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Hybrid autoencoder 
with orthogonal latent space 
for robust population structure 
inference
Meng Yuan 1,2,3*, Hanne Hoskens 2,3, Seppe Goovaerts 2,3, Noah Herrick 4, Mark D. Shriver 5, 
Susan Walsh 4 & Peter Claes 1,2,3,6*

Analysis of population structure and genomic ancestry remains an important topic in human genetics 
and bioinformatics. Commonly used methods require high-quality genotype data to ensure accurate 
inference. However, in practice, laboratory artifacts and outliers are often present in the data. 
Moreover, existing methods are typically affected by the presence of related individuals in the dataset. 
In this work, we propose a novel hybrid method, called SAE-IBS, which combines the strengths of 
traditional matrix decomposition-based (e.g., principal component analysis) and more recent neural 
network-based (e.g., autoencoders) solutions. Namely, it yields an orthogonal latent space enhancing 
dimensionality selection while learning non-linear transformations. The proposed approach achieves 
higher accuracy than existing methods for projecting poor quality target samples (genotyping errors 
and missing data) onto a reference ancestry space and generates a robust ancestry space in the 
presence of relatedness. We introduce a new approach and an accompanying open-source program 
for robust ancestry inference in the presence of missing data, genotyping errors, and relatedness. 
The obtained ancestry space allows for non-linear projections and exhibits orthogonality with clearly 
separable population groups.

Population structure, or the presence of systematic differences in allele frequency and linkage disequilibrium 
(LD) across ancestral populations, remains an important area of research in human genetics and bioinformatics. 
Detection thereof can be used to infer genotypic clusters, to identify admixture, and to study the history of migra-
tion and geographic isolation1–4. Moreover, it allows researchers to control for confounding effects due to popula-
tion stratification in genome-wide association studies (GWAS), enabling accurate genetic mapping of traits5–7.

Principal component analysis (PCA)8 is a widely used method to analyze genome-wide single nucleotide 
polymorphism (SNP) data, for inferring population structure9 and for detecting potential outliers and is rou-
tinely used as a quality control step in genetic analyses10,11. In general, ancestry inference using PCA consists of 
the following steps. First, an ancestry space is built based on either a population diverse reference dataset with 
known ethnicities (e.g., HapMap project12 or 1000 Genome project (1KGP)13) solely or the combined dataset of 
the target population and the reference dataset. In the first approach, the target samples are projected onto the 
learned reference space using the same set of SNP markers. Second, the population label of an unseen target 
sample is inferred by applying classification algorithms, or genetic ancestry can be expressed as a continuous 
axis of variation. However, high-quality genotype data is critical to the success of PCA10. In the presence of 
missing genotypes or errors in the target dataset, PCA has shown to produce patterns of misalignment during 
projection14,15. To overcome this problem, a robust alternative was recently proposed, known as SUGIBS, which 
utilizes spectral (S) decomposition of an unnormalized genomic (UG) relationship matrix generalized by an 
Identity-by-State (IBS) similarity matrix between the samples to be projected and individuals in the reference 
dataset14. By incorporating IBS information to correct for genotype errors and missing data during matrix 
decomposition and data projection, SUGIBS was proven to be more robust than PCA. In the work of SUGIBS, 
unnormalized PCA (UPCA) was investigated as well. Normalizing genotype data by allele frequency, typically 
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done using PCA, causes individuals within the same population to be more alike, enhancing the distinction 
between populations16. This is beneficial for tasks such as clustering. However, normalization is challenging for 
heterogeneous datasets and increases sensitivity to outliers. UPCA (i.e., PCA on non-normalized data), on the 
other hand, can reduce sensitivity to outliers14. Another requisite of PCA is that reference subjects are unrelated 
to prevent fusing signals due to family relatedness with population structure17. For example, related individuals 
may form separate clusters far away from their respective ancestry groups if they were included in construction 
of the PCA reference space. Therefore, a common strategy is to first identify and then remove related individu-
als, which again requires more sophisticated solutions when dealing with heterogeneous and highly admixed 
datasets (e.g., KING-robust18).

In addition to matrix decomposition-based methods such as PCA, there has been a strong interest in the 
use of machine learning to identify ancestry groups and learn informative features based on genotype data. For 
example, support vector machines (SVM) have been applied to infer ancestry in an American population19, and 
singular value decomposition (SVD) was used to reduce the dimensionality of genotype data prior to training 
a classification neural network to perform ancestry prediction20. Autoencoders (AE), a type of neural net-
work architecture capable of learning lower-dimensional latent representations in an unsupervised manner21,22, 
have been combined with clustering methods such as K-Means and hierarchical clustering to infer population 
structure in maize inbred lines23. One advantage of neural network-based approaches is that these can easily 
be extended and changed. Specially, their design is flexible and today many architectural alternatives as well as 
training strategies exist as a result of the overwhelming scientific interest in neural network-based solutions and 
deep learning well beyond genetics and bioinformatics. E.g., variational autoencoders (VAE), an architectural 
extension of AE in terms of generative capability, were able to visualize complex population structures in a two-
dimensional (2D) latent space, whereas a larger number of principal components (PCs) was required for the same 
task24. Denoising autoencoders (DAE) aim to achieve more robust latent representations by using noisy data as 
input and trying to reconstruct the original, clean data25,26. DAE have been used for genotype imputation and 
provided accurate and robust results at different levels of missing data27. Aside from these two examples, many 
more alternatives exist, and this flexibility along with the ability to potentially learn non-linear relationships 
within the data makes neural network-based solutions very attractive to explore.

In this work, we integrate recent advances obtained for matrix decomposition-based solutions with a neural 
network learning paradigm into a novel hybrid approach, referred to as SAE-IBS, which consists of a Singular 
Autoencoder (SAE) generalized by an IBS similarity matrix (model architecture in Fig. 1). The idea of a SAE was 
first investigated in a previous study on 3D shape analysis28. SAE was found to generate uncorrelated latent repre-
sentations that code variation on independent aspects of shape variation. Moreover, it could model non-linearity 
in the data and offered learning-based flexibility to adapt to other applications. Inspired by this work, and the 
idea of merging the advantages of matrix decomposition-based methods with those from neural network-based 
approaches, we intend to explore the application of SAE in the context of ancestry inference. Additionally, IBS 
correction, as adapted from SUGIBS, is straightforwardly incorporated in this hybrid model to further boost 
the robustness. Our proposed model was compared with PCA and regular autoencoders through the following 
experiments. First, we explored the properties of the obtained low-dimensional latent representations in terms 
of variance–covariance structure, genetic clustering, and ancestry inference through classification. Second, we 
investigated the robustness of constructing an ancestry space in the presence of related individuals. Finally, we 
simulated missing and erroneous genotypes in the target samples and compared the robustness of different 
methods during the projection of target data onto a reference space. Experiments were conducted using both 
simulated data and real genotype data from the 1KGP13, the Human Genome Diversity Project (HDGP)29, and 
the Adolescent Brain Cognitive Development (ABCD) project30.

Results
Properties of the ancestry space.  We explored the structure and properties of the ancestry spaces based 
on the 1KGP dataset for the three different and main categories of methods (PCA, AE, and SAE-IBS selected as 
representative of matrix-decomposition, neural-network, and hybrid models, respectively). More specifically, we 
visualized and investigated the obtained lower-dimensional latent space and its variance–covariance structure. 

Figure 1.   Network architecture of SAE-IBS. The encoder and decoder are fully connected neural networks. The 
decoder architecture is mirrored to the encoder architecture. Matrix multiplication is denoted by · and SVD is 
low-rank singular value decomposition. IBS is Identity-by-State similarity matrix.
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Furthermore, we examined the discriminatory power of the latent representations for genetic clustering and 
classification.

Figure 2 illustrates the learned ancestry spaces of PCA, AE, and SAE-IBS. The clustering pattern resem-
bled the geographical distribution in our data sample, with Europe, East Asia and Africa situated at different 
points of the triangle, South Asia positioned between Europe and East Asia, while America spread out among 
populations because of admixture. This structure is widely observed in ancestry spaces generated by PCA, and 
interestingly AE and SAE-IBS also produced similar patterns. On the other hand, samples from South Asia and 
America overlapped in the 2-dimensional PCA space, while training AE and SAE-IBS with only two latent axes 
resulted in a well-structured latent space with a clear separation of the different super-populations, which was 
also observed in related works such as24,31.

Variance–covariance structure.  Figure  3 displays the variance–covariance matrix of the ancestry scores 
for 8-dimensional latent spaces constructed by PCA, AE, and SAE-IBS. For PCA and SAE-IBS, larger values 
appeared on the diagonal in descending order, indicating that PCA and SAE-IBS models capture most of the 
genotypic variation by the first few axes. The off-diagonal elements of the variance–covariance matrix represent 

Figure 2.   Comparison of the latent spaces for different methods. Scatter plots of the top two ancestry axes 
determined using (A) PCA, (B) AE, (C) SAE-IBS. The color of a point represents the ancestry of an individual, 
blue tints for European, green tints for African, red tints for East Asian, yellow tints for American, and purple 
tints for South Asian. The projected target samples from HDGP dataset onto 1KGP reference space are plotted 
in grey. Note in (C) SAE-IBS, to make the relative positions of clusters in different figures easier to compare 
visually, the first ancestry score was multiplied by − 1. African Caribbean in Barbados (ACB); African ancestry 
in the southwestern United States (ASW); Bengali in Bangladesh (BEB); Chinese Dai in Xishuangbanna, China 
(CDX); Utah residents with ancestry from northern and western Europe (CEU); Chinese in Beijing (CHB); Han 
Chinese South (CHS); Colombian in Medellín, Colombia (CLM); Esan in Nigeria (ESN); Finnish in Finland 
(FIN); British from England and Scotland (GBR); Gujarati Indians in Houston (GIH); Gambian in Western 
Division-Mandinka (GWD); Iberian Populations in Spain (IBS); Indian Telugu in the U.K. (ITU); Japanese in 
Tokyo (JPT); Kinh in Ho Chi Minh City, Vietnam (KHV); Luhya in Webuye, Kenya (LWK); Mende in Sierra 
Leone [MSL]; Mexican ancestry in Los Angeles (MXL); Peruvians in Lima, Peru (PEL); Punjabi in Lahore, 
Pakistan(PJL); Puerto Rican in Puerto Rico (PUR); Sri Lankan Tamil in the UK (STU); Nigeria; Toscani in Italy 
(TSI); Yoruba in Ibadan (YRI).

Figure 3.   Covariance matrix of the ancestry scores for the 8-dimensional spaces constructed by (A) PCA, 
(B) AE, (C) SAE-IBS. The elements on the diagonal represent the amount of variance explained by each of the 
dimensions. The off-diagonal elements show the correlation between the axes along corresponding dimensions. 
Blue blocks indicate low (co)variance and red blocks indicate high (co)variance.
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the correlation between the different latent axes. For PCA and SAE-IBS, these were equal to zero due to the 
orthogonality that is enforced. In contrast, the latent axes of AE showed some degree of correlation, and the 
amount of variance was less concentrated in the first few dimensions.

Evaluation of genetic clustering performance.  To evaluate the validity of the different latent representations 
in clustering, K-means clustering32 was applied to the 1KGP dataset with known population labels as ground 
truth information. Clustering performance was investigated at different resolutions, including super-population 
and sub-population scale. For this, the number of clusters in the K-means algorithm was set to 5 (the number 
of super-populations) and 26 (the number of sub-populations) respectively. Performance was evaluated using 
clustering accuracy (cluster labels compared to the known population labels). To investigate the influence of the 
number of ancestry axes on clustering accuracy, we built the models with varying latent dimensions: 2, 4, 8, and 
12.

Figure 4A,B provide the results of clustering accuracy under different latent space dimensions of the different 
models. At the super-population level with latent space dimension of 2, PCA performed best, followed by the AE 
and SAE-IBS models. The performance of all methods increased when the latent space dimension increased from 
2 to 4. However, a further increase in the number of latent dimensions reduced the performance of AE and PCA, 
while the performance of SAE-IBS models remained stable under different settings. The best performance of all 
methods was comparable and realized with 4 ancestry axes. In general, the performance for all three methods at 
the level of sub-population is much lower than that of the super-population. With latent space dimensions of 2 
and 4, AE performed best, followed by the SAE-IBS model and PCA. The performance of PCA improved substan-
tially when the number of latent dimensions lifted to 8, while the performance of AE and SAE-IBS models with 
higher latent space dimensions remained unchanged. The best performance among all approaches was realized 
using PCA with 8 ancestry axes. Interestingly, for PCA, the best clustering accuracy was reached with a latent 
space dimension set to 4 and 8 for super-population and sub-population level, respectively. This was consistent 
with visual inspection of the plots of subsequent PCs (Fig. S1A), in which the top four PCs captured the major 
continental population structure, while the subsequent PCs (PC5–PC8) accounted for additional structure in 
sub-populations. The latter ancestry axes of AE and SAE-IBS did not show further differentiation at the level of 
sub-population (Fig. S1B and C).

Although AE and SAE-IBS did not perform as optimally as PCA for clustering a large number of closely 
related sub-populations, this disadvantage could be overcome by analyzing sub-populations on a smaller scale. 
Figure 5 displays ancestry axes for experiments using individuals from four selected 1KGP sub-populations (CHB 
and KHV from East Asia; GWD and YRI from Africa). The first two PCA axes defined the clusters at the super-
population level while the third and fourth axes further separated the sub-populations, clearly recapitulating the 
results from the previous experiment. In contrast, both super-population and sub-population structures were 
already captured by the first two latent axes of AE, further evidenced by the eigenvalues of the correlation matrix 
of the latent vectors of AE. Specifically, the number of eigenvalues greater than 1 (Kaiser’s rule33) was equal to 2, 
suggesting that two latent axes were adequate for clustering these four sub-populations. For SAE-IBS, the first 
two ancestry axes were also sufficient to reveal the hierarchical population structure, and the latter axes appeared 
unstructured and indistinguishable from random noise, similar to the last two axes in PCA. Furthermore, in a 
supplementary experiment inferencing sub-populations within one super-population (in supplementary Fig. S2), 
the first two axes of PCA, AE and SAE-IBS separated sub-populations similarly, and the last few axes of PCA and 
SAE-IBS appeared to capture noise. The latter axes of AE exhibited repeated structure from the first two axes, as 
evidenced by the variance–covariance, similar to the observations in Fig. 3.

Evaluation of ancestry inference performance.  The ancestry inference performance was evaluated through the 
classification accuracy based on the projected ancestry scores of target data. First, we built the reference ancestry 

Figure 4.   Comparison of clustering and classification accuracy under different latent space dimensions of 
different models. Number of clusters in K-means algorithm was set to 5 (A) and 26 (B), corresponding to the 
number of super-populations and sub-populations defined in the 1KGP dataset, respectively. (C) Number of 
neighbors in KNN classification was set to 3.
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space based on the 1KGP dataset. Next, a subset of the HDGP dataset was projected onto the learned space. As 
shown in Fig. 2, the projected HDGP samples overlay well on the reference space. To further quantify the qual-
ity of these projections, we inferred the super-population labels for HDGP samples based on the labels of the 
1KGP dataset using a K-nearest neighbors (KNN) classification34,35. Performance was assessed using classifica-
tion accuracy. Since the exact match of sub-population labels between the two datasets is uncertain, we limited 
this experiment at the level of super-population. A summary table for sub-populations of the HDGP dataset 
used in this experiment can be found in Table S8.

Figure 4C provides the results of classification accuracy under different latent space dimensions for the dif-
ferent models. With the latent space dimension of 2, SAE-IBS performed best, followed by the AE and PCA 
models. The performance of all methods increased when the latent space dimension increased from 2 to 4. 
When the number of latent dimensions further increased, the performance of SAE-IBS remained stable, and 

Figure 5.   Comparison of population inference at super-population and sub-population level. The first six 
ancestry components for (A) PCA, (B) AE and (C) SAE-IBS using four sub-populations from the 1KGP dataset. 
The color of a point represents the ancestry of an individual, dark red for Han Chinese in Beijing, China (CHB), 
light red for Kinh in Ho Chi Minh City, Vietnam (KHV), light green for Gambian in Western Division, The 
Gambia (GWD), and dark green for Yoruba in Ibadan, Nigeria (YRI).
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the performance of PCA slightly improved, while the performance of AE reduced. The best performance of 
SAE-IBS and PCA was comparable and better than that of AE, obtained with 4 and 8 ancestry axes, respectively.

In addition, based on the clustering and classification experiments across different dimensions of the ancestry 
space, we also investigated the stability of the population structure detected. By design, PCA and related matrix-
decomposition solutions each time generate the same axes, independent of the dimensionality requested, with 
each axis being orthogonal to the others. Specifically, the first four axes, when only 4 dimensions are sought for, 
are the same as the first four axes when up to 12 dimensions are sought for (Fig. S1A, Table S9). In contrast, the 
first four axes generated by an AE model trained with 4 and 12 dimensions respectively will differ (Fig. S1B, 
Table S9). PCA is a deterministic algorithm, while AE like many neural network methods is a non-deterministic 
algorithm. Interestingly, for SAE-IBS trained with 4 or 12 dimensions, the first four dimensions remain stable 
and are highly correlated (Fig. S1C, Table S9). This highlights a similar behavior of SAE-IBS compared with PCA, 
with orthogonality allowing ease of dimensionality selection for subsequent tasks.

Construction of robust ancestry space in the presence of relatedness.  We applied the different 
population structure inference methods to a subset of the heterogeneous ABCD dataset consisting of unrelated 
individuals (n = 5024) and 2nd degree relatives detected with a relatedness threshold of 0.0884 (two different 
families, one of four related individuals, and one of five related individuals). With the added flexibility in train-
ing neural network solutions (AE and SAE-IBS), we investigated training an ancestry space based on the mean 
squared error (MSE) loss function or L2 norm (as used in the previous experiments). This makes its sensitivity 
to outliers equivalent to the least-square matrix decomposition encountered in PCA. In addition, we also inves-
tigated training an ancestry space based on the mean absolute error (MAE) or L1 norm. MAE represents the 
mean absolute distance between the original and predicted values, while the MSE measures the average of the 
squared difference between the original and predicted values. The squaring means the size of the error grows 
quadratically as the data points are located further away from the group mean. This implies that, theoretically, 
MSE is more sensitive to outliers than MAE.

Figure 6 displays the population structure as inferred by PCA, AE, and SAE-IBS (trained with MAE loss) with 
eight ancestry axes. The fifth and sixth axes of variation from the PCA model were confounded by relatedness, 
as shown by the related individuals that formed distinct groups far away from the main clusters. In contrast, 
no confounding due to relatedness was observed for AE and SAE-IBS models with MAE loss. Moreover, in a 
further examination with a higher latent dimension, from the 16-dimensional ancestry spaces built using AE 
and SAE-IBS models (Fig. S3), we did not observe any separating cluster formed by the relatives. On the other 
hand, the obtained ancestry axes from the AE and SAE-IBS models using MSE loss were found sensitive to 
relatedness (Fig. S4).

To further quantify these results, we calculated the mean Mahalanobis distance (MMD)36 between the related 
individuals and the three main population clusters on the first eight ancestry axes. Lower MMD values (Table 1) 
between the relatives and their matching ancestry group were found for AE and SAE-IBS models (trained with 
MAE loss) compared to PCA, indicating that neural network and hybrid solutions can be robust against related 
individuals within the dataset when trained with an MAE loss. Meanwhile, the robustness would be lost when 
the AE and SAE-IBS models were optimized in terms of MSE loss (Table S10).

Robust projection of target data onto reference ancestry space.  To assess the accuracy and robust-
ness against genotype missingness and erroneousness in the target data, we constructed a reference ancestry 
space based on the 1KGP dataset and projected unaltered and altered HDGP samples (i.e., target data of which 
ancestry needs to be inferred) with simulated missing and erroneous genotypes onto the reference space. Again, 
with the added flexibility of neural networks, in this session we also investigated denoising mechanisms for 
autoencoders (DAE)25,26 since these are relevant when working with erroneousness input data. The hybrid mod-
els (SAE-IBS, D-SAE-IBS, D-SAE-IBS-L) were compared against matrix-decomposition based (PCA, UPCA, 
and SUGIBS) and neural network-based (AE, DAE, and DAE-L) alternatives. DAE-L is a proposed modification 
of the loss function (L) in a DAE to better enforce noise robust latent representations by adding a projection loss 
to the reconstruction loss. D-SAE-IBS is the denoising version of SAE-IBS, and D-SAE-IBS-L is the denoising 
version with an extended projection loss.

Figure 7 shows the normalized root mean squared deviation (NRMSD) between the ancestry scores, com-
puted from the original (unaltered) and simulated (altered) HGDP data, on the first two ancestry axes generated 
by matrix decomposition-based methods (PCA, UPCA, SUGIBS), neural network-based approaches (AE, DAE, 
DAE-L) and hybrid models (SAE-IBS, D-SAE-IBS, D-SAE-IBS-L). The corresponding mean and standard devia-
tion of the NRMSD scores over 100 simulations for each experiment can be found in supplementary Tables S11, 
S12. For the simulated erroneousness experiments, AE performed better than PCA and comparably to UPCA 
and SUGIBS. The denoising effect of DAE further improved the performance of AE. Moreover, DAE’s extension 
with an additional projection loss (DAE-L) enhanced the robustness even more. The proposed hybrid model and 
its extensions achieved the best performance among the above-described methods. In the scenario of simulated 
missingness, the denoising variants of AE (DAE and DAE-L) exhibited a similar trend in performance: by incor-
porating more loss terms in the objective function, the robustness increased. However, in contrast to simulated 
erroneousness, the group of neural network-based methods performed worse than UPCA and SUGBIS in the 
presence of simulated missingness. The best performance was again realized using the proposed hybrid mod-
els. Two-sample t-tests with Bonferroni correction showed significant differences in performance among most 
methods (p < 0.0014, Tables S13, S14). For the hybrid models, however, the gain from the denoising mechanism 
was not substantial. Specifically, SAE-IBS compared to using a denoising learning strategy in D-SAE-IBS, and 
further including an additional project loss in D-SAE-IBS-L did not significantly improve the results. Since the 
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learning challenge is easier in SAE-IBS from a computational perspective, SAE-IBS may be a preferred method 
for this comparison.

Furthermore, we compared the structure of the ancestry spaces in the experiments of ancestry inference and 
robust projection, on account of different hyperparameter settings used. As PCA generates a lower-dimensional 
space via matrix decomposition, one and the same ancestry space is obtained for different tasks. In contrast, 
the flexibility of neural network-based solutions does require a wider exploration of network implementations, 
known as hyperparameter tuning in machine learning. The networks can be tunned according to research 
interests such as optimizing the ability to robustly project new data onto the ancestry space and optimizing the 
clustering/classification of the data within disparate population groups coherent with the given population labels. 
Implementation details can be found in supplementary (additional file 1 and Tables S1–S7). The latent space of 
AE customized for robust projection (Fig. S5A) was more contractive compared to that of ancestry inference 
experiments (Fig. 2B). For different tasks, the latent spaces of SAE-IBS (Figs. S5B and 2C) displayed a triangular 
shape, similar to what is typically observed for PCA in the context of population structure inference37–39. Besides, 

Figure 6.   Comparison of population structure inference in the presence of related individuals. Scatter plots 
of the 8-dimensional ancestry space determined using (A) PCA, (B) AE, and (C) SAE-IBS, trained with MAE 
loss. The colors represent the self-reported ancestry of an individual, green for African (AFR), orange for Asian 
(ASI), and blue for European (EUR). Related individuals (REL) are plotted in pink.

Table 1.   The mean Mahalanobis distance (MMD) using eight ancestry axes between the groups of relatives 
and three population clusters, i.e., European (EUR), African (AFR), and Asian (ASI). The relatives are of 
European descent.

Model MMD-EUR MMD-AFR MMD-ASI

PCA 28.0230 151.6899 156.0633

AE 1.2370 35.7748 23.7082

SAE-IBS 1.8338 33.5951 30.9566
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we found that the latent spaces of SAE-IBS under different hyperparameter settings were similar (characterized 
by a triangular shape and distinguishable clusters using the top two ancestry axes), while the AE latent spaces 
were more random and displayed great variability under different training conditions.

Discussion and conclusion
In this work, we proposed a hybrid method for population structure inference, SAE-IBS, which yields an orthogo-
nal latent space, like matrix decomposition-based methods, and can extract more comprehensive latent features 
by exploiting the non-linear nature of neural network-based methods. SAE-IBS encodes genotyping data onto 

Figure 7.   Normalized root-mean-square deviation (NRMSD) of the first two ancestry axes of different 
methods. (A) simulated erroneousness experiments and (B) simulated missingness experiments using matrix-
decomposition methods (PCA, UPCA, SUGIBS), neural network-based methods (AE, DAE, DAE-L) and 
hybrid methods (SAE-IBS, D-SAE-IBS, D-SAE-IBS-L).
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a lower-dimensional space and learns to reconstruct the input data from the obtained latent representations. At 
the same time, it inherits important robustness properties of SUGIBS by applying SVD on the IBS generalized 
latent representations.

The obtained ancestry space of SAE-IBS exhibits interesting patterns: it has a PCA-like variance–covariance 
structure; similar to AE, different population groups are separable within fewer dimensions compared to PCA. 
Also, this layout remained consistent under different hyperparameter settings and was independent of the dimen-
sionality used to train the model. This leads to a strong and desired stability of the population structure inference 
and an enhanced dimensionality selection after training. One can train SAE-IBS with a higher dimensionality 
and reduce it a posteriori without the need to retrain the network. This indicates that the fine-tuning process of 
SAE-IBS remains simple, and hence results are less influenced by the choice of hyperparameters and/or dimen-
sionality. On the other hand, the latent spaces of AE and its extensions varied under different combinations of 
hyperparameters, meaning that additional efforts are needed for fine-tuning the AE towards ancestry inference 
or robustness in noisy data projections. A stronger weight decay regularization effect, i.e., more contractive latent 
space, is beneficial for the task of robust projection, while smaller emphasis on regularization is preferred for the 
purpose of ancestry inference. In addition, the generation of ancestry axes is not invariant to the dimensionality 
requested, and selection of dimensionality is therefore cumbersome. To make sensible choices, one often needs 
to compare the results using different latent dimensions.

Based on the genetic clustering and ancestry inference performance, the properties of the latent representa-
tions were further explored. PCA and SAE-IBS reached similar classification accuracy and were better than AE. 
Regarding the resolution of genetic clustering, AE and SAE-IBS were able to differentiate the continental clusters 
within a smaller number of ancestry axes compared to PCA. An advantage of PCA that we observed, is that its 
first few components can explain the variation at the super-population level, and the subsequent components 
account for the variability at the sub-population level. In contrast, AE and SAE-IBS cannot detect population 
structure in such a hierarchical manner and are only capable of inferring sub-population structure on a smaller 
selection. This could be attributed to minimizing the reconstruction error defined as the element-wise mean 
differences between the input and reconstructed data, which might not be a precise method to describe similar-
ity for genotyping data. Thus, the detailed information explaining the variability within clusters is smoothed 
out. This argument is supported by a related work31, in which the LD patterns of the reconstructed and true 
genotype data were compared, and the AE-based method was found to experience difficulty in capturing the 
rare SNP variations. To achieve better clustering accuracy at the sub-population level, other types of networks 
specifically designed for clustering can be investigated. For instance, deep embedded clustering (DEC)40, which 
simultaneously learns feature representations and performs K-means clustering in the feature space, might be 
of interest for future research.

Moreover, in the experiment of constructing an ancestry space in the presence of relatedness, we show that 
more robust results can be obtained by simply changing the loss function from MSE to MAE. On the contrary, 
optimization in PCA works in a least-squares manner and hence the relatives tend to have a larger effect and 
form distinct clusters themselves. Robustness against relatedness is beneficial in that it could relieve some of the 
burden from preprocessing.

In addition to regular AE architectures, we also investigated denoising AE (DAE) architectures and proposed 
an extension by imposing robust projections through the incorporation of an additional loss (DAE-L). We 
found that these extensions could improve the robustness of AE against genotyping errors and missing data. 
Furthermore, these extensions were also applied to our proposed SAE-IBS model. Results showed that denois-
ing extensions did not significantly improve the SAE-IBS model in terms of robustness against data artifacts. A 
possible explanation is that SAE-IBS already performs well by combining IBS information so that the gain from 
the denoising effect is marginal.

Nevertheless, with SAE-IBS and other neural network-based models, we have the flexibility of e.g., modify-
ing the model architecture, adapting the loss function or using alternative training strategies. A related work31 
applied a convolutional autoencoder with residual connections, which offers an alternative model architecture 
different from the fully connected autoencoder used in this work. The effect of training scheme was demon-
strated for ancestry inference versus robust projection of samples. This flexibility also allows these methods to 
be easily adapted towards other tasks such as genotype imputation (e.g., by learning to reconstruct genotypes 
accurately from the input with missing values via denoising mechanisms as described in a related work27). Still, 
there is room for improvement in terms of robustness. It may be of interest for future research to explore other 
types of neural networks, such as denoising adversarial autoencoders41. These types of AE utilize an additional 
adversarial loss to minimize error of misclassification between actual and generated samples, which may further 
boost its performance.

Despite the current popularity and many advantages of neural network-based methods, hyperparameter 
tuning remains challenging. It is important to identify which hyperparameters to focus on in order to refine the 
search space. For AE models, weight decay regularization not only prevents overfitting, but also improves the 
robustness of projection by encouraging the feature extraction process to be locally invariant of the change of the 
input data. It is observed that a higher weight decay regularization results in a more robust projection. Similar 
ideas have been presented in the work of contractive autoencoders (CAE)42, in which another form of penalty 
term for localized space contraction was proposed. CAE has been proven to outperform AE and ensure that the 
parameters of the encoder are less sensitive to small variations in the input. In the case of linear activations, the 
loss functions of CAE and weight decay regularized AE are identical and enforcing the weights of networks to 
be small is the only way to have a contraction42. We used the Leaky ReLU activation function, which comprises 
two linear functions and strictly speaking is not linear. Even so, weight decay regularization in our case resembles 
the underlying mechanism of CAE.
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While SAE-IBS exhibits desirable properties such as the orthogonal latent space, it also comes with some 
limitations. First, it uses a non-conventional training scheme. Namely, to speed up the learning of SAE-IBS 
and to provide a well-initialized embedding from the encoder to apply SVD on, we first trained an AE up to 
1000 epochs and continued training SAE-IBS afterwards. Moreover, even though SAE-IBS was trained in mini 
batches, the SVD layer was updated based on the whole data. Specifically, within an epoch, the embeddings of 
each batch data from the encoder were updated and then the SVD layer was updated using the embeddings of 
the complete dataset. In the case of applying SVD on very large datasets, this procedure may not be feasible. 
This limitation motivates future work to replace SVD by incremental SVD43, which efficiently updates the SVD 
outcome when new data becomes available. Second, in theory non-linear relationships within the data can be 
captured by using non-linear neural networks instead of linear transformers. However, this does not guarantee 
that all non-linearities are mapped out from the data, as input to the linear SVD layer. In other words, more 
work along the lines of explainable AI is needed to better understand the transition from non-linear to linear 
layers in the model. Lastly, but most importantly, the application of SAE-IBS is limited to study designs where 
reference genotype data is available for computing the IBS similarity matrix between the target and reference 
data. This is not required for PCA, AE, DAE and their non-IBS extensions. As an alternative, a standard SVD 
can be proposed onto the latent representations, turning the eigenvalue decomposition generalized by the IBS 
matrix into a non-generalized and thus standard eigenvalue decomposition. This will still generate an orthogonal 
latent representation within an AE architecture and was first explored in related work encoding 3D palate shape 
variations28. However, robustness against genotyping errors and missing data is then not obtained.

Although this work focuses on the robustness in population inference given erroneous input data, there are 
certainly other applications of neural network-based and hybrid methods worthy of future investigations. Spe-
cifically, incorporating variational loss allows to better sample from the ancestry space and to generate artificial 
genotyping data, suggested by a related work24. Another type of generative networks, generative adversarial 
networks (GAN), have also been applied to create artificial human genomes44. It would thus be interesting to 
explore these models for genotype generation and possibly combine them with SAE models and IBS information.

In conclusion, the proposed SAE-IBS model is a new and hybrid approach that integrates the advantages of 
matrix-decomposition (PCA and SUGIBS) and neural network-based (AE) solutions into ancestry inference 
from genome-wide genotype data. By incorporating IBS information, like SUGIBS, it was shown to be more 
robust when projecting poor quality target samples onto a reference ancestry space. Furthermore, like AE and 
in contrast to PCA, our approach can construct a robust ancestry space in the presence of relatedness by train-
ing based on MAE loss. Interestingly, like PCA and in contrast to AE, the stability, and therefore repeatability, 
of the ancestry inference is very acceptable and due to the presence of orthogonality in the latent representation 
dimensionality selection can be done more readily. Moreover, the learned latent representations reflect various 
properties of the data such as cluster identities. Our method performs equally well as the existing methods for 
genetic clustering and ancestry inference at the super-population level. Like AE, different population groups 
are separable within fewer dimensions compared to PCA. This is beneficial in terms of data compression and 
visualization. Finally, the proposed method inherits the flexibility of neural network-based methods, which 
allows it to be easily adapted for other applications and multi-task learning.

Material and methods
Genotyping and data processing.  The datasets used in this study are (1) the 1KGP13 dataset, consisting 
of 2504 individuals from 26 populations in Europe (EUR), Africa (AFR), East Asia (EAS), South Asia (SAS), 
and the Americas (AMR); (2) the HDGP29 dataset with 1043 individuals from 51 worldwide populations; and 
(3) a subset from the ABCD30 dataset, consisting of 5033 individuals of European, African, and Asian descent.

We followed the preprocessing steps described in14. In brief, for the HGDP dataset, we first converted the 
assembly from the NCBI36 (hg18) to the GRCh37 (hg19) using the NCBI Genome Remapping Service. For the 
1KGP dataset, related individuals were detected using the KING-robust kinship estimator18 with a relatedness 
threshold of 0.0442, corresponding to the 3rd degree relatives, after which one individual in each group of rela-
tives was randomly retained. For the 1KGP and HGDP datasets, individuals with more than 10% missing geno-
types were removed. Pruning based on LD of SNPs is recommended for PCA9. We performed multiple rounds 
of LD pruning with a window size of 50, a moving step of 5, and r2 cutoff of 0.2 until no additional SNPs were 
removed. We then intersected the 1KGP and HGDP datasets to extract the set of overlapping SNPs and match 
their alternate alleles, resulting in a final set of 155,243 SNPs for analyses.

For the ABCD dataset, the same procedures for removing missing genotypes and LD pruning were con-
ducted, resulting in a final set of 137,482 SNPs for analyses. Individuals with missing self-reported ancestry were 
removed. Three ancestry groups were selected, i.e., Asia (ASI), Europe (EUR), and Africa (AFR). The related 
individuals in the ABCD dataset were detected using the KING-robust kinship estimator18 with a relatedness 
threshold of 0.0884, corresponding to the 2nd degree relatives. In total, 3564 individuals were found to have at 
least one relative within the dataset. There were 1692 pairs, 57 trios, one family comprising 4 siblings, and one 
family comprising 5 siblings. We retained the related individuals that had more than three relatives. The final set 
consisted of 5024 unrelated individuals and 9 related individuals (European descent).

Hybrid model.  The general architecture of our proposed approach is displayed in Fig. 1. SAE-IBS, like AE, 
consists of an encoder network and a decoder network, and makes use of SVD and IBS information correcting 
for potential data artifacts, like SUGIBS. Detailed descriptions of the models used for comparison can be found 
in supplementary (additional file 1).

Let X ∈ R
n1×m denote the unnormalized genotype matrix with additive genotype coding (aa =  − 1, Aa = 0, 

AA = 1 and missing = − 2), and S ∈ R
n1×n1 denote the pairwise IBS similarity matrix of X , which is calculated 
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following the rules in Table S1. The similarity degree of an individual is defined as dii =
∑n1

j sij where sij is the 
IBS similarity between individual i and any other individual j in the reference dataset. The similarity degree 
matrix is a diagonal matrix defined as D = diag

{
d11, . . . , dn1n1} . During training, the outputs from the last layer 

of the encoder are multiplied by the IBS similarity degree matrix G = D− 1
2 f (WX + b) where G ∈ R

n1×h is IBS 
generalized features, f (·) is a non-linear function with the weight matrix W and the bias vector b . Then, the fully 
connected layers linking the encoder and decoder with the bottleneck, which are typically used in regular AE, 
are now replaced by a low-rank SVD to ensure orthogonal latent representations. This yields G = Ũ�̃ṼT in 
which �̃ ∈ R

k×k is a square diagonal matrix with its diagonal entries being the non-zero singular values of G and 
the semi-orthogonal matrices Ũ ∈ R

n1×k and Ṽ ∈ R
h×k contain the left and right singular vectors, respectively. 

The latent representation is given by Z̃ = Ũ�̃ , and the corresponding loading matrix is denoted by Ṽ .  Next, 
the decoder maps the latent representation back to a reconstruction output X̂ = g(W ′Z̃ṼT + b′) where g(·) is a 
non-linear function with the weight matrix W ′ and the bias vector b′ . The network is then trained to minimize 
the reconstruction error. The objective function takes the form

Given an unseen dataset with n2 individuals and the same set of SNPs as the reference dataset, let Y ∈ R
n2×m  

denote its unnormalized genotype matrix. The reference similarity degree is defined as d̃ii =
∑n2

j s̃ij where s̃ij is 
the IBS similarity between the i th individual in the unseen dataset and the j th individual in the reference dataset. 
The reference IBS similarity degree matrix is defined as D̃ = diag

{
d̃11, . . . , d̃n2n2} . Then, the projected scores of 

the unseen data onto the reference space can be obtained by D̃−1f (WY + b)Ṽ .
Like AE, many different variants of the general SAE-IBS architecture exist. We can extend the SAE-IBS model 

to a denoising version as first proposed in DAE25,26, referred to as D-SAE-IBS, by using simulated and perturbated 
noisy inputs and learning to reconstruct the original noise-free data input. Despite a DAE aims to denoise input, 
i.e., enforcing noiseless output, it does not guarantee learning noise-robust latent features. It is very possible that 
a clean and noisy input data sample are projected onto different latent representations, but still generate the same 
“noiseless” output. From this motivation, we propose to include an extra robust projection loss (mathematical 
details in additional file 1) in the original objective function, yielding a denoising singular autoencoder general-
ized by Identity-by-State matrix with modified loss, referred to as D-SAE-IBS-L.

Implementations.  Training strategy.  Neural network-based methods are often criticized for their danger 
of overfitting, i.e., the model fits extremely well to training data but fails to generalize to unseen data. To over-
come this problem, we trained the models with weight-decay regularization by default. Furthermore, we applied 
early stopping45 to monitor the training process and determine the optimal number of epochs. Before training, 
the input dataset was divided into training and validation sets (90% of samples for training, 10% for validation). 
After each epoch of training, we evaluated the model performance on the validation set. Training stops at the 
point when no improvement is observed on the validation set over a given number of epochs. The number of 
epochs to wait for is referred to as early stopping patience. This ensures that the training is not terminated too 
soon, considering the stochastic nature of training a neural network. Details of regularization, early stopping, 
and the customized training strategy for the hybrid models are described in supplementary (additional file 1).

To accelerate the training process, the additive coded genotype data were first normalized so that the values 
are bounded within the interval of [0,1]. The encoder and decoder networks are fully connected networks. We 
defined the reconstruction error as the MSE between the original genotypes and their reconstruction by default, 
and MAE loss was used in the experiment involving related individuals. We experimented with different model 
architectures, i.e., varying the number of hidden layers and the number of hidden units per layer. The model 
hyperparameter controlling the emphasis on projection loss β was also fine-tuned. The empirical analyses and 
detailed model architectures are described in supplementary (additional file 1).

Genetic clustering.  We used the K-means clustering function from the scikit-learn package. The ‘n_init’ param-
eter, defining the number of times to run the algorithm with different centroid seeds, was set to 1000. All other 
parameters were kept by default (init = ’kmeans + +’, max_iter = 300, tol = 0.0001, verbose = 0, copy_x = True, 
algorithm = ’auto’).

Following40, the evaluation metric of clustering performance, i.e., clustering accuracy is defined by 
accuracy = max

perm∈P

∑q
i=1 1{ci=perm(ĉi)}

q  where ci and ĉi are the given true label and the predicted class label, respec-
tively. The best assignment of the predicted labels can be found via permutation. P is the set of all possible per-
mutations (in total, K! permutations) in [1, K], where K is the number of clusters. The Hungarian algorithm46 
helped to compute the best mapping between true and predicted labels efficiently, in O(K3).

Classification of target populations.  We used the K-nearest neighbors classification function from the scikit-
learn package. The number of neighbors was set to 3. All other parameters were kept by default (weights = ’uni-
form’, algorithm = ’auto’, leaf_size = 30, p = 2, metric = ’minkowski’). Classification accuracy is defined by 
accuracy =

∑q
i=1 1{ci=ĉi}

q  where ci and ĉi are the given true label and the predicted class label, respectively.

Related individuals.  In general, the top ancestry axes inferred by PCA can capture the population structure, 
and the latter axes might be confounded by relatedness. Therefore, the number of ancestry axes was set to 8. To 
quantify the distance in the multivariate ancestry space between a sample and the main population cluster, we 

JSAE−IBS =
∑

x

L
(
x, g

(
D− 1

2 f (x)Ṽ ṼT
))
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computed the Mahalanobis distance using all 8 ancestry axes. Then, we took the mean Mahalanobis distance of 
all relatives as the evaluation metric of population inference accuracy.

Experiments of simulated artifacts.  As shown in14, the difference of the top eight ancestry axes across dif-
ferent methods exhibit similar patterns. Therefore, the number of axes to be inferred in our experiments was 
set to 2 for simplicity reasons only. We followed the experimental strategy described in14, which simulates 5% 
genotype missingness and 5% genotyping errors (e.g., from aa to Aa or AA) of the rare SNPs (minor allele 
frequency < 0.05). We applied the operation of genotype masking (missingness) and alternating (errors) on the 
HDGP dataset to generate 100 datasets for the experiments of missingness and erroneousness, respectively. 
Then, the datasets with simulated noise were projected onto the 1KGP reference space. We computed the root 
mean square deviations (RMSD) between the top ancestry scores generated using the original (unaltered) and 
simulated (altered) datasets. Furthermore, to ensure comparability across methods, we normalized RMSD by the 
range of the scores using the original dataset, resulting in NRMSD.

To train denoising autoencoders, we generated 100 partially corrupted 1 KG datasets in terms of genotype 
masking and alternating. In D-SEA-IBS and D-SEA-IBS-L, the IBS similarity degree matrix is calculated between 
the partially corrupted 1 KG datasets and the target dataset. To formally test the significance of difference between 
different methods, we applied two-sample t-tests with Bonferroni correction on the NRMSD of the different 
methods over the 100 simulations. There are in total 36 independent tests, leading to a Bonferroni adjusted 
p-value of 0.0014 (i.e., 0.05/36).

Ethics statement.  The datasets used in this study are openly and publicly accessible, with broad consent 
for research purposes.

Data availability
The following publicly available datasets were used in this study. 1000 Genome Project dataset https://​www.​inter​
natio​nalge​nome.​org/. Human Genome Diversity Project dataset: https://​www.​cephb.​fr/​hgdp/. Adolescent Brain 
Cognitive Development dataset: https://​nda.​nih.​gov/​abcd.
The implementation of SAE-IBS and other neural network-based methods were written in Python and avail-
able at https://​github.​com/​mm-​yuan/​SAE-​IBS. PCA, UPCA, SUGIBS, and simulations of erroneousness and 
missingness were performed using SNPLIB, a MATLAB toolbox, which can be found at https://​github.​com/​
jiarui-​li/​SNPLIB. The transition between human genome reference assembly was conducted via NCBI Genome 
Remapping Service: https://​www.​ncbi.​nlm.​nih.​gov/​genome/​tools/​remap.

Received: 5 July 2022; Accepted: 24 January 2023

References
	 1.	 Holsinger, K. E. & Weir, B. S. Genetics in geographically structured populations: Defining, estimating and interpreting FST. Nat. 

Rev. Genet. 10, 639–650 (2009).
	 2.	 Yuan, K. et al. Models, methods and tools for ancestry inference and admixture analysis. Quant. Biol. 5, 236–250 (2017).
	 3.	 Reich, D., Price, A. L. & Patterson, N. Principal component analysis of genetic data. Nat. Genet. 40, 491–492 (2008).
	 4.	 Lee, C., Abdool, A. & Huang, C.-H. PCA-based population structure inference with generic clustering algorithms. BMC Bioinform. 

10, S73 (2009).
	 5.	 Freedman, M. L. et al. Assessing the impact of population stratification on genetic association studies. Nat. Genet. 36, 388–393 

(2004).
	 6.	 Marchini, J., Cardon, L. R., Phillips, M. S. & Donnelly, P. The effects of human population structure on large genetic association 

studies. Nat. Genet. 36, 512–517 (2004).
	 7.	 Song, M., Hao, W. & Storey, J. D. Testing for genetic associations in arbitrarily structured populations. Nat. Genet. 47, 550–554 

(2015).
	 8.	 Jolliffe, I. T. Principal component analysis and factor analysis. In Principal Component Analysis (ed. Jolliffe, I. T.) 115–128 (Springer 

New York, 1986). https://​doi.​org/​10.​1007/​978-1-​4757-​1904-8_7.
	 9.	 Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 

904–909 (2006).
	10.	 Wang, C. et al. Ancestry estimation and control of population stratification for sequence-based association studies. Nat. Genet. 

46, 409–415 (2014).
	11.	 Anderson, C. A. et al. Data quality control in genetic case-control association studies. Nat. Protoc. 5, 1564–1573 (2010).
	12.	 Gibbs, R. A. et al. The International HapMap Project. Nature 426, 789–796 (2003).
	13.	 Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
	14.	 Li, J. et al. Robust genome-wide ancestry inference for heterogeneous datasets: Illustrated using the 1,000 genome project with 3D 

facial images. Sci. Rep. 10, 11850 (2020).
	15.	 Wang, C., Zhan, X., Liang, L., Abecasis, G. R. & Lin, X. Improved ancestry estimation for both genotyping and sequencing data 

using projection procrustes analysis and genotype imputation. Am. J. Hum. Genet. 96, 926–937 (2015).
	16.	 Lawson, D. J. & Falush, D. Population identification using genetic data. Annu. Rev. Genomics Hum. Genet. 13, 337–361 (2012).
	17.	 Conomos, M. P., Miller, M. B. & Thornton, T. A. Robust inference of population structure for ancestry prediction and correction 

of stratification in the presence of relatedness. Genet. Epidemiol. 39, 276–293 (2015).
	18.	 Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).
	19.	 Haasl, R. J., McCarty, C. A. & Payseur, B. A. Genetic ancestry inference using support vector machines, and the active emergence 

of a unique American population. Eur. J. Hum. Genet. 21, 554–562 (2013).
	20.	 Soumare, H., Rezgui, S., Gmati, N. & Benkahla, A. New neural network classification method for individuals ancestry prediction 

from SNPs data. BioData Min. 14, 30 (2021).
	21.	 Baldi, P. & Hornik, K. Neural networks and principal component analysis: Learning from examples without local minima. Neural 

Netw. 2, 53–58 (1989).
	22.	 Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).

https://www.internationalgenome.org/
https://www.internationalgenome.org/
https://www.cephb.fr/hgdp/
https://nda.nih.gov/abcd
https://github.com/mm-yuan/SAE-IBS
https://github.com/jiarui-li/SNPLIB
https://github.com/jiarui-li/SNPLIB
https://www.ncbi.nlm.nih.gov/genome/tools/remap
https://doi.org/10.1007/978-1-4757-1904-8_7


13

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2612  | https://doi.org/10.1038/s41598-023-28759-x

www.nature.com/scientificreports/

	23.	 López-Cortés, X. A., Matamala, F., Maldonado, C., Mora-Poblete, F. & Scapim, C. A. A deep learning approach to population 
structure inference in inbred lines of maize. Front. Genet. 11, 543459 (2020).

	24.	 Battey, C. J., Coffing, G. C. & Kern, A. D. Visualizing population structure with variational autoencoders. G3 Genes Genomes Genet. 
11, jkaa036 (2021).

	25.	 Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. & Manzagol, P.-A. Stacked denoising autoencoders: Learning useful representations 
in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010).

	26.	 Vincent, P., Larochelle, H., Bengio, Y. & Manzagol, P.-A. Extracting and composing robust features with denoising autoencoders. 
In Proceedings of the 25th International Conference on Machine Learning 1096–1103 (Association for Computing Machinery, 2008). 
https://​doi.​org/​10.​1145/​13901​56.​13902​94.

	27.	 Chen, J. & Shi, X. Sparse convolutional denoising autoencoders for genotype imputation. Genes 10, 652 (2019).
	28.	 Nauwelaers, N. et al. Exploring palatal and dental shape variation with 3D shape analysis and geometric deep learning. Orthod. 

Craniofac. Res. 24, 134–143 (2021).
	29.	 Li, J. Z. et al. Worldwide human relationships inferred from genome-wide patterns of variation. Science 319, 1100–1104 (2008).
	30.	 Karcher, N. R. & Barch, D. M. The ABCD study: Understanding the development of risk for mental and physical health outcomes. 

Neuropsychopharmacology 46, 131–142 (2021).
	31.	 Ausmees, K. & Nettelblad, C. A deep learning framework for characterization of genotype data. G3 Genes Genomes Genet. 12, 

jkac020 (2022).
	32.	 Hartigan, J. A. & Wong, M. A. Algorithm AS 136: A K-means clustering algorithm. Appl. Stat. 28, 100 (1979).
	33.	 Kaiser, H. F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 20, 141–151 (1960).
	34.	 Altman, N. S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46, 175–185 (1992).
	35.	 Fix, E. & Hodges, J. L. Discriminatory analysis. Nonparametric discrimination: Consistency properties. Int. Stat. Rev. 57, 238–247 

(1989).
	36.	 Reprint of: Mahalanobis, P.C. (1936) On the generalised distance in statistics. Sankhya A 80, 1–7 (2018).
	37.	 Visscher, H. et al. Application of principal component analysis to pharmacogenomic studies in Canada. Pharmacogenomics J. 9, 

362–372 (2009).
	38.	 Jakobsson, M. et al. Genotype, haplotype and copy-number variation in worldwide human populations. Nature 451, 998–1003 

(2008).
	39.	 Nelson, M. R. et al. The Population Reference Sample, POPRES: A resource for population, disease, and pharmacological genetics 

research. Am. J. Hum. Genet. 83, 347–358 (2008).
	40.	 Xie, J., Girshick, R. & Farhadi, A. Unsupervised deep embedding for clustering analysis. In Proceedings of the 33rd International 

Conference on International Conference on Machine Learning, vol. 48, 478–487 (JMLR.org, 2016).
	41.	 Creswell, A. & Bharath, A. Denoising adversarial autoencoders. IEEE Trans. Neural Netw. Learn Syst. 30, 968–984 (2017).
	42.	 Rifai, S., Vincent, P., Muller, X., Glorot, X. & Bengio, Y. Contractive auto-encoders: explicit invariance during feature extraction. 

In Proceedings of the 28th International Conference on International Conference on Machine Learning 833–840 (Omnipress, 2011).
	43.	 Brand, M. Incremental singular value decomposition of uncertain data with missing values. In Computer Vision—ECCV 2002 (eds 

Heyden, A. et al.) 707–720 (Springer, 2002).
	44.	 Yelmen, B. et al. Creating artificial human genomes using generative neural networks. PLoS Genet. 17, e1009303 (2021).
	45.	 Prechelt, L. Early stopping|but when? In Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science Vol. 7700 (eds 

Montavon, G. et al.) (Springer, 2012).
	46.	 Kuhn, H. W. The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2, 83–97 (1955).

Acknowledgements
We are very grateful to Nele Nauwelaers for advice on implementing the singular autoencoder algorithm and to 
Dr. Jiarui Li for discussion about SUGIBS and simulation studies.

Author contributions
M.Y. under supervision of P.C. and H.H. developed the SAE-IBS methodology. M.Y. together with P.C. designed 
the experiments with input from H.H. and S.G.. S.G. pre-processed the genotype datasets. M.Y. performed 
the computations and drafted the manuscript. All authors discussed the results and contributed to the final 
manuscript.

Funding
The KU Leuven research team is supported by the Research Fund KU Leuven (BOF-C1, C14/20/081).

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​28759-x.

Correspondence and requests for materials should be addressed to M.Y. or P.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1038/s41598-023-28759-x
https://doi.org/10.1038/s41598-023-28759-x
www.nature.com/reprints


14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:2612  | https://doi.org/10.1038/s41598-023-28759-x

www.nature.com/scientificreports/

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

http://creativecommons.org/licenses/by/4.0/

	Hybrid autoencoder with orthogonal latent space for robust population structure inference
	Results
	Properties of the ancestry space. 
	Variance–covariance structure. 
	Evaluation of genetic clustering performance. 
	Evaluation of ancestry inference performance. 

	Construction of robust ancestry space in the presence of relatedness. 
	Robust projection of target data onto reference ancestry space. 

	Discussion and conclusion
	Material and methods
	Genotyping and data processing. 
	Hybrid model. 
	Implementations. 
	Training strategy. 
	Genetic clustering. 
	Classification of target populations. 
	Related individuals. 
	Experiments of simulated artifacts. 

	Ethics statement. 

	References
	Acknowledgements


