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The Single-Cell Landscape of Intratumoral Heterogeneity
and The Immunosuppressive Microenvironment in Liver
and Brain Metastases of Breast Cancer

Yutian Zou, Feng Ye, Yanan Kong, Xiaoqian Hu, Xinpei Deng, Jindong Xie, Cailu Song,
Xueqi Ou, Song Wu, Linyu Wu, Yi Xie, Wenwen Tian, Yuhui Tang, Chau-Wei Wong,
Zhe-Sheng Chen,* Xinhua Xie,* and Hailin Tang*

Distant metastasis remains the major cause of morbidity for breast cancer.
Individuals with liver or brain metastasis have an extremely poor prognosis
and low response rates to anti-PD-1/L1 immune checkpoint therapy
compared to those with metastasis at other sites. Therefore, it is urgent to
investigate the underlying mechanism of anti-PD-1/L1 resistance and develop
more effective immunotherapy strategies for these patients. Using single-cell
RNA sequencing, a high-resolution map of the entire tumor ecosystem based
on 44 473 cells from breast cancer liver and brain metastases is depicted.
Identified by canonical markers and confirmed by multiplex
immunofluorescent staining, the metastatic ecosystem features remarkable
reprogramming of immunosuppressive cells such as FOXP3+ regulatory T
cells, LAMP3+ tolerogenic dendritic cells, CCL18+ M2-like macrophages,
RGS5+ cancer-associated fibroblasts, and LGALS1+ microglial cells. In
addition, PD-1 and PD-L1/2 are barely expressed in CD8+ T cells and
cancer/immune/stromal cells, respectively. Interactions of the immune
checkpoint molecules LAG3-LGALS3 and TIGIT-NECTIN2 between CD8+ T
cells and cancer/immune/stromal cells are found to play dominant roles in
the immune escape. In summary, this study dissects the intratumoral
heterogeneity and immunosuppressive microenvironment in liver and brain
metastases of breast cancer for the first time, providing insights into the most
appropriate immunotherapy strategies for these patients.

Y. Zou, F. Ye, Y. Kong, X. Deng, J. Xie, C. Song, X. Ou, S. Wu, L. Wu, Y. Xie,
W. Tian, Y. Tang, C.-W. Wong, X. Xie, H. Tang
Sun Yat-sen University Cancer Center
State Key Laboratory of Oncology in South China
Collaborative Innovation Center for Cancer Medicine
651 East Dongfeng Road, Guangzhou 510060, China
E-mail: xiexh@sysucc.org.cn; tanghl@sysucc.org.cn

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/advs.202203699

© 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.

DOI: 10.1002/advs.202203699

1. Introduction

According to the latest global statistics,
breast cancer has become the most com-
mon cancer throughout the world, with an
estimated 2.3 million new cases in 2020.[1]

Although most patients with early breast
cancer can be cured, a considerable num-
ber of patients (≈20–30%) will still expe-
rience local recurrence or distant metas-
tasis within two years of diagnosis of the
primary tumor, and these outcomes are a
major cause of morbidity for breast cancer
patients.[2] The 5-year overall survival rate
of patients with nonmetastatic breast cancer
is greater than 80%, while that of patients
with distant metastasis is less than 25%.[3]

Among patients with metastatic breast can-
cer, patients with liver or brain metastasis
have an extremely high progression rate,
poor prognosis, and low quality of life.[4] In
the past decade, targeting immune check-
points has become an effective therapeutic
strategy for various metastatic solid malig-
nant tumors. Despite the promising clini-
cal progress of immune checkpoint therapy
in treating metastatic breast cancer, only a
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very small percentage of patients benefit from it, and adverse
events frequently occur.[5] According to the subgroup analyses of
several clinical trials, breast cancer patients with liver or brain
metastasis have a low response rate to anti-PD-1/L1 immune
checkpoint therapy compared with patients with metastasis at
other sites.[5–7] Therefore, it is urgent to investigate the funda-
mental mechanism of anti-PD-1/L1 immune checkpoint therapy
resistance and develop more effective immunotherapy strategies
for liver and brain metastasis of breast cancer.

The tumor microenvironment is a self-regulating ecosystem
composed of tumor cells, stromal cells, and immune cells inter-
woven with noncellular components. Multifarious cellular phe-
notypes, as well as the dynamic communication between these
tumor microenvironment members, shape the organ-specific tu-
mor milieu and may contribute to different responses to immune
checkpoint therapy.[8,9] Traditional bulk RNA sequencing has low
resolution and provides limited data to analyze microenviron-
mental components due to its inability to distinguish the RNA
profiles of individual cells. In recent years, single-cell RNA se-
quencing (scRNA-seq) has been widely used in the study of tu-
mor cell heterogeneity, the discovery of new mutation sites, the
study of cloning and evolution mechanisms of tumor cells, and
the identification of new therapeutic targets.[10,11] Additionally,
scRNA-seq is a powerful tool for researchers to analyze the het-
erogeneity of tumor-infiltrating immune cells and their interac-
tions with different cell types in the tumor ecosystem.[12–16] Sev-
eral studies have dissected the heterogeneity in different subtypes
of primary breast cancer and identified cell clusters associated
with poor prognosis or treatment response. Wu et al. analyzed
26 primary breast cancer tissues and developed an scRNA-seq
method of intrinsic subtype classification (SCSubtype) to eluci-
date the cellular architecture of the tumor microenvironment.
Based on the proportion and spatial relationship of each cell sub-
cluster, nine ecotypes of primary breast cancer were identified
and proven to be associated with prognosis.[17] By comparing
the changes in the immune microenvironment between primary
breast cancer with and without T cell clonal proliferation after
treatment, Bassez et al. revealed the differentiation trajectory of
various immune cells in response to immunotherapy and the
possible mechanism of activation.[18] They also found that the
main cell types expressing PD-L1 in breast cancer were not tumor
cells but macrophages and dendritic cells, and the expression of
PD-L1 in the latter two cell types could predict the immunother-
apy response.[18] Zhang et al. utilized scRNA-seq and scATAC-seq
methods to investigate immune cell dynamics in 22 patients with
triple-negative breast cancer after atezolizumab treatment. Ac-
cording to their results, the presence of CXCL13-positive T cells
increased the sensitivity of triple-negative breast cancer to anti-
PD-L1 therapy.[19] Daviset al. used primary breast cancer tissues
to establish patient-derived xenograft (PDX) models and used
the scRNA-seq method to investigate the transcriptional diver-
sity and bioenergetic shifts of metastases.[20] However, in breast
cancer research, most scRNA-seq studies have focused on the pri-
mary lesion, while studies of systematic single-cell characteriza-
tion of metastatic lesions (especially liver and brain metastases)
have not been reported to date.

In this study, we dissected intratumoral heterogeneity and the
immunosuppressive microenvironment in liver and brain metas-
tases of breast cancer at single-cell resolution. scRNA-seq iden-

tified diverse cell types in liver and brain metastases of breast
cancer, including cancer cells, lymphocytes, myeloid cells, stro-
mal cells, and organ-specific resident cells. In particular, the
metastatic ecosystem was found to feature remarkable repro-
gramming of immunosuppressive cells such as FOXP3+ Treg
cells, LAMP3+ tolerogenic DCs, CCL18+ M2-like macrophages,
RGS5+ cancer-associated fibroblasts (CAFs), and LGALS1+ mi-
croglial cells. We found that the expression of the immunorecep-
tor inhibitory checkpoint genes LAG3 and TIGIT in T cells was
higher than that of PDCD1 (PD-1). Consistently, the correspond-
ing immune checkpoint ligands CD274 (PD-L1) and PDCD1LG2
(PD-L2) were barely expressed in both cancer cells and other in-
filtrating immune/stromal cells in the tumor microenvironment.
Other immune checkpoint ligands, such as NECTIN2, LGALS3,
LGALS9, and SELPLG, were highly expressed in cancer cells or
other infiltrating immune/stromal cells. These data provide in-
sights into the immunotherapeutic strategies most appropriate
for liver and brain metastatic breast cancer.

2. Results

2.1. Tumor Ecosystem of Breast Cancer Liver and Brain
Metastases Characterized by Single-Cell Transcriptomic
Sequencing

To decipher the cellular architecture within the tumor microen-
vironment in liver and brain metastases of breast cancer, we per-
formed single-cell RNA sequencing of the metastatic lesions (Fig-
ure 1a). After strict quality control filters and doublet removal,
a total of 44473 cells were identified and included in the sub-
sequent analysis. We detected ≈2411 genes and 9799 unique
molecular identifiers (UMIs) on average for each cell (Figure S1,
Supporting Information). Then, unsupervised clustering analy-
sis was performed in the Seurat program to define major clus-
ters of cells with similar expression patterns (Figure 1b and Fig-
ure S2a, Supporting Information). According to the expression
of canonical markers and the most variable genes, each clus-
ter was confirmed as a specific cell subpopulation: cancer cells
(gene markers: EPCAM, CD24, SOX4, and KRT18), T cells (gene
markers: CD2, CD3D, TRAC, and TRBC2), B cells (gene mark-
ers: CD79A, CD79B, and MS4A1), myeloid cells (gene mark-
ers: LYZ, MNDA, C1QA, VCAN, and APOE), fibroblasts (gene
markers: COL1A1, COL1A2, LUM, and DCN), mural cells (gene
markers: RGS5, MYH11, PDGFRB, and NOTCH3), endothe-
lial cells (gene markers: PECAM1, ENG, PLVAP, and CDH5),
microglial cells (gene markers: P2RY12 and CX3CR1), oligo-
dendrocytes (gene markers: OLIG1, OLIG2, MBP, MOG, and
MAG), and other cells (gene markers: ALB, APOB, and HP) (Fig-
ure 1c,d). We identified ten main cell populations: cancer cells
(N = 24 187), T cells (N = 3885), B cells (N = 1178), myeloid
cells (N = 6526), fibroblasts (N = 407), mural cells (N = 2607),
endothelial cells (N = 1246), microglial cells (N = 1660), oligo-
dendrocytes (N = 2532), and other cells (N = 245) (Figure S2b,
Supporting Information). The scaled expression levels and pro-
portions of cell expressing cluster-specific markers in each cell
subpopulation are displayed in dot plots (Figure 1e). We further
performed multiplex immunofluorescent staining to confirm the
cell subpopulations in the liver and brain metastasis tissues of
breast cancer (Figure 1f,g). To assess the immunosuppressive
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microenvironment in the liver and brain metastatic lesions of
breast cancer, we examined the expression of immune check-
point molecules in each cell subpopulation (Figure S2c, Support-
ing Information). We found that the expression of LAG3, TIGIT,
CD96, and KLRB1 in T cells was higher than that of PDCD1
(PD-1) (Figure S2d, Supporting Information). Consistently, the
corresponding immune checkpoint ligands CD274 (PD-L1) and
PDCD1LG2 (PD-L2) were barely expressed in either cancer cells
or other infiltrating cells in the tumor microenvironment (Fig-
ure S2d, Supporting Information). Other immune checkpoint
ligands, NECTIN2, LGALS3, and LGALS9 were highly expressed
in cancer cells or other infiltrating cells (Figure S2d, Support-
ing Information). These results indicate that the PD-1 recep-
tor and PD-L1/2 ligand pair may not be the dominant immune
checkpoint signaling pathway molecules in liver and brain metas-
tases of breast cancer. Therefore, targeting the LAG3-LGALS3
and TIGIT-NECTIN2 pairs may be an effective strategy for treat-
ing liver and brain metastases of breast cancer.

2.2. Identification of Six Common Expression Programs of
Cancer Cells in Breast Cancer Liver and Brain Metastatic Lesions

Next, we explored the heterogeneity of cancer cells by analyzing
the transcriptome patterns and clustering subpopulations. The
InferCNV method was used to distinguish neoplastic cells from
normal epithelial cells. A total of 24187 malignant epithelial cells
in breast cancer liver and brain metastatic tumors were identi-
fied. Thirteen main cancer cell subclusters were identified and
annotated based on differentially expressed genes (Figure 2a).
Feature plots and heatmaps were generated to visualize the most
variable genes of each cluster of cancer cells (Figure 2b,c). To
investigate the common expression patterns among cancer cells
from multiple samples, we established a meta-cluster algorithm.
First, we generated a total of 50 intratumoral expression-based
subclusters after clustering the neoplastic epithelial cells. Next,
a hierarchical clustering algorithm was used, and the 50 mod-
ules were aggregated into multiple recurrent expression pro-
grams. We selected the most activated cancer hallmarks of each
program by comparing program cells with nonprogram cells.
Six common expression programs with different cell statuses
and biological functions were identified, including proliferation-
sustaining, metastasis activation, immune evasion, stress resis-
tance, metabolic reprogramming, and inflammation promotion
(Figure 2d,e). The proliferation-sustaining program (Prolifera-
tion) was characterized by high expression of genes associated
with the cell cycle (e.g., MKI67, TOP2A, CDK1, CCNB1, KIF4A,
and E2F1). The metastasis activation program (Metastasis) con-
sisted of survival-related genes (KLF5 and PDGFRB), epithelial–

mesenchymal transition genes (e.g., ZEB1 and YBX1), and ma-
trix invasion genes (e.g., MMP2). The immune evasion program
(Immune) was characterized by a series of immune checkpoint
genes (e.g., CD274 and LGALS3) and adaptive antitumor im-
mune response genes (e.g., HLA-DRA/B1/B5 and CD74). The
stress resistance program (Stress) consisted of several genes in-
volved in the activation of cell survival signaling pathways (e.g.,
JUN, IGF1R, ERBB2/3, PVT1, and HIPK2). The metabolic repro-
gramming program (Metabolism) had overexpression of genes
related to glycolysis, fatty acid processes, and glutathione home-
ostasis (e.g., LDHA, PFKP, PKM, PGK1, FABP5, HSPB1, and
SLC3A2). The inflammation promotion program (Inflamma-
tion) included genes encoding chemokines (e.g., CCL3/5/18 and
CXCL1/8) and interleukins (IL-16). We hierarchically clustered
the samples according to the score of each program (Figure 2f).
The distribution of each expression program is displayed in a
reduced-dimension map (Figure 2g). Additionally, we quantified
the program scores based on the proportion of corresponding
program cells to evaluate the activity of these programs in each
sample (Figure 2h). Dependency analysis was conducted to val-
idate the pairwise interactions among the expression programs
and identified three significant cooccurring program pairs as
well as nine reciprocally exclusive program pairs with odds ra-
tios >0.1 and <−0.1, respectively (Figure 2i). We further con-
ducted bioinformatic analysis and biological experiments to in-
vestigate whether the top expressed program gene KLF5 could
be a potential target for inhibiting breast cancer metastasis. The
TCGA database showed that KLF5 mRNA was overexpressed
in breast cancer, especially in HER2-positive and triple-negative
breast cancer, the two subtypes with the highest probability of
metastasis (Figure S3a, Supporting Information). High expres-
sion of KLF5 was associated with worse distant metastasis-free
survival and overall survival of breast cancer patients in public
database cohorts (Figure S3b, Supporting Information). ML264
is a small molecule KLF5 inhibitor with good biological activ-
ity and has excellent clinical practice potential.[21] We next vali-
dated the efficacy of ML264 in suppressing breast cancer metasta-
sis. As revealed by transwell migration assay, the metastatic abil-
ity of MDA-MB-231 and MCF-7 breast cancer cells was greatly
decreased after being treated with KLF5 inhibitor ML264 (Fig-
ure S3c,d, Supporting Information). Wound healing experiment
showed that ML264 significantly attenuated the migration ability
of breast cancer cells (Figure S3e,f, Supporting Information). To
evaluate the effect of ML264 on breast cancer cell colonization
ability, we performed colony formation assay. Our data revealed
that breast cancer cells’ colonization ability was remarkably re-
duced after being treated with ML264 (Figure S3g,h, Supporting
Information). These results suggest that KLF5 inhibitor may be-
come an effective drug to inhibit breast cancer metastasis in the

Figure 1. Tumor ecosystem of breast cancer liver and brain metastases characterized by single-cell transcriptomic sequencing. a) Overview of the study
design and workflow. Single-cell suspensions were collected from liver- and brain-metastatic lesions of breast cancer followed by single-cell transcriptomic
sequencing on the 10× Genomics platform. b) t-SNE plot of single cells profiled in the present study colored by major cell type. c) Feature plots for
the canonical marker genes of epithelial cancer cells (EPCAM), endothelial cells (PECAM1), mural cells (RGS5), T cells (CD3D), B cells (MS4A1), and
myeloid cells (CD68). d) Heatmap of the expression levels of the top 10 differentially expressed genes among ten major cell types in liver and brain
metastases of breast cancer. e) Dot plot showing the expression levels of canonical marker genes across all major cell types. f,g) Representative images
of multiplex immunofluorescent staining of f) liver and g) brain metastases of breast cancer. The orange, green, yellow, and red colors indicate positive
cells with the expression of CK19 (cancer cells), CD3 (T cells), CD68 (myeloid cells), and 𝛼-SMA (fibroblasts and endothelial cells), respectively, in liver
and brain metastases of breast cancer.
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Figure 2. Identification of six common expression programs of cancer cells in liver- and brain-metastatic breast cancer lesions. a) t-SNE plot of the
cancer cell landscape colored by cluster. b) Feature plots showing the normalized expression of highly expressed genes in each cancer cell subcluster. c)
Heatmap of the expression levels of the top 10 differentially expressed genes among thirteen subclusters of cancer cells. d) Heatmap showing pairwise
correlations of 50 modules derived from the cancer cell gene expression profile. Six common expression programs across cancer cells are aggregated into
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future. To further resolve the heterogeneity of cancer cells in liver-
or brain-metastatic breast cancer tissues, we performed an unsu-
pervised clustering analysis for each type of sample. Seven and
five cancer cell subclusters were identified and annotated based
on differentially expressed genes in liver and brain metastases,
respectively (Figure 2j). GSVA pathway enrichment analysis was
carried out to explore the potential biological functions and rel-
evant signaling pathways of each cell type using hallmark path-
way sets. LM_c2_CD24 showed enrichment of IFN-𝛾 signaling
pathways and angiogenesis; LM_c5_CD24 showed enrichment
of the WNT beta-catenin signaling pathway; LM_c6_HMGB2 and
LM_c7_MKI67 showed enrichment of the G2M cell cycle check-
point (Figure 2k). BM_c1_NME2 was enriched with IFN-𝛼 and
IFN-𝛾 signaling pathways; BM_c4_PROM1 showed heightened
activities of Hedgehog, Notch, and JAK-STAT3 signaling path-
ways (Figure 2l).

2.3. Copy Number Variation and Clonal Evolution Analysis of
Metastatic Breast Cancer Cells

Breast cancer is largely driven by changes in gene copy num-
ber; therefore, we next investigated scRNA-seq data to infer copy
number alterations in cancer cell populations. The inferred CNV
profiles revealed interlesion and intralesion heterogeneity in the
liver- and brain-metastatic breast cancer tissues (Figure 3a). We
clustered the cancer cells with copy number alterations and com-
pared each cluster to the T cells and B cells according to the CNV
score (Figure 3b). Most cancer cells possessed amplifications in
chromosomes 16/17 and deletions in chromosomes 11/13 (Fig-
ure 3c). Multiple canonical (with a CNV percent more than 90%)
and noncanonical (with a CNV percent less than 90%) CNVs
in subclones were identified in each of the patients, and these
CNVs were found in the subclones of cellular populations in
cancer cell evolution (Figure 3d). GSVA revealed that pathways
related to the G2M cell cycle checkpoint, mitotic spindle, E2F
target, epithelial–mesenchymal transition, and Hedgehog signal-
ing were enriched in the CNV-high group, while pathways re-
lated to DNA repair and ROS neutralization were significantly
downregulated (Figure 3e). The cell cycle phase scores were cal-
culated based on canonical markers. The results revealed that
the cancer cell subclusters c8_TOP2A, c9_HMGB2, c12_MKI67,
and c13_TK1 were dominantly in a cycling state, while c1_TCN1,
c2_CD74, c3_CD24, c5_CEACAM6, and c10_SAT1 were mainly
in a quiescent state (Figure 3g,h). To infer the cancer cell mat-
uration course, we used the Monocle 2 method to perform tra-
jectory analysis of the cancer cells (Figure 3i). In addition, the
changes in gene patterns involved in cancer cell state transitions
were dissected (Figure 3f,j). To further analyze the time-resolved
phenomena of tumor cell evolution, the RNA velocity method

was employed to investigate developmental lineages and cellular
dynamics. Notably, four subpopulations of cancer cells (c4, c5, c6,
and c12) presented developing trends toward four other clusters
of cancer cells (c1, c2, c3, and c7) (Figure 3k). To assess and score
the stemness of each cancer cell cluster, we explored the entropy
of gene expression based on single-cell RNA expression profiles
by the SLICE algorithm (Figure 3l). We found that the cancer
cell subpopulation c11_STMN2 had the highest entropy score,
while the cancer cell subpopulation c4_MMP7 had the lowest en-
tropy score (Figure 3m). Furthermore, we explored the expres-
sion of immune checkpoint ligands in each cancer cell subpopu-
lation. The most promising immune checkpoint therapeutic tar-
gets, CD274 (PD-L1) and PDCD1LG2 (PD-L2), were expressed
at low levels in each cancer cell population (Figure 3n,o). Two
other immune checkpoint ligands, NECTIN2 and LGALS3, were
highly expressed in almost all subclusters. Interestingly, as an an-
tiphagocytic molecule, CD47 also exhibited very high expression
in cancer cells (Figure 3n,o). These surface proteins are expected
to be immune target for future liver- and brain-metastatic breast
cancer treatments.

2.4. The Landscape of Lymphocytes and Innate Lymphoid Cells
in Breast Cancer Liver and Brain Metastases

To explore the immune milieu of breast cancer liver and brain
metastases, we separately reclustered T cells and B cells to
identify subtypes at high resolution. Thirteen T cell and innate
lymphoid subclusters were identified across all patients (Fig-
ure 4a,b and Figure S4a, Supporting Information). We found
that liver-metastatic lesions had higher infiltration of NK cells
and CD8+ T cells than brain-metastatic lesions (Figure S4b,
Supporting Information). CD4+ T cell clusters consisted of
regulatory T cells (Treg_cells_FOXP3), naive/central memory
T cells (CD4_T_cells_c1_CCR7), and follicular helper T cells
(CD4_T_cells_c2_CXCL13). Among the four CD8+ T cell clus-
ters, two had high expression of immune checkpoint molecules,
including TIGIT, LAG3, and CD96 (CD8_T_cells_c1_GZMK
and CD8_T_cells_c4_IFIT3). Additionally, natural killer (NK)
cells (NK_cells_KLRD1) and natural killer T (NKT)-like cells
(NKT_cells_FCGR3A) were also characterized by the expression
of NK markers and 𝛼𝛽 T cell receptor. After the B cell reclustering,
four major subpopulations were identified across all patients,
including Pre-B_cells_VPREB3, Naive_B_cells_TCL1A, Ma-
ture_B_cells_MS4A1, and Plasma_cells_MZB1 (Figure 4c,d).
Brain metastases had higher infiltration of naive B cells than
liver metastases of breast cancer, while the abundance of plasma
cells in liver metastases of breast cancer was higher than that
in brain metastases (Figure S4b, Supporting Information). The
expression of canonical markers in each immune cell subtype

clusters. e) GSVA was performed to compare the differences in pathways between program cells and nonprogram cells for each program. The Z score
was used to normalize each column. f) Normalized program scores for all six expression programs in each sample are shown in a clustered heatmap.
g) Distributions of each expression program. Cells expressing over 70% of genes in each program were defined as program cells; otherwise, they were
defined as nonprogram cells. h) Boxplot of the proportions of program cells among six expression programs, ordered by the median program score. i)
Heatmap revealing the odds ratios as a measure of the co-occurrence or exclusion of each expression program pair (columns and rows). j) Reclustering
of cancer cells in liver metastasis (LM) and brain metastasis (BM) of breast cancer. k) The potential biological functions and relevant signaling pathways
of seven liver metastasis cancer cell subclusters were evaluated by GSVA based on hallmark gene sets. l) The potential biological functions and relevant
signaling pathways of five brain metastasis cancer cell subclusters were evaluated by GSVA based on hallmark gene sets.
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Figure 3. Copy number variation (CNV) and clonal evolution analysis of metastatic breast cancer cells. a) Hierarchical heatmap showing large-scale
CNVs of cancer cells and T/B cells from liver and brain metastases of breast cancer. T/B cells were included as a control reference. Red: gains; blue:
losses. b) Eight clusters of cancer cells (HCL1-8) were identified with similar copy number alterations. The log-transformed CNV score was used to
compare the CNVs of each cluster to those of T cells and B cells. c) CNVs were inferred according to the spanning position of each chromosome (x-axis).
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is summarized in a dot plot (Figure 4e). CD4+ T cells exhibited
relatively high expression levels of costimulatory molecules,
including ICOS and TNFRSF4, which are important for the
cytotoxic stimulation of CD8+ T cells (Figure 4f,g). CD8+ T cells
had a high expression level of several cytotoxicity genes, includ-
ing GZMB, GZMK, and GZMH. Notably, the data also revealed
that these subtypes of CD8+ T cells positively expressed T cell
exhaustion-related inhibitory receptors, including LAG3, TIGIT,
and CD96, indicating that these CD8+ T cells were exhausted
after the initial activation step in the liver and brain metastases
of breast cancer (Figure 4f,g). The CD8_T_cells_c1_GZMK
and CD8_T_cells_c4_IFIT3 clusters possessed substan-
tially higher dysfunction scores than the other two clusters
(CD8_T_cells_c2_ZNF683 and CD8_T_cells_c3_KLRB1) (Fig-
ure 4h and Figure S4c, Supporting Information). Moreover, the
CD8_T_cells_c1_GZMK cluster exhibited higher dysfunction
scores in brain metastases than in liver metastases (Figure 4i).
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were conducted to explore the po-
tential biological functions and relevant signaling pathways of
each cell type. The CD8_T_cells_c1_GZMK cluster was enriched
in T cell proliferation, response to interferon-gamma, neu-
trophil chemotaxis, and immune checkpoint pathways, while the
CD8_T_cells_c4_IFIT3 cluster was associated with necroptosis,
response to interferon-gamma, and the RIG-I-like receptor
signaling pathway (Figure 4j). Naive_B_cells_TCL1A showed
heightened activities of NF-kappa B signaling pathway, the
spliceosome, and Fc gamma R-mediated phagocytosis, while the
Plasma_cells_MZB1 cluster showed enrichment of pathways re-
lated to immunoglobulin complex circulation, classical comple-
ment activation, B cell activation, and protein export (Figure 4k).
To trace the evolution of CD8+ T cells, pseudotime trajectory
analysis was conducted. The CD8_T_cells_c1_GZMK cluster
had the most terminal status and highest pseudotime score, and
two developmental trajectories of the CD8_T_cells_c2_ZNF683
and CD8_T_cells_c3_KLRB1 clusters were revealed (Figure 4l
and Figure S4d, Supporting Information). For the pseudo-
time trajectory analysis of B cells, the Plasma_cells_MZB1
cluster was in the most terminal phase and had the high-
est pseudotime score (Figure 4l and Figure S4e, Supporting
Information). We next assessed the expression of immune
checkpoint receptors in each CD8+ T cell subpopulation and
found that the expression of LAG3, TIGIT, CD96, and KLRB1
(CD161) in CD8+ T cells was higher than that of PDCD1
(PD-1) (Figure 4n–p). Cell–cell signaling interactions between
cancer cells and immune cells were predicted based on known
ligand–receptor pairs by CellphoneDB. Treg cells had the
most interactions with other cell populations, showing robust

interactions with cancer cells (Figure S4f, Supporting Informa-
tion). Cancer cells recruited the CD4_T_cells_c2_CXCL13,
CD8_T_cells_c1_GZMK, CD8_T_cells_c4_IFIT3,
NK_cells_KLRD1, and Treg_cells_FOXP3 clusters through the
CXCL10-CXCR3 ligand–receptor pair (Figure S4g, Supporting
Information). Other significant ligand–receptor pairs involved in
cell–cell communications are displayed in Figure S4h (Support-
ing Information). To verify our results in a larger sample size, we
extracted bulk transcriptome data and corresponding clinical in-
formation from the Gene Expression Omnibus (GEO) database
(ID: GSE56493, GSE12276, GSE46141, and GSE173661). A total
of 421 cases of distant metastatic breast cancer were analyzed,
including 61 cases of brain metastasis and 43 cases of liver
metastasis. We used the “xCell” algorithm to calculate the tumor
microenvironment components based on bulk transcriptome
data (Figure S5a, Supporting Information). We found that liver
metastasis had higher infiltration of NK cells, CD4+ effective
T cells, and CD8+ effective T cells than brain metastasis (Fig-
ure S5b, Supporting Information). The correlation between each
immune checkpoint gene and tumor microenvironment cell was
also calculated (Figures S6a and S7b, Supporting Information).
The expression of classical immune checkpoint genes CTLA-4,
CD274 (PD-L1), PDCD1LG2 (PD-L2), and PDCD1 (PD-1) were
lower in brain/liver metastasis than that in other metastatic
sites (Figure S6b, Supporting Information). Other immune
checkpoint ligands or receptors, SELPLG, HAVCR2, LGALS3,
and LGALS9, were highly expressed in cancer cells or other
infiltrating cells (Figure S6b, Supporting Information). These
bulk transcriptome data from large samples further confirmed
the results of our single-cell RNA sequencing.

2.5. Characterization of Immunosuppressive Myeloid Cells in the
Tumor Microenvironment

Myeloid cells consisted of monocytes, mast cells, neutrophils,
tumor-associated macrophages (TAMs) and dendritic cells (DCs),
and these cells could be divided into 20 clusters (Figure 5a).
The markers and proportion of each myeloid cell subtype are
shown in feature plots and histograms (Figure 5b,c). The scaled
relative expression levels and proportion of the cluster-specific
markers in each cell subpopulation are displayed in dot plots
(Figure 5d). Monocytes formed two clusters: Mono_c1_VCAN
and Mono_c2_FCN1. Bulk transcriptome data indicated that
the abundance of monocytes was higher in liver metastasis
than that in other metastatic sites (Figure S5b, Supporting In-
formation). TAMs formed 12 clusters that could be divided
into M1 macrophages (TAM_c5-7), M2 macrophages (TAM_c1-
4 and TAM_c8-11), and proliferating macrophages (TAM_c12).

d) Clonality trees of the single cancer cells. The branches are delineated according to the percentage of cells in the subclone containing the corresponding
CNVs. e) GSVA was performed to compare the differences in pathways in cells with low, median, and high CNV scores. The Z score was used to normalize
each column. f) The differentially expressed genes and pseudotime curve are shown in a hierarchical heatmap. g) The percentage of cancer cells in the
G1, G2M, and S phases in each cell cluster. The G1 phase was defined as noncycling, and the G2M and S phases were defined as cycling states. h) t-SNE
plot showing the cancer cells in the G1, G2M, and S phases. i) Monocle pseudotime trajectory analysis of cancer cells with highly variable genes. Each
dot on the pseudotime curve represents one single cell and is colored according to its cluster label. j) The expression of the most variable genes involved
in the cancer cell state transition is shown. k) RNA velocity analysis was performed to investigate the developmental lineages and cellular dynamics of
cancer cells. l,m) The entropy of gene expression based on single-cell RNA expression profiles was explored by the SLICE algorithm to assess and score
the stemness of each cancer cell cluster. n) Feature plots showing the normalized expression of immune checkpoint genes in each cancer cell. o) Dot
plot showing the expression level of immune checkpoint genes in each cancer cell subcluster.
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Figure 4. Landscape of lymphocytes and innate lymphoid cells in breast cancer liver and brain metastases. a) t-SNE plot of the T cell and NK cell
landscape colored by subcluster. b) Feature plots showing the normalized expression of canonical marker genes in each T cell and NK cell subcluster.
c) t-SNE plot of the B cell landscape colored by subcluster. d) Feature plots showing the normalized expression of canonical marker genes in each B cell
subcluster. e) Dot plot showing the expression level of canonical marker genes across all lymphocyte and innate lymphoid cell subtypes. f) Heatmap
showing the gene set score of each T cell and NK cell according to GSVA. Gene sets included MHC molecules, T cell cytotoxicity, T cell exhaustion,
inflammatory pathway, regulatory cytokines, and immune checkpoint pathway sets. g) Heatmap showing the expression of core genes in each gene set.
h) The cytotoxicity and dysfunction of each T cell and NK cell cluster were analyzed and quantified based on gene signature scores. i) Exhaustion scores of
CD8_T_cells_c1_GZMK and CD8_T_cells_c2_ZNF683 in liver and brain metastases of breast cancer. j,k) The potential biological functions and relevant
signaling pathways of T, B, and NK cell subclusters were evaluated by GO and KEGG analyses. l) Monocle pseudotime trajectory analysis of CD8+
T cells (CD8_T_cells_c1_GZMK, CD8_T_cells_c2_ZNF683, CD8_T_cells_c3_KLRB1, and CD8_T_cells_c4_IFIT3) with highly variable gene expression.
l) Monocle pseudotime trajectory analysis of B cells (Pre-B_cells_VPREB3, Naive_B_cells_TCL1A, Mature_B_cells_MS4A1, and Plasma_cells_MZB1)
with highly variable gene expression. o) Violin plot showing the expression level of immune checkpoint genes in four CD8+ T cell subclusters. o) Dot
plot showing the expression level of immune checkpoint genes in each lymphocyte and innate lymphoid cell subcluster. p) Feature plots showing the
normalized expression of immune checkpoint genes in lymphocytes and innate lymphoid cells.
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Figure 5. Characterization of immunosuppressive myeloid cells in the tumor microenvironment. a) Reclustering of myeloid cells and visualization of
the profile of each cell subtype via a t-SNE plot. b) Feature plots showing the normalized expression of canonical marker genes in each myeloid cell
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M1-TAMs are associated with inflammatory factors, including
CCL2/3/4, CXCL3, and TNF, which recruit T cells, immature
DCs, and NK cells in the tumor microenvironment. M2-TAMs
are tumor-promoting macrophages and showed high expres-
sion of MRC1, CD163, MARCO, and MAF (Figure 5e). In ad-
dition, M2-like TAMs had higher expression of immune check-
point molecules, including PD-L1, PD-L2, LGALS3, LGALS9,
NECTIN2, SELPLG, CLEC2D, and TNFRSF14, than M1-like
TAMs (Figure 5e and Figure S8a,b, Supporting Information). The
antiphagocytic receptor coding-gene SIRPA exhibited a higher
expression level in M2-like TAMs than in M1-like TAMs (Fig-
ure 5e and Figure S8a,b, Supporting Information). An immuno-
suppressive subcluster of TAMs, a CCL18+ M2-like macrophage
subcluster, was also identified, which expressed a high level of
several negative immune regulators (Figure S4b, Supporting In-
formation). Bulk transcriptome data indicated that the abun-
dance of M2-like TAMs was higher in brain and liver metasta-
sis than in other metastatic sites (Figure S5b, Supporting Infor-
mation). Similarly, SIRPA and CD47 expression were higher in
brain and liver metastases than in other metastases (Figure S6b,
Supporting Information). M2-like TAM level was negatively cor-
related with CD8+ effective T cell and NK cell levels in breast can-
cer metastasis (Figure S7a, Supporting Information). The Mon-
ocle 2 program was used to analyze the trajectory of TAM matu-
ration (Figure 5f), and the changes in gene expression patterns
involved in TAM state transitions were identified (Figure 5h and
Figure S8c, Supporting Information). The RNA velocity algo-
rithm was further used to investigate the TAM developmental lin-
eages and cellular dynamics according to the time-resolved phe-
nomena of TAM evolution (Figure 5g and Figure S8d, Support-
ing Information). DCs consisted of four clusters: conventional
DCs (cDC1_c1_XCR1 and cDC2_c1_FCER1A), tolerogenic DCs
(tDC_c1_LAMP3) and plasmacytoid DCs (pDC_c1_IRF7). cDCs
are mature DCs that may activate CD8+ T cells and other antitu-
mor immune responses, and they had high expression of costim-
ulatory factors, MHC class II molecules, and proinflammatory
cytokines (Figure 5i). pDCs level positively associated with CD8+
effective T cell and NK cell levels in breast cancer metastasis (Fig-
ure S7a, Supporting Information). LAMP3-positive tDCs are an
immunosuppressive subcluster of DCs, and they expressed high
levels of several negative immune regulators, including IDO1,
CCR7, LGALS3, LGALS9, and NECTIN2 (Figure 5i,k). GO and
KEGG analyses were performed to explore the potential biologi-
cal functions and relevant signaling pathways of each cell type.
The cDC1_c1_XCR1 and cDC2_c1_FCER1A clusters were en-
riched in T cell activation, antigen processing and presentation,
and regulation of leukocyte adhesion, while the tDC_c1_LAMP3

cluster was associated with negative regulation of the immune
response and T cell differentiation (Figure 5j). Pseudotime tra-
jectory analysis revealed that tDC_c1_LAMP3 and pDC_c1_IRF7
were derived from cDC1_c1_XCR1 and cDC2_c1_FCER1A (Fig-
ure S8e–g, Supporting Information). According to the Cell-
phoneDB analysis, TAMs had the most interactions with can-
cer cells and other myeloid cells in the tumor microenvironment
(Figure 5l).

2.6. Diversity of Cancer-Associated Fibroblasts (CAFs),
Endothelial Cells (ECs), and Mural cells (MCs) in the Tumor
Microenvironment

Three major cell types were identified in the stromal com-
partment: CAFs (gene markers: COL1A1, COL1A2, POSTN,
and PDGFRA), ECs (gene markers: GJA5, ACKR1, PLVAP,
and ITM2A), and MCs (gene markers: MYH11 and PDGFRB)
(Figure 6a–d and Figure S9a, Supporting Information). Ac-
cording to the most variable genes, CAFs were clustered
into four subpopulations (CAFs_c1_MYH11, CAFs_c2_DCN,
CAFs_c3_RGS5, and CAFs_c4_POSTN) (Figure 6e and Fig-
ure S9b, Supporting Information). ECs were clustered into
four subpopulations: arterial endothelial cells (ECs_c1_GJA5),
venous endothelial cells (ECs_c2_ACKR1), capillary endothe-
lial cells (ECs_c3_PLVAP), and liver sinusoidal endothelial
cells (ECs_c4_ITM2A) (Figure 6f and Figure S9c, Support-
ing Information). MCs were clustered into five subpop-
ulations: Mural_cells_c1_CFH, Mural_cells_c2_COL1A1,
Mural_cells_c3_DCN, Mural_cells_c4_MYH11, and Mu-
ral_cells_c5_RGS5 (Figure 6g and Figure S9d, Supporting
Information). Principal component analysis and diffusion
map analysis revealed two distinct evolutionary trajecto-
ries of CAFs_c2_DCN, which ultimately developed into an
inflammatory-like cluster of CAFs (CAFs_c1_MYH11) (Fig-
ure 6h). Arterial endothelial cells (ECs_c1_GJA5), venous
endothelial cells (ECs_c2_ACKR1), and liver sinusoidal endothe-
lial cells (ECs_c4_ITM2A) developed from capillary endothelial
cells (ECs_c3_PLVAP), which are involved in the dynamic
angiogenesis process in metastatic lesions (Figure 6i). Mu-
ral_cells_c2_COL1A1 cells developed into two branches, and
the Mural_cells_c4_MYH11 and Mural_cells_c5_RGS5 clusters
within these branches had the highest pseudotime scores, rep-
resenting the most differentiated and matured MCs (Figure 6j).
RNA velocity analysis also confirmed the transition of each
cell type based on the time-resolved phenomena (Figure S9e,
Supporting Information). Next, we examined the expression of
immune checkpoint ligands in each cancer cell subpopulation.

subcluster. c) The relative proportions of each myeloid cell cluster in liver and brain metastases of breast cancer. d) Dot plot showing the expression
level of canonical marker genes across all myeloid cell subtypes. e) Violin plot showing the expression levels of a macrophage canonical marker (APOE),
an M1 macrophage marker (TNF), an M2 macrophage marker (MARCO), a phagocytic inhibitory molecule (SIRPA), and immune checkpoint genes
(LGALS3 and NECTIN2) in twelve tumor-associated macrophage (TAM) subclusters. f) Monocle pseudotime trajectory analysis of tumor-associated
macrophages (TAMs) with highly variable gene expression. Each dot on the pseudotime curve represents one single cell and is colored according to
its cluster label. g) RNA velocity analysis was performed to investigate the developmental lineages and cellular dynamics of TAMs. h) The differentially
expressed genes and the TAM pseudotime curve are shown in a hierarchical heatmap. i) Heatmap of the expression levels of the top 10 differentially
expressed genes among the four subclusters of dendritic cells (DCs). j) The potential biological functions and relevant signaling pathways of each DC
subcluster were evaluated by GO and KEGG analyses. k) Violin plot showing the expression levels of an immune suppression gene (IDO1) and immune
checkpoint genes (LGALS3, LGALS9, and NECTIN2) in four DC subclusters. l) Heatmap showing the number of cell–cell interactions between myeloid
cells and cancer cells, predicted by the CellphoneDB 2 method.
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Figure 6. Diversity of cancer-associated fibroblasts (CAFs), endothelial cells (ECs) and mural cells (MCs) in the tumor microenvironment. a) t-SNE plot
of the stromal cell landscape colored by subcluster. b) Feature plots showing the normalized expression of canonical marker genes in each stromal cell
subcluster. c) Dot plot showing the expression level of canonical marker genes across all stromal cell subtypes. d) Heatmap of the expression levels
of the top 10 differentially expressed genes among the four subclusters of stromal cells. e) Reclustering of cancer-associated fibroblasts (CAFs) and
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Several immune checkpoint molecules were highly expressed
in the three stromal cell subtypes, including LGALS3, LGALS9,
NECTIN2, and TNFRSF14 (Figure 6k and Figure S9f, Sup-
porting Information). According to the CellphoneDB analysis,
CAFs_c2_DCN, ECs_c1_GJA5, and Mural_cells_c2_COL1A1
were the clusters of CAFs, ECs, and MCs, respectively, with
the most interactions with cancer cells (Figure S9g, Supporting
Information). Moreover, we found that different CAF subpopu-
lations had different growth factor secretion patterns (Figure 5l).
The data suggested that CAFs could produce VEGFRA/B, which
binds to VEGF receptors on ECs to promote angiogenesis.
Based on the cell growth factor and receptor pairs, we con-
structed a regulatory network for CAFs and cancer cells. The
CAFs_c2_DCN subcluster promoted cancer cell growth via the
FGF2/7-FGFR3/4 and IGF1-IGF1R signaling pathways (Fig-
ure 5m). GO and KEGG analyses were performed to explore the
potential biological functions and relevant signaling pathways
of each stromal cell type (Figure S9j–l, Supporting Information).
In particular, the RGS5+ cancer-associated fibroblast cluster
was identified and has been proven to negatively regulate the
immune process in metastatic breast cancer by secreting pe-
riostin and biglycan.[22] We also confirmed that the level of CAF
was negatively correlated with CD8+ effective T cell and NK cell
level via bulk transcriptome analysis (Figure S7a, Supporting
Information).

2.7. Cell Clustering and Functional Annotation of Organ-Specific
Resident Cells in Breast Cancer Liver and Brain Metastases

Resident cells (microglial cells, astrocytes, oligodendrocytes,
neurons, hepatocytes, etc.) are indispensable components of the
brain or liver metastasis microenvironment that participate in
forming the unique colonized niche and immune milieu.[23–26]

We identified thirteen cell clusters, including microglial cells
(Microglials_c1_CCL4 and Microglials_c2_LGALS1), astro-
cytes (Astrocytes_c1_SLC4A4), oligodendrocytes (c1_KLK6,
c2_CNP, c3_TMEM63A, c4_KIF6, and c5_OLIG2), neu-
rons (Neurons_c1_SYT1), oligodendrocyte progenitor cells
(OPCs_c1_PTPRZ1), hepatocytes (Hepatocytes_c1_TGFB1
and Hepatocytes_c2_ALB), and cholangiocytes (Cholangio-
cytes_CFTR) (Figure S10a, Supporting Information). The mark-
ers and proportion of each cell subtype are shown in feature
plots, histograms, bubble plots and heatmaps (Figure S10b–e,
Supporting Information). Microglials_c1_CCL4 promoted the
immune response by secreting chemokines such as CCL3/4
to recruit T cells, immature DCs, and NK cells in the tumor
microenvironment. Microglials_c2_LGALS1 expressed a high
level of galectin-1, which likely fosters an immunosuppressive
microenvironment via CD8+ T cell exclusion.[27,28] In addition,

we found that the immune checkpoint genes SELPLG and
LGALS3 were highly expressed in microglial cells, while FGL1,
NECTIN2, and LGALS3 were highly expressed in hepatocytes
and cholangiocytes (Figure S10f,g,h, Supporting Information).
Next, we performed GO and KEGG analyses to explore the po-
tential biological functions and signaling pathways of each cell
cluster. The Microglials_c1_CCL4 cluster was enriched in the
chemokine signaling pathway and neutrophil activation involved
the immune response, while the Microglials_c2_LGALS1 cluster
was associated with negative regulation of T cell activation
and immune checkpoint pathways (Figure S10i, Support-
ing Information). Pseudotime trajectory analysis revealed
that Oligodendrocytes_c1_KLK6, Oligodendrocytes_c2_CNP,
and Oligodendrocytes_c5_OLIG2 were derived from Oligo-
dendrocytes_c3_TMEM63A and Oligodendrocytes_c4_KIF6
(Figure S11a,b, Supporting Information). Dynamic changes in
gene expression with pseudotime variation were identified via
heatmap and trajectory chart analyses (Figure S11c,d, Supporting
Information). The RNA velocity analysis indicated that Oligo-
dendrocytes_c3_TMEM63A and Oligodendrocytes_c4_KIF6
are likely upstream of other effectors; however, bidirectional
transitions between each cluster could also occur (Figure S11e,f,
Supporting Information). Cell interactions between cancer cells
and resident cells in different metastatic sites were predicted
based on known ligand–receptor pairs by CellphoneDB analysis
(Figure S12a–c, Supporting Information). Microglial cells had
the most interactions with cancer cells, while neurons had the
fewest interactions with other cell populations (Figure S12d, Sup-
porting Information). Due to the important role of cell growth
factor in the tumor microenvironment, we further analyzed its
expression. VEGFA/B, IGF1, HGF, and FGF20 were the most
highly expressed cell growth factors secreted by microglial cells
(Figure S12e, Supporting Information). These results uncovered
the roles of resident cells in promoting cancer cell colonization
and forming an immunosuppressive microenvironment in liver
and brain metastases of breast cancer.

3. Discussion

Due to the clonal evolution of cancer cells, immune-phenotype
shifts of infiltrating cells, and organ-specific niche, metastatic tu-
mors exhibit a more profound immunosuppressive microenvi-
ronment than primary tumors.[29,30] Tumor cells can encourage
normal resident cells to become tumor-promoting cells, which
facilitate the colonization, growth, and immune evasion of can-
cer cells.[31] Increasing the understanding of metastatic tumors
and their ecosystem might contribute to the development of more
precise treatment and provide cancer immunotherapy benefits to
more patients.[32] With the advances made in high-throughput

visualization of the profile of each subtype via a t-SNE plot. f) Monocle pseudotime trajectory analysis of CAFs with highly variable gene expression.
Each dot on the pseudotime curve represents one single cell and is colored according to its cluster label. g) Reclustering of endothelial cells (ECs) and
visualization of the profile of each subtype via a t-SNE plot. h) Monocle pseudotime trajectory analysis of ECs with highly variable gene expression. Each
dot on the pseudotime curve represents one single cell and is colored according to its cluster label. i) Reclustering of mural cells (MCs) and visualization
of the profile of each subtype via a t-SNE plot. j) Monocle pseudotime trajectory analysis of MCs with highly variable gene expression. Each dot on
the pseudotime curve represents one single cell and is colored according to its cluster label. k) Violin plot showing the expression levels of immune
checkpoint genes (LGALS3, LGALS9, NECTIN2, and TNFRSF14) in each stromal cell subtype. l) Violin plot showing the expression levels of cell growth
factor genes (VEGFA, VEGFB, HGF, and IGF1) in stromal cell subtypes. m) Dot plot showing the ligand–receptor pairs of cell growth factors between
cancer cells and each CAF cluster predicted by the CellphoneDB 2 method.

Adv. Sci. 2023, 10, 2203699 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2203699 (13 of 17)



www.advancedsciencenews.com www.advancedscience.com

single-cell sequencing technology and bioinformatic analysis,
scientists can depict the landscape of and investigate the cell–
communications in the tumor microenvironment at a single-
cell resolution.[33–35] With single-cell sequencing, the unique ar-
chitecture and cellular composition of the tumor ecosystem in
primary breast cancer have been widely studied, which is cru-
cial for guiding immune-phenotype classification and uncov-
ering the mechanisms of primary breast cancer resistance to
immunotherapy.[17,18] However, the key determinants and bio-
logical mechanisms underpinning the distant metastatic human
breast cancer immune microenvironment remain elusive.

In the present study, we first provided a high-resolution anal-
ysis of liver- and brain-metastatic breast cancer samples, which
identified diverse major cell types, including cancer cells, lym-
phocytes, myeloid cells, stromal cells, and organ-specific resident
cells. The molecular features, regulators, dynamics, and func-
tions of each cell cluster were analyzed regarding their role in
the progression and immune escape of metastatic tumors. Six
common expression programs with different cell statuses and bi-
ological functions were identified in cancer cells, including prolif-
eration sustaining, metastasis activation, immune evasion, stress
resistance, metabolic reprogramming, and inflammation promo-
tion. Among these metastasis-related hub genes, KLF5 was iden-
tified and validated as an effective target for inhibiting breast can-
cer metastasis. KLF5 is a zinc-finger transcription factor highly
expressed in several malignancies, which has recently become a
popular target in cancer research.[36–39] We also found that KLF5
small molecule inhibitor ML264 can effectively inhibit breast
cancer metastasis, and it is expected to be used in the clinic
in the future. Furthermore, several immunosuppressive cells
were identified to reprogram the metastatic ecosystem, includ-
ing FOXP3+ regulatory T (Treg) cells, LAMP3+ tolerogenic DCs
(tDCs), CCL18+M2-like macrophages, RGS5+ cancer-associated
fibroblasts, and LGALS1+ microglial cells. Treg cells are a sub-
set of T cells with significant immunosuppressive effects and
phenotypic characteristics, such as Foxp3, CD25, and CD4 ex-
pression. They inhibit the antitumor effects of the immune re-
sponse by secreting a variety of inhibitory cytokines (such as TGF-
𝛽, IL-10, and IFN-𝛾) and blocking costimulatory ligands to sup-
press subsequent T cell activation.[40] We also identified an im-
munosuppressive subcluster of DCs (LAMP3+ tDCs) that inhib-
ited the immune response by expressing a high level of several
negative immune regulators, including IDO1, CCR7, LGALS3,
LGALS9, and NECTIN2. According to previous studies, LAMP3+
tDCs are enriched in tumor tissues and can inhibit the activa-
tion of CD8+ T cells by recruiting Treg cells and other CCR4+
immune cells to tumor regions.[41] Another immunosuppressive
cluster of myeloid cells, CCL18+ M2-like macrophages, are more
likely to exist in the metastatic microenvironment due to hy-
poxia induction and metabolic reprogramming.[42] It is well es-
tablished that cancer-associated fibroblasts remodel the extracel-
lular matrix and promote cancer immune evasion in the tumor
microenvironment. We found that the RGS5+ cancer-associated
fibroblast cluster could secrete periostin and biglycan, which are
negative regulators of the immune process in metastatic breast
cancer.[22] Interestingly, an LGALS1+ microglial cell subcluster
was identified in brain metastases of breast cancer expressing a
high level of galectin-1, which can foster an immune-exclusive
microenvironment by reprogramming Treg cells.[27,28] Moreover,

metastatic cancer cells have a high expression level of CD47,
which interacts with the macrophage inhibitory receptor signal
regulatory protein 𝛼 (SIRP𝛼) to transmit a “don’t eat me” signal
and prevent macrophage phagocytosis.[43,44] These cell clusters
may also be targets for immunotherapy for liver and brain metas-
tasis of breast cancer.

Immune checkpoint therapy has been proven effective against
various advanced solid tumors, and its application has quickly
gained momentum in antitumor drug research.[45–47] Recent
studies have revealed that some subgroups of metastatic breast
cancer may respond well to anti-PD-1/L1 immune checkpoint
therapy, although breast cancer was once considered an immune-
quiescent tumor.[48] Nevertheless, individuals with liver or brain
metastasis respond poorly to anti-PD-1/L1 immune checkpoint
inhibitors compared to those with metastasis at other sites.[5–7]

Our single-cell transcriptome data revealed low expression lev-
els of the PD-1 checkpoint molecule and high expression lev-
els of the LAG3 and TIGIT checkpoint molecules in CD8+ T
cells. Furthermore, the immune checkpoint ligands PD-L1/2 was
barely expressed in cancer cells, immune cells, or stromal cells.
The ligands of LAG3 and TIGIT, LGALS3, and NECTIN2, re-
spectively, were highly expressed in the above cells. These re-
sults suggested that the interactions of the immune checkpoint
molecules LAG3-LGALS3 and TIGIT-NECTIN2 between CD8+
T cells and cancer/immune/stromal cells played a dominant
role in the immune escape of liver- and brain-metastatic breast
cancer. Galectin-3 (encoded by LGALS3) is produced by both
tumor cells and macrophages and can block T cell activation
signaling, induce T cell apoptosis, and inhibit IFN-𝛾 secretion
by interacting with LAG3 on the cellular surface of T cells.[49]

CD115 (encoded by NECTIN2) binds TIGIT to transduce signals
through its intracellular tail immunoreceptor tyrosine-based in-
hibitory motif (ITIM) and/or Ig tail-tyrosine (ITT)-like motif to
inhibit a variety of lymphocytes (effector/regulatory T cells, NK
cells, etc.).[50] Therefore, targeting these two second-generation
immune checkpoint receptor targets (LAG3 and TIGIT) and
their ligands (LGALS3 and NECTIN2) is a potential therapeu-
tic strategy for patients with liver and brain metastasis of breast
cancer.

In summary, our study uncovered intratumoral heterogeneity
and an immunosuppressive tumor ecosystem in liver- and brain-
metastatic breast cancer, which provides insights into the mech-
anisms underlying immune checkpoint treatment resistance
and information for the development of precise immunotherapy
strategies for these patients.

4. Experimental Section
Patients and Samples: Liver or brain metastases of breast cancer were

collected from six patients undergoing surgery in Sun Yat-sen University
Cancer Center. The clinical information of all included patients with liver or
brain metastatic breast cancer are showed in Table S1 (Supporting Infor-
mation). The pathological and immunohistochemical information of the
primary and metastatic tumors are showed in Table S2 (Supporting In-
formation). All samples analyzed in this study were from patients who
were pathologically diagnosed with metastatic breast cancer. The speci-
mens for scRNA-seq were obtained from the tumor area, and the normal
liver and brain tissues around the tumor were removed before dissocia-
tion. Only female patients with metastatic breast cancer were included.
Their ages ranged from 41 to 55 years, with a median age of 50 years.
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Fresh tumor weights ranged from 150 to 300 mg. None of the patients re-
ceived chemotherapy or radiation to treat their metastasis before surgery,
except for patient BM01 (who achieved pathologic complete response af-
ter anti-HER2 therapy and chemotherapy). This study was approved by the
Institutional Research Ethics Committee of Sun Yat-sen University Cancer
Center and conducted under the guidance of the Declaration of Helsinki
(G202102201). Informed consent was obtained from all patients.

Tissue Dissociation and Single-Cell Suspension Preparation: Fresh tis-
sues were stored in sCelLiveTM Tissue Preservation Solution (Singleron,
China) on ice immediately after resection. The tissues were washed with
HBSS three times and then digested with 2 mL sCelLiveTM Tissue Disso-
ciation Solution (Singleron) at 37 °C for 15 min. To remove red blood cells,
red blood cell lysis buffer (2 mL) was added to the cells and incubated at
25 °C for 10 min. The solution was then centrifuged at 500 × g for 5 min
and suspended in PBS. Trypan blue (Sigma) staining was used to evaluate
cellular viability under a microscope.

Library Preparation and Single-Cell RNA Sequencing: Single-cell sus-
pensions were barcoded using the Chromium Single Cell Library, Gel Bead
& Multiplex Kit (10× Genomics). Briefly, cells were partitioned into Gel
Beads in Emulsion in the ChromiumTM Controller instrument, where cell
lysis and barcoded reverse transcription of RNA occurred. Each DNA li-
brary was sequenced on a HiSeq X instrument (Illumina) with 150 bp
paired-end reads.

Raw Data Processing and Quality Control: After removing low-quality
reads, raw reads were processed to generate gene expression profiles us-
ing Cell Ranger v.3.0.2. Reads from the 10× library were mapped to the hu-
man genome reference sequence GRCh38 with ensemble version 92 gene
annotation. Gene counts and UMI counts were acquired by featureCounts
software. Cells were filtered according to the following criteria: gene count
below 200, top 2% gene counts, and top 2% UMI counts. Cells with over
50% mitochondrial content were removed. The Seurat program (R pack-
age, v.3.0.1)[51] was utilized to perform cell type annotation and clustering
analysis. A parameter resolution of 1.2 was set for the FindClusters func-
tion to conduct clustering analysis.

Differentially Expressed Gene (DEG) Analysis and Cell Type Annotation:
The Seurat v3.1.2 function FindMarkers based on the Wilcoxon likelihood-
ratio test with default parameters was used to identify DEGs. Genes ex-
pressed in more than 10% of the cells in a cluster and with an average
logFC (fold change) higher than 0.25 were selected as DEGs. According to
the SynEcoSys database, the cell type of each cluster was annotated based
on the expression of canonical markers found in the DEGs. The Seurat
v3.1.2 functions DoHeatmap/Vlnplot/DotPlot were used to visualize the
expression of markers identified in each cell type.

Single-Cell Copy Number Variation (CNV) Analysis: The InferCNV
method[52] was used to validate the CNVs and distinguish malignant cells
from normal epithelial cells. Nonmalignant cells (T cells and B cells) in
our samples were used as control references to evaluate the CNVs of ma-
lignant cells. Genes expressed in over 20 cells were sorted according to
their position on each chromosome. The relative expression values were
centered to 1, using 1.5 standard deviations from the residual-normalized
expression values as the ceiling. A slide window size of 101 genes was
used to smooth the relative expression on each chromosome to remove
the effect of gene-specific expression.

Pathway Enrichment Analysis: Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) analyses were used to explore
the potential biological functions and relevant signaling pathways of each
cell type. The “clusterProfiler” R package was utilized to conduct GO and
KEGG analyses. Only biological process categories were used as a back-
ground set in the GO analysis. Pathways or functions with adjusted P val-
ues < 0.05 were considered significantly enriched items. GSVA was per-
formed using hallmark pathway sets. The average expression of genes in
each cell cluster was defined as input data.

Identification of Expression Programs: The Consensus Non-negative
Matrix factorization (cNMF) algorithm (https://github.com/dylkot/
cNMF) was used to extract transcriptional programs by taking the top
100 genes as the meta-signature and calculating the score of each
transcriptional program for each cancer cell based on the meta-signature.
Based on the Pearson correlation coefficient between each program,

the meta-signature was developed, and the samples were hierarchically
clustered.

Trajectory and RNA Velocity Analysis: Pseudotime trajectory analysis
was conducted with the Monocle 2 algorithm[53] to map the differenti-
ation and conversion of cell subtypes in each subtype of cell. The top
eight genes with the most variation were selected from each cluster to
construct the trajectory using the Seurat v3.1.2 function FindVairable-
Features. Dimension-reduction analysis was performed by DDRTree. The
plot_cell_trajectory program was used to visualize the trajectory. For RNA
velocity analysis, BAM files containing each cell and reference genome
were input into the analysis with velocyto[54] in Python with default pa-
rameters. To assess consistency, the result was mapped to a UMAP plot
via Seurat clustering analysis.

Single-Cell Entropy and Cell Cycling Analysis: To assess and score the
stemness of cancer cells, the entropy of gene expression based on single-
cell RNA expression profiles was assessed by the SLICE (version 0.99.0)
algorithm.[55] A SLICE object was created to conduct bootstrap calculation
of single-cell gene entropy values by the getEntropy function after remov-
ing ribosomal and ERCC spike-in genes. The cell cycle phase scores were
calculated based on canonical markers using the Seurat program. The G1
phase was defined as noncycling, and G2M and S were defined as cycling
states.

Cellular Communication Analysis: Cell–Cell communication between
immune/stromal cells and cancer cells was predicted based on known
ligand–receptor pairs by CellphoneDB version 2.1.0.[56] In randomized cell
identities, the permutation number was set to 1000 when calculating the
null distribution of average ligand–receptor pair expression. According to
the average log-transformed gene expression distribution, individual re-
ceptor or ligand expression was thresholded across each cell type. The
pairs with average log-transformed expression > 0.1 and P value < 0.05 as
significant predicted interaction pairs were defined.

Collection and Process of Bulk Transcriptome Data: Bulk transcriptome
data and corresponding clinical information were downloaded from the
Gene Expression Omnibus (GEO) database (ID: GSE56493, GSE12276,
GSE46141, and GSE173661) as described previously.[57] “AnnoProbe” R
package was utilized to map the probes. “limma” R package was used to
calculate the average values of multiple probes if necessary. These datasets
were integrated by “combat” function (“sva” R package).

Dissection of Tumor Microenvironment Based on Bulk Transcriptome Data:
The “xCell” algorithm was used to calculate the tumor microenvironment
scores based on bulk transcriptome data.[58] Classic immune checkpoint
genes were also collected. “ggplot” R package was used to be plotted to vi-
sualize the characterization of the tumor microenvironment components,
immune checkpoint genes, and immune infiltration score among different
metastatic sites.[59]

Transwell Assay: MDA-MB-231 and MCF-7 cells were digested and
then resuspended. Totally, 5×104 cells were added to the superior cham-
bers (without FBS) with DMSO or ML264. Lower cross-pore compartment
contains 20% FBS. After incubation for 24 hours, the cells were fixed with
methanol and stained with crystal violet (0.1%). Then, cells on the top sur-
face of the membrane were wiped off, and cells on the lower surface were
imaged and counted as described previously.[60] Three random fields were
photographed and the number of migrated cells was counted. The exper-
iments were performed in triplicate.

Colony Formation Assay: MDA-MB-231 and MCF-7 cells (5×103) were
seeded in 6-well plates and treated with DMSO or ML264. After 14 days
of cultivation, colonies were fixed in methanol before being stained with
crystal violet (0.1%). The colonies in each well were imaged and counted.
The experiments were performed in triplicate.

Wound Healing Assay: Briefly, MDA-MB-231 and MCF-7 cells were
seeded in 6-well plates. After forming the confluent monolayers, cells were
scraped with a 200 μL sterile pipette tip to create a linear wound. Then,
cells were cultured in no-serum medium with DMSO or ML264 in the fol-
lowing 24 h. The wound healing process was observed under the inverted
microscope at 0 and 24 h period. Wound closure analysis was performed
using Image J software. The experiments were performed in triplicate.

Multiplex Immunofluorescent Staining: Paraffin-embedded tis-
sues were used to conduct immunofluorescent staining as described
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previously.[61] The paraffin-embedded sections were dewaxed in xylene,
rehydrated with graded ethanol, subjected to endogenous peroxidase
activity blockade, and subjected to antigen retrieval at high temperature.
The sections were permeabilized in TBST (PBS with 0.5% Triton X-100)
and incubated overnight at 4 °C with the primary antibodies. The primary
antibodies were applied sequentially, followed by incubation with the sec-
ondary antibody and fluorophore. Primary antibodies included anti-CK19
(Abcam; ab52625; 1:800), anti-CD3 (Abcam; ab135372; 1:50), anti-CD68
(Abcam; ab201340; 1:200), and anti-𝛼-SMA (Affinity; AF1032; 1:1000).

Statistical Analysis: Statistical analysis was performed using R soft-
ware, including two-sided Student’s t test, two-sided Pearson correlation
test, and two-sided Wilcoxon test. The results are presented as means ±
standard deviation. All boxplots indicate median (center), 25th and 75th
percentiles (bounds of box), and minimum and maximum (whiskers).
Log-rank test was used in Kaplan-Meier survival analysis. P < 0.05 was
considered statistically significant.
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