Skip to main content
. 2022 Nov 21;13(2):572–584. doi: 10.21037/qims-22-531

Table 1. Classification performance of different models.

Models Hyper-parameters Features Accuracy (mean ± SD) RSD (%) P value
Decision Tree criterion=‘gini’, min_samples_split=2, min_samples_leaf=1 DLR 0.842±0.006 0.69 <0.0001
DLR + ARF 0.854±0.007 0.84
Random Forest n_estimators=100, criterion=‘gini’ DLR 0.904±0.003 0.40 <0.0001
DLR + ARF 0.910±0.003 0.40
LinearSVC penalty=‘l1’, loss=‘squared_hinge’, max_iter=10000 DLR 0.867±0.001 0.10 <0.0001
DLR + ARF 0.881±0.001 0.11
Multilayer Perceptron hidden_layer_sizes=(100)
activation=‘relu’, solver=‘adam’
DLR 0.908±0.004 0.47 <0.0001
DLR + ARF 0.911±0.004 0.42

SVC, support vector classification; DLR, deep learning latent representation; ARF, attentional lung region radiomics features; RSD, relative standard deviation.