Table 1. Classification performance of different models.
Models | Hyper-parameters | Features | Accuracy (mean ± SD) | RSD (%) | P value |
---|---|---|---|---|---|
Decision Tree | criterion=‘gini’, min_samples_split=2, min_samples_leaf=1 | DLR | 0.842±0.006 | 0.69 | <0.0001 |
DLR + ARF | 0.854±0.007 | 0.84 | |||
Random Forest | n_estimators=100, criterion=‘gini’ | DLR | 0.904±0.003 | 0.40 | <0.0001 |
DLR + ARF | 0.910±0.003 | 0.40 | |||
LinearSVC | penalty=‘l1’, loss=‘squared_hinge’, max_iter=10000 | DLR | 0.867±0.001 | 0.10 | <0.0001 |
DLR + ARF | 0.881±0.001 | 0.11 | |||
Multilayer Perceptron | hidden_layer_sizes=(100) activation=‘relu’, solver=‘adam’ |
DLR | 0.908±0.004 | 0.47 | <0.0001 |
DLR + ARF | 0.911±0.004 | 0.42 |
SVC, support vector classification; DLR, deep learning latent representation; ARF, attentional lung region radiomics features; RSD, relative standard deviation.