporting information).

In vivo patient stratification based on autopsy-derived FDG-PET patterns—The 

automated pattern matching approach identified a subset of 25 clinically diagnosed AD 

dementia patients whose hypometabolic pattern was much more similar to the LATE-NC–

typical pattern than to the AD pattern (i.e., Δr ≤ −0.28). Not surprisingly, a much larger 

portion of the cohort (N = 77) was classified as having a relatively clean AD-typical 

FDG-PET pattern (Δr > 0.28), while others (N = 78) showed mixed regional hypometabolic 

features and could not be clearly matched to any of the two extremes (−0.28 < Δr < 0.28; 

Figure 3). Finally, there were also several patients that could not be assigned along the 

AD/LATE-NC pattern spectrum because they either lacked evidence of hypometabolism in 

any of the relevant areas (N = 28) or exhibited atypical regional features (N = 34) that were 

not consistent with any of the two patterns (Figure S5 in supporting information). These 

latter patient groups were omitted from further analyses in the current study.

Table 2 summarizes demographic, clinical, biomarker, and genetic characteristics of the two 

stratified patient groups. Patients with a LATE-NC–like FDG-PET pattern were on average 

almost 10 years older than AD-like cases (81.2 vs. 71.4 years, d = –1.28, P < 0.001). The 

patient groups did not differ in overall dementia severity as indicated by MMSE scores 

(d = –0.02; P = 0.93), but patients with a LATE-NC–like FDG-PET pattern were less 

impaired in memory (d = –0.56, P = 0.017) and especially in executive function (d = –0.81, 

P < 0.001) composite scores, and correspondingly showed a more memory-predominant 

cognitive deficit as indicated by the ΔMEMEXEC cognitive profile variable (d = 0.53, P = 

0.023). LATE-NC–like patients also showed a significantly slower longitudinal decline in all 

cognitive scores over follow-up (P’s < 0.002; Figure S6 in supporting information).

Molecular CSF biomarkers showed significantly less abnormal Aβ1–42 (d = –1.42, P < 

0.001) and p-tau181 levels (d = 0.61, P = 0.011) in cases with a LATE-NC–like compared 

to a classical AD-like FDG-PET pattern (Figure 4). LATE-NC–like patients also had a 

significantly lower risk of carrying an APOE ε4 allele (odds ratio [OR] = 0.39; P = 0.014), 

and, by contrast, showed a trend toward higher allele load of the TMEM106B “T” risk 

allele (OR = 2.13; P = 0.057). Allele load of the GRN “T” risk allele was not significantly 

different between the stratified patient groups in this sample (OR = 1.44; P = 0.30).

In complementary analyses, pathologic pattern expression as a continuous variable (Δr) 

showed largely the same associations as for the dichotomous comparison of the two 

extremes (|Δr|>0.28; Figure S7 in supporting information). Moreover, the IMT ratio was 

highly correlated with the AD/LATE-NC pattern expression variable Δr (r = –0.83) and 

resulted in a similar patient stratification, though effect sizes of group differences were 
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generally lower compared to the stratification based on pattern matching (Tables S3 and S4 

in supporting information).

4 DISCUSSION

On visual comparison, the distinct temporo-limbic FDG-PET pattern characterizing the 

LATE-NC cases in our study appears to be largely identical to the LATE-NC/HS-associated 

FDG-PET pattern reported in the previous study by Botha et al.21 Accordingly, the IMT 

ratio capturing this pattern also distinguished the LATE-NC and AD groups with high 

accuracy (AUC = 0.85), which was almost identical to the accuracy reported for the 

distinction between HS (N = 6) and non-HS (N = 67) autopsy cases in a recent study 

by Buciuc et al. (AUC = 0.86).20 However, in our study sample the distinct LATE-NC 

pattern was not solely driven by cases with HS (see Figure 2 and Figure S8 in supporting 

information). Interestingly, the FDG-PET pattern of the combined AD+LATE-NC cases did 

not markedly differ from the AD-typical pattern on a group level, although inter-individual 

variability was high and the patterns of the two HS cases in this group were indeed more 

similar to the LATE-NC pattern (Figure 2, Figure S4). This suggests that in the context of 

fully developed AD pathology (all but one individual had ADNC = 3), LATE-NC may have 

a more variable effect on the neurodegeneration phenotype.

Using an automated pattern matching approach, we identified a subset of 10% of clinically 

diagnosed AD dementia patients whose FDG-PET pattern more closely resembled the 

autopsy-derived LATENC pattern than a typical AD pattern. This proportion also roughly 

corresponds to the proportion of “pure” LATE-NC cases (i.e., not concurrently fulfilling 

pathologic criteria for AD) in autopsy studies of clinically diagnosed AD dementia 

patients.3,7,10 However, it is important to note that the relative proportions of the stratified 

patient groups in the present study also strongly depend on the specific methodology used 

for classifying the FDG-PET scans, and in particular on the rather arbitrary cutoff used for 

separating the upper and lower parts of the Δr distribution into relatively clean AD-like 

and LATE-NC–like patterns (Figure S2). Similar to our automated classification approach 

based on spatial correspondence, a commonly used approach for aiding differential dementia 

diagnosis in the clinical setting is to visually assess the correspondence of an individual 

patient’s FDG-PET pattern with a (predefined) set of known dementia-specific FDG-PET 

patterns.38 Pending further validation in larger autopsy-confirmed patient samples, the 

reported temporo-limbic FDG-PET pattern could be used in such expert ratings as being 

suggestive of LATE-NC in the differential diagnosis of amnestic dementia.

Because autopsy information is not yet available for the in vivo cohort, the actual 

underlying pathologies of the patients with a LATE-NC–like FDG-PET pattern remain 

unknown. However, analysis of pathologically well-validated molecular AD biomarkers34 

demonstrated that these individuals indeed had significantly lower levels of AD pathology, 

indicating that other, non-AD pathologic factors account for their cognitive deficits. Previous 

research has suggested to pre-screen older amnestic patients by a negative amyloid or 

tau biomarker finding, which would exclude AD as the principal pathologic substrate for 

the cognitive deficits.21,39–41 Correspondingly, Botha et al.21 could demonstrate that older 

amnestic patients with a negative tau-PET scan showed a very similar temporo-limbic FDG-
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PET pattern compared to patients with autopsy-confirmed LATE-NC and HS. However, in 

our study many patients with a clear LATE-NC–like FDG-PET pattern had CSF p-tau181 

levels above commonly used positivity thresholds (ranging between 19 and 27 pg/ml;34 

see Figure 4). Recent studies have shown that CSF p-tau181 increases are more closely 

related to early, presymptomatic AD pathology, whereas elevated tau-PET signal is more 

closely linked with progressive neurodegeneration and cognitive deterioration.42,43 Hence, 

suprathreshold CSF p-tau181 levels may not necessarily indicate neurofibrillary tangle 

pathology levels that would be sufficient to account for a clinical dementia syndrome. On 

the other hand, negative tau (or amyloid) biomarker findings in older amnestic patients are 

unlikely to be specific for LATE-NC because there are several different impactful pathologic 

conditions (often present in combination) associated with advanced age.1,2,41,44

In addition to lower AD biomarker levels, patients with a LATE-NC–like FDG-PET 

pattern showed several clinical and genetic features that were previously linked to LATE-

NC in pathologic studies, particularly older age, a more memory-predominant cognitive 

profile with an overall slower disease course, as well as enrichment for the TMEM106B 
risk allele.3,11,14 In line with the intermediate APOE ε4 prevalence reported for autopsy-

confirmed LATE-NC cases,15,16 patients with a LATE-NC–like FDG-PET pattern also 

showed a significantly lower APOE ε4 allele load compared to typical AD-like patients, 

albeit still enriched compared to a population level of ≈25%. In summary, these data suggest 

that amnestic dementia patients with a LATE-NC–like FDG-PET pattern show several 

clinical, biomarker, and genetic features consistent with underlying LATE-NC. However, 

one cannot exclude that other age-related pathologies that preferentially target the medial 

temporal lobe, such as primary age-related tauopathy, argyrophilic grain disease, or limbic-

predominant AD, may also be present in subsets of these patients, especially given that these 

pathologies often overlap with LATE-NC.6,12,44 Nevertheless, we have conducted several 

sensitivity analyses that corroborate the specificity of the reported temporo-limbic FDG-PET 

pattern for LATE-NC as opposed to advanced age or other commonly comorbid age-related 

pathologies (see supporting information and Figures S9 to S12 for extended analyses and 

discussion).

One principal limitation of the present study is the relatively small sample size of the 

autopsy-confirmed LATE-NC cases used to estimate the LATE-NC–specific FDG-PET 

pattern that is subsequently used in the pattern matching approach. However, the estimated 

pattern showed a remarkable spatial resemblance to the LATE-NC/HS-associated FDG-PET 

pattern reported in a previous autopsy study with similar sample size,21 and we could 

further confirm this pattern in two additional autopsy cases with HS that were excluded 

from initial pattern estimation due to comorbid AD pathology (Figure S4). Moreover, 

a comparison between in vivo stratification approaches indicated that pattern matching 

to the autopsy-derived FDG-PET patterns (dependent on our study sample) yielded a 

comparable or slightly higher enrichment for LATE-NC–characteristic features compared 

to stratification based on the “a priori” IMT ratio. Future studies are warranted that will 

assess the utility of this pattern-based classification approach for identifying patients with a 

LATE-NC–like neurodegeneration pattern at a pre-dementia disease stage and to study their 

disease evolution over clinical follow-up.45,46
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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RESEARCH IN CONTEXT

Systematic Review:

We reviewed the literature using standard search engines (e.g., PubMed and 

Google Scholar). While some previous studies have examined relationships of limbic-

predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) 

and/or hippocampal sclerosis with specific neuroimaging features, these have mainly 

focused on magnetic resonance imaging scans and assessments of medial temporal lobe 

structure. Only two recent studies have examined associations with fluorodeoxyglucose 

positron emission tomography (FDG-PET), and none of the existing studies have 

assessed the clinical utility of the associated neuroimaging features for in-vivo patient 

stratification.

Interpretation:

Our findings corroborate that LATE-NC associates with a distinct temporo-limbic FDG-

PET pattern. We demonstrate the clinical utility of this pattern for differential diagnosis 

of amnestic dementia by showing that clinically diagnosed Alzheimer’s disease (AD) 

dementia patients exhibiting this pattern had lower AD biomarker levels and showed 

distinct clinical and genetic features consistent with LATE-NC.

Future Directions:

Future studies should aim to identify patients with a LATE-NC FDG-PET pattern at 

earlier, pre-dementia disease stages and study their future clinical evolution.
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FIGURE 1. 
Pathology-specific fluorodeoxyglucose positron emission tomography (FDG-PET) patterns. 

Illustration of Alzheimer’s disease (AD)–typical and limbic age-related TDP-43 

encephalopathy neuropathologic change (LATE-NC)–typical hypometabolic patterns as 

estimated by voxel-wise comparisons of FDG-PET maps between the pathology-defined 

AD, AD+LATE-NC, and LATE-NC patient groups and the cognitively normal control group 

(N = 179). Statistical parametric maps of the respective group differences are expressed as 

Cohen’s d effect size maps to reveal the brain-wide hypometabolic patterns. White vertical 

bars in the color scales on the right indicate the color of brain regions that meet the indicated 

statistical significance threshold. In the direct comparison between the LATE-NC and AD 

groups no voxels survived false discovery rate correction for the multiple voxel-wise testing. 

In this comparison, the blue-green color scale indicates more pronounced hypometabolism 
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in AD and the red-yellow color scale indicates more pronounced hypometabolism in LATE-

NC
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FIGURE 2. 
Metabolic differences between pathology defined limbic age-related TDP-43 

encephalopathy neuropathologic change (LATE-NC), Alzheimer’s disease (AD), and 

AD+LATE-NC patients in inferior and medial temporal regions of interest. Differences in 

fluorodeoxyglucose positron emission tomography (FDG-PET) standardized uptake value 

ratios (SUVR) between pathology-defined LATE-NC, AD, and AD+LATE-NC patients 

were assessed in medial temporal (left column) and inferior temporal (middle column) 

regions of interest, as well as using the inferior to medial temporal (IMT) ratio (right 

column). Reported P-values correspond to two-sample t-tests. The dotted line in the right 

column panel represents the Youden index-based optimal cut-off for the discrimination 

between LATE-NC and AD patients. Cases with hippocampal sclerosis are highlighted by 

black color (see Figures S4 and S8 in supporting information for visualizations of their 

brain-wide hypometabolic patterns)
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FIGURE 3. 
Fluorodeoxyglucose positron emission tomography (FDG-PET) patterns of the stratified 

Alzheimer’s disease (AD)–like, limbic age-related TDP-43 encephalopathy neuropathologic 

change (LATE-NC)–like, and mixed patient groups in the in vivo cohort. Figure shows 

average Z-score maps of clinically diagnosed AD dementia patients from the in vivo cohort 

that were classified by the automated pattern matching algorithm as having clearly AD-like 

(A), clearly LATE-NC–like (B), or mixed (C) FDG-PET patterns of hypometabolism. Note 

that average Z-scores are equivalent to Glass’ Δ effect size
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FIGURE 4. 
Amyloid beta (Aβ) and tau biomarker levels of limbic age-related TDP-43 encephalopathy 

neuropathologic change (LATE-NC)-like and Alzheimer’s disease (AD)-like patients. 

Cerebrospinal fluid biomarker levels of Aβ1–42 and phosphorylated tau (p-tau)181 among 

clinically diagnosed AD dementia patients showing a LATE-NC-like (blue) or an AD-like 

(red) hypometabolic pattern on fluorodeoxyglucose positron emission tomography (FDG-

PET). Reported P-values correspond to a Mann-Whitney U test
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