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A B S T R A C T   

Diabetes mellitus (DM) is a first-line priority among the problems facing medical science and public health in 
almost all countries of the world. The main problem of DM is the high incidence of damage to the cardiovascular 
system, which in turn leads to diseases such as myocardial infarction, stroke, gangrene of the lower extremities, 
blindness and chronic renal failure. As a result, the study of the molecular genetic mechanisms of the patho-
genesis of DM is of critical importance for the development of new diagnostic and therapeutic strategies. Mo-
lecular genetic aspects of the etiology and pathogenesis of diabetes mellitus are intensively studied in well- 
known laboratories around the world. One of the strategies in this direction is to study the role of exosomes 
in the pathogenesis of DM. Exosomes are microscopic extracellular vesicles with a diameter of 30–100 nm, 
released into the intercellular space by cells of various tissues and organs. The content of exosomes depends on 
the cell type and includes mRNA, non-coding RNAs, DNA, and so on. Non-coding RNAs, a group of RNAs with 
limited transcriptional activity, have been discovered to play a significant role in regulating gene expression 
through epigenetic and posttranscriptional modulation, such as silencing of messenger RNA. One of the problems 
of usage exosomes in DM is the identification of the cellular origin of exosomes and the standardization of 
protocols for molecular genetic studies in clinical laboratories. In addition, the question of the target orientation 
of exosomes and their targeted activity requires additional study. Solving these and other problems will make it 
possible to use exosomes for the diagnosis and delivery of drugs directly to target cells in DM. This study presents 
an analysis of literature data on the role of exosomes and ncRNAs in the development and progression of DM, as 
well as the prospects for the use of exosomes in clinical practice in this disease.   

1. Introduction 

Exosomes (exosomes) secreted outside cells are "star" molecules in 
extracellular vesicles, they can carry and transfer a variety of biological 
signals, and act on distant cells through autocrine, paracrine, etc. In 
order to achieve the purpose of information transmission between cells. 

At present, the latest research has introduced exosomes into the field of 
diabetes, which has opened up a new situation for research in this field 
[1]. The content of exosomes depends on the cell type and includes 
proteins such as annexins, tetraspanins, major histocompatibility com-
plex molecules, cytoskeletal proteins, enzymes, and signaling proteins, 
as well as mRNA, DNA and non-coding RNAs. NcRNAs, which make up 
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over 98% of human genome expression products, are a group of RNA 
molecules that have little transcriptional value but play a significant role 
in gene expression regulation through epigenetic and post-
transcriptional mechanisms [2]. This includes microRNAs (miRNAs) 
with a length of 19–25 nucleotides, long non-coding RNAs (lncRNAs) 
with over 200 nucleotides, and ring-loaded RNAs (circRNAs) that have a 
closed loop structure. While these ncRNAs do not produce proteins, they 
still play an important role in various physiological activities through 
their regulation of target genes. MiRNAs bind to messenger RNAs 
(mRNAs) that have a complementary 3′-untranslated region (3′-UTR), 
while lncRNAs have non-random short open reading frames (sORFs) and 
are involved in chromatin modification, chromosome recycling, and 
DNA transcription processes. Over the past few years, it has become 
clear that non-coding RNAs (ncRNAs) play a crucial role in maintaining 
normal body functions and that their abnormal expression is closely 
linked to the development of numerous diseases, including diabetes 
mellitus (DM) [3–5]. An increasing number of studies have centered on 
ncRNAs in DM and its associated complications, suggesting that ncRNAs 
can interact with insulin [6]. There is also evidence to indicate that 
ncRNAs may serve as modulators and markers of diabetic cardiovascular 
disease [7–10]. This article reviews the role of exosomes and ncRNAs as 
part of they in the occurrence and development of diabetes and its 
complications, and discusses the role and prospect of exosomes and 
ncRNAs as a target for diabetes treatment and in the diagnosis and 
treatment of diabetes. This article summarizes the origin and classifi-
cation of extracellular vesicles, focuses on summarizing the imaging 
methods in the process of extracellular vesicle origin, isolation, dynamic 
uptake and release, discusses the advantages and disadvantages of 
different methods, and provides a basis for the study of extracellular 
vesicles. 

2. Biological characteristics and functions of exosomes 

Exosomes are nanosized extracellular vesicle-like bodies with a 
membrane structure secreted by cells. The diameter of exosomes is 
30–150 nm, and the density is 1.10–1.19 g/ml [11,12]. There are about 
1014 exosomes in the human body, which is close to 1000–101000 per 
cell on average. Exosomes, as a type of membrane vesicles, mainly 
consist of intracellular multivesicular bodies that fuse with the cell 
membrane and are released into the extracellular matrix. Under an 
electron microscope, exosomes look like flattened spheres wrapped in 
lipid bilayers, with a characteristic glass holder shape [13]. Exosomes 

can produce almost all eukaryotic cells, including some microorganisms 
[14–16]. Exosomes can stably exist in extracellular fluid, including cell 
culture supernatant, plasma, serum, saliva, urine, amniotic fluid, ascites, 
milk, cerebrospinal fluid, nasal lavage fluid, joint cavity fluid, semen, 
prostate fluid, bile and other biological fluids. Cells that secrete exo-
somes may include T cells, B cells, platelets, dendritic cells, mast cells, 
etc. In fact, in addition to exosomes, extracellular vesicles also include 
microvesicles (MVs) and apoptotic bodies. Their diameter is larger than 
that of exosomes, and the mechanism also differs from that of exosomes 
[17]. As for the diameter of exosomes, in fact, different types of cells will 
also determine the size of exosomes, for example, the diameter of exo-
somes secreted by adipocytes is relatively large, about 150–200 nm 
[18]. Therefore, the exosome diameter cannot be absolutely limited to 
<150 nm. In addition, only exosomes can be continuously released by 
cells, while other extracellular vesicles can only be released by activated 
or apoptotic cells, which is also a difference between exosomes [19]. 

The formation of exosomes begins with endocytosis of extracellular 
substances or membrane proteins to form small vesicles, which then fuse 
with each other to form early endosomes (early endosomes, EE), and 
then EE are gradually transported through intracellular transport and 
become late endosomes (late endosomes, LE). At this time, the endo-
some membrane buds inward through reflex folds, and sorted DNA 
fragments, circular RNA (cirRNA), mRNA, microRNA (microRNA) in the 
cell are, miRNA), proteins, transcription factors, etc. are packaged, 
forming multiple intraluminal vesicles (intraluminal vesicles, ILVs), 
which are precursors of exosomes [19]. LEs contain multiple luminal 
vesicles called multivesicular bodies (MVBs) that are responsible for the 
transport and sorting of proteins. Then, some MVBs fuse with the 
cytoplasmic membrane and release exosomes into the extracellular 
matrix, while other MVBs fuse with lysosomes, and their content de-
grades and participates in recycling [19]. Exosomes released into the 
extracellular matrix re-enter the recipient cells via endocytosis or by 
recognizing specific receptors on the membrane surface and release the 
"cargo" they carry into the cytoplasm of the recipient cells to play a role 
in signal transduction. The composition of exosomes and the type of 
recipient cells determine the function of exosomes (Fig. 1). 

Exosomes can carry and transport many biological molecules, such 
as DNA fragments, circRNA, mRNA, miRNA, functional proteins, tran-
scription factors, etc., to achieve the purpose of intercellular information 
transfer; and their own membrane structure can also express various 
antigens, antibody molecules, thus participating in the exchange of in-
formation and substances between cells, play an important role in many 

Fig. 1. Exosomes-mediated intercellular transmission.  
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physiological and pathological processes: such as cell communication, 
cell migration, differentiation, angiogenesis, immune response, antigen 
presentation, tumor invasion, etc., and can also be used as nanocarriers 
for loading genes or drugs to reach target organs, etc. [20]. 

3. The importance of exosomes in diabetes research 

Exosomes play an important role in insulin sensitivity, glucose ho-
meostasis, and vascular endothelial function [21]. Diabetes mellitus is a 
common metabolic disorder characterized by dysfunction of insulin 
secretion by pancreatic β cells, varying degrees of insulin resistance 
combined with relative lack of insulin. Organs such as the pancreas, 
liver, muscle or fat are involved, and the communication between these 
organs is a key link in maintaining glucose homeostasis [20]. When a 
patient develops metabolic disorders, the number of exosomes in the 
circulating blood increases [22]. The more severe the insulin resistance, 
the more dysfunctional the islet β cells are, the more changes in insulin 
signaling proteins in exosomes are, and these exosomes are preferen-
tially absorbed by white blood cells. Internalization, changing the 
function of white blood cells [23], exosomes also contain components 
that can cause vascular dysfunction [22]. The relationship between 
diabetes and exosomes has received extensive attention. Studies have 
shown that exosomes are involved in the occurrence and development of 
diabetes and its related complications. It can not only be used as a 
biological marker for early diagnosis and staging of diabetes, but also as 
a target for diabetes treatment, and more importantly, it can Monitor the 
response of diabetic patients to treatment, and provide a basis for 
implementing individualized treatment of diabetes [20,24]. 

3.1. Relationship between exosomes and insulin and its receptors 

Pancreatic β-cells are the only source of insulin. Insulin, a protein 
hormone secreted by pancreatic β-cells in response to endogenous or 
exogenous stimuli, is involved in the regulation of glucose metabolism 
and control of blood sugar balance [25]. Insulin-secreting β-cells and 
insulin-responsive tissues release exosomes containing proteins and 
microRNAs extracellularly and can be transferred to other metabolic 
organs or immune endothelial cells. Exosomes function autocrine and 
paracrine, which contributes to the maintenance of glucose homeostasis 
or induces insulin resistance [26]. The number of exosomes in periph-
eral blood or adipocyte-derived exosomes positively correlated with the 
insulin resistance index (HOMA-IR) to assess the homeostasis model, 
also associated with insulin sensitivity [27,28]. Exosomes regulate in-
sulin sensitivity in at least two ways: one is by regulating the inflam-
matory pathway; the other is through direct interaction with 
insulin-sensitive organs, which can directly or indirectly affect the in-
sulin signaling pathway. 

Insulin binds to the insulin receptor (IR) on the cell membrane and 
activates tyrosine kinase, thereby initiating the intracellular insulin 
signaling pathway. Calpain-2 is a calcium-dependent protease that does 
not contain a signal peptide, but is an enzyme necessary for the regu-
lation of the secretory pathway, and its role is not to degrade proteins, 
but to split them. Under high glucose conditions, exosomes secreted by 
cells contain calpain2, which allows calpain 2 to be released into the 
extracellular space with the help of exosomes; The site directly catalyzes 
the splitting of IR to become a soluble insulin receptor (sIR); the next 
step is to initiate the splitting of IR in the cell membrane by γ-secretase. 
The continuous division of IR in the extracellular part and the inner part 
of the cell membrane eventually leads to the inhibition of tyrosine 
phosphorylation of insulin receptor substrate-1 (insulin receptor sub-
strate1, IRS-1) and protein kinase B (Akt) phosphorylation, and then 
Impairs the insulin signaling pathway, leading to insulin resistance. This 
is why plasma sIR levels in patients with type 2diabetes mellitus (T2DM) 
are negatively correlated with insulin sensitivity. Metformin may inhibit 
the release of calpain 2 from exosomes, interfere with IR splitting 
(through the pathway of knocking out calpain 2 and γ-secretase), restore 

the functions of IRS-1 and Akt, and re-establish insulin signaling, 
thereby alleviating insulin resistance, enhance insulin sensitivity. 
Therefore, the study of exosomes actually discovered a new mechanism 
of insulin resistance [29]. 

3.2. Exosomes and adipose tissue-associated insulin resistance 

Adipose tissue is a dynamic endocrine organ, which secretes a variety 
of adipokines, enzymes, growth factors and hormones that regulate 
glucose and lipid metabolism to regulate the homeostasis of whole body 
energy [30–32]. Insulin resistance is partly related to substances 
secreted by fat cells. In insulin-resistant obese people with prediabetes, 
it was found that their adipocytes can produce exosomes, which are 
called adiposomes (ADEs) [33]. Lipid raft microdomains containing 
glycosylphosphatidylinositol-anchored protein in ADEs can be used for 
phosphodiesterase and 5′-nucleotidase CD73 to hydrolyze cAMP in the 
cell, thereby blocking the biochemical action transmitted by cAMP. 
ADEs are secreted by larger donor adipocytes and subsequently phago-
cytized by smaller adipocytes, accompanied by accelerated fatty acid 
esterification of triglycerides and slower release of triglycerides [33]. 
Angiogenic factors produced by adipose tissue are loaded into ADEs and 
participate in angiogenesis; ADEs are also involved in inducing cell 
migration and lumen formation in human umbilical vein endothelial 
cells. Exosomes released by endothelial cells of adipose tissue are rich in 
plasma components. In this way, substances in plasma can be transferred 
to adipocytes, and biological information about changes in the nutri-
tional status of the whole body can be transmitted to adipocytes. This 
fully demonstrates that through exosomes The importance of commu-
nication to maintain metabolic balance [34]. ADEs negative for CD14 
expression have been found to be inversely associated with T2DM risk 
[35]. 

ADEs contain approximately 7000 mRNAs and 140 miRNAs, most of 
which are transcripts of adipocyte-specific and dominant genes, whose 
abundance is mainly related to donor cells, and ADEs deliver RNAs in a 
paracrine or endocrine manner [36]. The miRNA expression profile 
contained in the ADEs of pre-diabetic insulin-resistant obese people has 
changed significantly compared with healthy people, and can further 
regulate recipient β cells by transmitting differentially expressed miR-
NAs, and even regulate distant organs (such as liver) intracellular gene 
expression [37,38]. In the liver, fibroblast growth factor 21 (FGF21) acts 
to reduce miRNA, and if the level of mature miRNA in the tissue is 
significantly reduced, the level of mature miRNA in circulating exo-
somes is also significantly reduced [39]. Transplantation of both white 
and brown adipose tissue into the tissue can partially restore circulating 
miRNA levels by reducing FGF21 and improve glucose tolerance [39]. 
Dicer enzyme, which is used to process miRNA, is downregulated in 
adipose tissue with age [30]. Knockout of fat-specific Dicer enzymes 
hypersensitizes mice to oxidative stress. Therefore, an imbalance of 
miRNA regulation in adipose tissue will directly lead to an increased 
incidence of metabolic diseases such as diabetes in the elderly. Impor-
tantly, these effects may not simply be due to problems in the fat cells 
themselves, but also represent a defect in their communication with 
other organs [39,40]. Skeletal muscle cells can take up ADEs, and 
miR-27a secreted by ADEs can inhibit the target gene peroxisome 
proliferator-activated receptor-γ (PPARγ), causing impaired glucose 
uptake in skeletal muscle [41]. 

In addition to miRNAs, following a diet or bariatric surgery signifi-
cantly increased the concentration of long non-coding RNA (long non- 
coding RNA, lncRNA) contained in exosomes derived from stem cells 
of the peritoneal omental adipose tissue of obese people [42]. After that, 
the amount of lncRNA significantly decreased [43]. 

ADEs are also rich in adiponectin, an adipokine secreted only by 
adipocytes, and they are involved in lipid metabolism and insulin 
resistance [44–46]. Exosomes rich in adiponectin can influence the 
metabolism of distant cells. Fatty acid-binding protein (aP2) can regu-
late intracellular lipid transport in various tissues in non-classical ways 
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upon lipase activation, and the level of aP2 in exosomes increases 
significantly upon stimulation of lipolysis. In obesity, adipose tissue 
becomes resistant to insulin-mediated inhibition of lipolysis, thereby 
increasing aP2 secretion, which leads to increased hepatic glucose 
output and diabetes [47]. In addition, Sonic Hedgehog (Shh) is also a 
type of exosome-wrapped protein. Shh expression in circulating exo-
somes in T2DM patients is elevated, which may stimulate macrophages 
to secrete inflammatory factors and mediate M1 through the Ptch/PI3K 
signaling pathway. Polarization of macrophages, which in turn leads to 
insulin resistance of adipocytes [48]. Exosomes also contain some 
adipocyte-specific proteins such as tumor necrosis factor α (tumor ne-
crosis factor α, TNF-α), macrophage colony stimulating factor (macro-
phage colony stimulating factor, MCSF), and retinol-binding protein 4 
(RBP -4) and so on. ADEs in patients with gestational diabetes are 
selectively enriched in a specific set of proteins associated with changes 
in glucose metabolism in placental cells [49]. 

Interestingly, after culturing human adipose tissue in vitro, sub-
cultured adipose tissue sections were transferred to a new medium, and 
these human adipose tissue explants released exosomes, the content of 
which depended on the activation of adipokines. induced AKT phos-
phorylation in hepatocytes [50]. Exosomes isolated from the culture 
medium of human adipose tissue cells kept under hypoxic conditions 
directly affect other functions of adipocytes, reducing glucose uptake 
and insulin-mediated AKT phosphorylation [51]. 

Exosomes released from adipose tissue mesenchymal stem cells (AT- 
MSCs) treated obese mice by transmitting and activating signal trans-
ducer and activator of transcription 3 (STAT3), Guided M2-type 
replacement of activated macrophages, improved insulin sensitivity, 
reduced obesity, and improved hepatic steatosis [52]. Also MSCs, exo-
somes released from aged mouse marrow mesenchymal stem cells 
(M-MSCs) composed of adipocytes, muscle cells, and liver cells can 
induce insulin resistance in vivo and in vitro, the amount of miR-29b-3p 
was significantly increased in exosomes released from M-MSCs, down-
regulation of miR-29b-3p can significantly improve insulin resistance 
[53]. In conclusion, exosomes can serve as a new target for the treatment 
of insulin resistance in obese people [54]. 

3.3. Exosomes and low-grade chronic inflammation and insulin resistance 

Type 1 diabetes mellitus (T1DM) and T2DM have different patho-
genesis: T1DM is due to the gradual loss of insulin-producing cells, 
resulting in low or no insulin production; insulin resistance. Although 
the pathogenesis of T1DM and T2DM are quite different, their causative 
factors, course, pathophysiology, disease progression, and complica-
tions are linked: both are caused by a combination of genetic suscepti-
bility and environmental factors, and only susceptibility genes Different; 
T2DM can start with ketoacidosis, while some patients with T1DM have 
an insidious onset, especially adult patients with positive islet autoan-
tibodies; Obesity and insulin resistance develop progressively; both 
involve interactions between the immune and metabolic systems [55]. 
Notably, chronic inflammation is a common feature of both types of 
diabetes [56,57]. Recently, exosomes have been identified as in-
termediates linking inflammation and diabetes [58]: Islet mesenchymal 
stem cells (MSCs) from autoimmune susceptible animals release highly 
pro-inflammatory exosomes that contribute to T1DM occurs [59]; 
low-grade inflammatory exosomes in obesity may stimulate the release 
of pro-inflammatory exosomes, accelerate T2DM [60,61], and eventu-
ally lead to systemic insulin resistance [27]. Therefore, obesity is the 
main pathogenic factor leading to insulin resistance. When pancreatic β 
cells cannot secrete enough insulin to compensate for the decrease in 
insulin sensitivity, it can lead to the occurrence of T2DM [62]. 

3.4. Exosomal miRNAs and diabetes 

Among the various contents contained in exosomes, siRNA is a very 
common type of non-coding RNA (about 19–22 nucleotides long) 

consisting of a single hairpin about 70–90 bases in size. processed by the 
Dicer enzyme. They bind to mRNAs, targeting them, causing their 
degradation or repressing their translation [63]. Studies have shown 
that the concentration of microRNA in exosomes is always higher than in 
body fluids, and its copy number is sufficient to exert a biological effect 
on recipient cells [64,65]. miRNAs secreted by exosomes can be trans-
ferred to neighboring cells, exposing mother cells to the pathophysio-
logical environment characteristic of diabetes, can regulate the release 
of miRNAs and influence the survival of recipient cells, a new mecha-
nism of intercellular communication regulates the activity of pancreatic 
β-cells [66]. 

Studies have shown that exosomes secreted by the pancreas contain 
miP-375, which can regulate insulin secretion and islet formation. miR- 
375 is one of the few miRNAs with demonstrated tissue specificity iso-
lated from serum or plasma [67,68]. Deficiency of miR-375 leads to 
hyperglycemia, accompanied by increased secretion of pancreatic 
α-cells, increased gluconeogenesis, and increased production of hepatic 
glycogen [69]. Overexpression of miR-375 inhibits insulin secretion. 
In-depth studies have shown that myotrophin (MTPN) is the target of 
miR-375 [70]. Exosomes released from adipose-derived macrophages 
lead to glucose intolerance and insulin resistance, and these exosomes 
target PPARγ, which is highly expressed in adipocytes, to reduce insulin 
sensitivity of other tissues (e.g., the liver) [71]. 

Cell populations derived from peripheral blood mononuclear cells 
(PBMC) can promote angiogenesis, and miRNAs that regulate angio-
genesis are key regulators. miR-126 of the CD34+ PBMC subpopulation 
is highly expressed in vascular endothelial cells. The release of exosomes 
can lead to impaired angiogenesis. Altered expression of iR-126 in 
CD34+ PBMCs from diabetic patients resulted in impaired pro- 
angiogenic effects [72]. Some studies summarized many miRNAs in 
exosomes related to diabetes process: miR-27a-3p, miR-27b-3p, 
miR-192 related to glucose intolerance; miR-122 related to disease 
progression; let-7a, let-7f, which reflect blood sugar control and 
post-medication response. These exosomal miRNAs play a key role in the 
regulation of glucose and lipid metabolism [73]. 

However, since miRNA may be involved in a variety of physiological 
and pathological processes, it is difficult to identify a certain miRNA as a 
specific biological marker, which also limits the clinical use of miRNA. 
However, after continuously expanding the sample size and summari-
zing laboratory or clinical data in the future, it is just around the corner 
to find specific miRNA biomarkers [20]. 

We would also like to add a few words about miRNAs, whose rela-
tionship with exosomes has not yet been proven, but which have been 
proven to affect the development of DM. Studies have shown that 
increasing the expression of certain miRNAs such as miRNA-494, 
miRNA-92a, miR-136–5p, and miR-149–5p can improve pancreatic 
β-cell proliferation and insulin secretion [74–76]. Other miRNAs, such 
as miR-150–3p and miR-17–5p, can protect β-cell function by inhibiting 
focal death and activating PDX1 signaling, respectively [77,78]. 
miRNA-16–5p, expressed at lower levels in type 1 diabetes mellitus 
(T1DM) patients, can inhibit high-glucose-induced pancreatic β-cell 
apoptosis by targeting CXCL10 [79]. The downregulation of miR183–3p 
has been found to treat gestational diabetes mellitus (GDM) by reducing 
skeletal muscle insulin resistance (IR) [80]. The exosome-derived 
miR-26a increases insulin sensitivity by enhancing insulin signaling 
and reducing hyperinsulinemia, a typical symptom of type 2 diabetes 
mellitus (T2DM) [81]. The miR-17-5p-Mfn1/2-NF-ΚB pathway has 
anti-inflammatory and anti-apoptotic effects in GDM [82]. 
miR-1249–3p has reduced IR and inflammation in a mouse model of 
T2DM [83]. miRNA-26a promotes regulatory T cells to suppress T1DM 
[84]. The miR-212/132-enriched extracellular vesicles can be used to 
differentiate induced pluripotent stem cells into pancreatic β-cells, 
enabling cell replacement therapy for T1DM [85]. 
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3.5. Other noncoding RNAs in exosomes and their roles in diabetes 

Other types of noncoding RNAs such as circular RNA (circRNAs), P- 
element induced Wimpy testis (PIWI)-interacting RNAs (piRNAs), and 
long noncoding RNA (lncRNAs) have also been found to be involved in 
the pathological process of diabetes. CircRNAs are a form of noncoding 
RNA that form a circular and continuous loop, making them resistant to 
degradation and more stable compared to linear RNAs. Studies have 
shown that circRNAs often regulate miRNA-target gene transcription 
and act as miRNA sponges. Some circRNAs have been linked to the 
progression of diabetes, including reducing β-cell proliferation, 
decreasing survival, and impacting insulin secretion [86–88]. PiRNAs 
are another class of small RNAs found in germline cells, playing a role in 
spermatogenesis and regulating gene expression. They have been found 
to be expressed in pancreatic islets and participate in controlling β-cell 
activities [89]. Although both circRNAs and piRNAs exist in exosomes, 
there is still limited evidence on changes of exosomal circular RNA or 
piRNA in diabetic state. 

LncRNA is a type of noncoding RNA that is longer than 200 nucle-
otides. It affects gene expression through epigenetic, transcriptional, 
and posttranscriptional mechanisms. Several lncRNAs, such as ANRIL, 
H19, MALAT1, Sox2OT, and MEG3, have been implicated in the pa-
thology of diabetes, specifically type 2 diabetes [90–94]. Although there 
is limited research on the connection between exosomal lncRNAs and 
diabetes, a study found that lncRNA-p3134 was increased four-fold in 
serum exosomes and correlated with fasting blood glucose and HOMA-β 
levels. Further study showed that the secretion of lncRNA-p3134 posi-
tively regulated insulin secretion by promoting key regulators (Pdx-1, 
MafA, GLUT2, and Tcf7l2) in beta cells and restoring insulin synthesis 
and secretion in db/db mice, making lncRNA-p3134 a potential 
compensatory factor for preserving beta cell function in response to high 
glucose stimulation [95]. 

3.6. Exosomes and T1DM 

After revealing the influence of DM1 and delivery of exosomes, it was 
found that the serum in DM1 contains more exosomes, and miRNAs 
wrapped in them are involved in the regulation of heart development, 
and these exosomes can be inherited in fetal mice, which directly leads 
to an increase in the incidence of congenital heart disease [96]. 

The exosomes contain potent immunostimulatory substances, and 
the exosomes released by insulinoma can stimulate an autoimmune 
response in non-obese diabetes (NOD) mice and islets of Langerhans in 
NOD mice) and are cultured in vitro, the cultured islet cells release fi-
broblasts. -like rapidly replicating cells expressing MSC markers 
including CD105 and stem cell antigen-1. These is let MSC-like cells 
release highly immunostimulatory exosomes that can activate autoim-
mune B and T cells in NOD mice. This indicates that exosomes carry the 
NOD mouse autoantigen, have strong immune activity, and may be a 
trigger for autoimmunity in diabetic NOD mice [34]. 

MiR-21–5p is enriched in exosomes released from T cells or islet cells 
treated with pro-inflammatory cytokines and is elevated in the serum of 
both T1DM patients and NOD mice, which in turn triggers apoptosis in 
recipient cells pathway, indicating that this process may play a role in 
the development of T1DM, and exosomal miR-21–5p may become a 
T1DM biomarker [97,98]. 

The production of exogenous interferon-γ in the serum exosome level 
of prediabetic patients was positively correlated with the disease pro-
gression, and CD105+ cells were confined to the peripheral area of 
normal islet cells, but with the infiltration of lymphocytes, CD105+ cells 
entered the central area of islets (mainly β cell area), exosome immu-
nization promotes the expansion of diabetic metastatic T cells and ac-
celerates the destruction of islet cells mediated by effector T cells [34]. 
Exosomes isolated from patients with T1DM for many years found that 
some miRNAs were up-regulated, such as miR-25–3p; some miRNAs 
were down-regulated, such as miR-16–5p, miR-302d-3p, miR- 378a, 

miR-570–3p, miR-574–5p, etc. [99]. The above research results provide 
ideas for finding new targets for the treatment of T1DM. 

Islet cell transplantation is an effective treatment for autoimmune 
DM 1. Exosomes specifically released from transplanted islets into the 
circulation have potential diagnostic value for distinguishing between 
recurrent autoimmunity and immune rejection after injury to pancreatic 
β-cells, indicating that exosomes are biological markers [100]. 

Exosomes isolated from MSCs have an immunomodulatory effect and 
can improve islet function by increasing the number of regulatory T cells 
and their anti-inflammatory products IL-4 and IL-10; therefore, they can 
be used to treat DM1 [101]. However, some scientist’s express different 
views on this matter: exosomes isolated from M-MSCs can promote bone 
tissue regeneration, and in patients with DM1 this function is impaired, 
which indicates that for patients with DM1, autologous bone marrow 
stem cell transplantation may be ineffective [102]. 

3.7. Exosomes and T2DM 

Amylin is stored in the insulin-secreting granules of pancreatic β cells 
and is co-secreted with insulin. Its serum concentration is about 1/10 of 
that of insulin; in the pancreas of many T2DM patients, the content of 
amylin increases [103]. Pancreatic exosomes from normal people can 
reduce the formation of amylin by peptide clearance, but pancreatic 
exosomes and serum exosomes from T2DM patients have no similar 
effect, and the ratio of C-peptide and lipid composition are different 
from normal people [104]. 

Exosomes carry important biological information of T2DM patho-
genesis. Exosomes and the miRNA carried by them pass through blood 
from adipose tissue and penetrate into skeletal muscle and liver. The 
response induced by this inter-tissue migration may directly lead to the 
disordered intercellular communication in T2DM related to metabolism 
[71]. Plasma miR-15a is elevated in patients with T2DM, which plays an 
important role in insulin production in islet β cells and is associated with 
disease severity. In fact, the increase of miR-15a in the blood is derived 
from the exosomes secreted by pancreatic β cells. After the increase of 
miR-15a, it targets Akt3 to cause oxidative stress, which in turn leads to 
cell apoptosis [105]. Decreased miR-126 or increased miR-192 and 
miR-193b are all signals of the pre-existence of T2DM, allowing early 
identification of at-risk subjects [106,107]. All of the above indicate that 
the miRNA contained in exosomes secreted by islet cells regulates β-cell 
function in a paracrine manner, and this situation is significantly 
different between normal people and T2DM patients [108]. 

n addition, the level of lncRNAp3134 contained in circulating exo-
somes of T2DM patients is higher than that of non-T2DM patients, and it 
is related to fasting blood glucose and HOMA-β levels. Further studies 
have found that lncRNA-p3134 can promote key regulatory factors (Pdx- 
1, The expression of MafA, GLUT2, Tcf712) positively regulates the 
function of glucose-stimulated insulin secretion (GSIS), indicating that 
the regulation of lncRNA-p3134 in pancreatic β cells can maintain blood 
glucose homeostasis [109]. 

DM2 is considered to be a chronic, indolent inflammatory disease 
affecting immune and endothelial cells [110,111]. The sluggish in-
flammatory process is characterized by the activation of endothelial 
cells [112,113]. This cellular activation results in endothelial cells and 
monocytes secreting cytokines and expressing adhesion molecules such 
as intracellular adhesion molecule type I (ICAM-1), which in turn leads 
to immune cell adhesion and transport. into the blood. vessel wall [114, 
115]. Circulating levels of ICAM-1 are elevated in patients with T2DM, 
which is a marker of endothelial cell activation [116,117]. Endothelial 
cells and monocytes can release exosomes, these exosomes regulate the 
function of endothelial cells and monocytes and are involved in the 
interaction between endothelial cells and immune cells, which con-
tributes to high activation of endothelial cells and monocytes. in 
response to glucose is critical [118–120]. In a high-glucose environment, 
the kinetics of exosomes released by endothelial cells is significantly 
affected, and exosomes are strongly associated with the activation of 
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inflammatory cells in T2DM or diabetes-related cardiovascular compli-
cations [121,122]. 

Exosomes secreted by human mesenchymal stem cells (human um-
bilical cord MSC-derived exosome, hucMSC-ex) may alleviate T2DM by 
reversing insulin resistance in peripheral blood and inhibiting β-cell 
apoptosis. hucMSC-ex restored IRS-1 phosphorylation (tyrosine site) and 
Akt expression in DM2, stimulated the expression of muscle glucose 
transporter 4 (glucose transporter 4, GLUT4) and membrane transport, 
and increased liver glycogen stores to maintain blood glucose homeo-
stasis, indicating that hucMSC-ex may be a treatment option for T2DM 
[123]. 

On the other hand, studies have shown that miR-29b exosomal 
branched-chain amino acids (BCCAs) in dairy produce excess insulin 
synthesis and BCAA mTOR-dependent insulin resistance when dairy 
products are consumed for a long time, indicating that exosomes in dairy 
products are potential promoters of CD2; whereas miR-29b-mediated 
and miR-148a-mediated repression of secreted protein, acidic and rich 
in cysteine (SPARC), inhibition of V-Maf muscle aponeurotic fibrosar-
coma (MAFB) homologue B oncogene B may impair insulin secretion, 
increasing endoplasmic reticulum stress and apoptosis β-cells [124]. 

3.8. Exosomes and gestational diabetes mellitus (GDM) 

GDM accounts for approximately 9% of pregnancies and is another 
manifestation of diabetes [125]. Although GDM usually returns to 
normal after delivery, increased metabolic demands during pregnancy 
lead to temporary defects in glucose metabolism. As the incidence of 
obesity increases, the incidence of GDM also gradually increases, which 
will affect the health of offspring, because embryos will undergo 
epigenetic changes due to long-term exposure to a disturbed metabolic 
environment [126]. Several factors, including placental hormone (PH), 
released by the placenta, have been implicated in the development of 
insulin resistance and GDM. However, blood pH levels did not correlate 
well with maternal insulin sensitivity throughout gestation, suggesting 
the possibility of other unrecognized mechanisms [127]. 

The placenta releases exosomes into the maternal circulation from 
the 6th week of gestation. This process is regulated by factors such as 
oxygen partial pressure and blood glucose concentration, and is related 
to placental quality and perfusion. Placental exosomes play an impor-
tant role in normal placental development and maternal immune 
tolerance. Different pregnancy periods and pregnancy status will affect 
the concentration of plasma exosomes. With the prolongation of gesta-
tional age, the concentration of plasma exosomes gradually increases, 
and the exosomes isolated from maternal plasma are biologically active 
in vitro and bind to target cells through endocytosis, which is related to 
pregnancy complicated with diabetes and preeclampsia [127]. GDM is 
associated with skeletal muscle insulin resistance and increased levels of 
circulating placental exosomes [128]. Placental exosomes from these 
patients encapsulated some specific miRNAs related to skeletal muscle 
insulin sensitivity, and they were consistently expressed in placenta, 
circulating exosomes, and skeletal muscle. Placental exosomes from 
GDM can reduce the migration and glucose uptake rate of primary 
skeletal muscle cells with normal insulin sensitivity, suggesting that 
placental exosomes may play a role in normal pregnancy and changes in 
insulin sensitivity in GDM. While GDM patients have higher levels of 
circulating exosomes than normal people, GDM is associated with 
hyperglycemia-induced fetal placental endothelial dysfunction, 
GDM-derived exosomes can release more pro-inflammatory factors from 
endothelial cells, they participate in disease progression of endothelial 
dysfunction in GDM [115,129]. 

4. Mechanism of exosomes involved in target organ damage in 
diabetes 

Diabetes is prone to be complicated by large and medium blood 
vessels (atherosclerosis) and microvascular lesions (retinopathy, 

nephropathy, and neuropathy), which can involve damage to important 
target organs throughout the body, and eventually lead to target organ 
failure [130]. The research on exosomes also penetrates into all aspects 
of diabetic complications. 

4.1. Exosomes and diabetic nephropathy 

Diabetic nephropathy is a serious complication of diabetes and a 
common cause of end-stage renal disease. Exosomes released by 
glomerular mesangial cells under conditions of high glucose levels cause 
damage to podocytes in vitro, leading to diabetic nephropathy [131]. 

Some believe that protein markers of exosomes may more accurately 
reflect potential changes in patients with diabetic nephropathy than 
complete urinalysis, and that the contents are wrapped in the membrane 
structure of exosomes to avoid degradation by proteases, so that test 
results are more reliable. exactly [132]. The urine exosomes of patients 
with diabetic nephropathy contain 352 proteins, among which the uri-
nary exosome protein WT1, secreted by renal epithelial cells, can be 
used as a non-invasive biological marker to predict early diabetic kidney 
injury [133]; α1-microglobulin/bicunin precursor (α-1-micro-
globulin/bicunin precursor, AMBP), histone lysine-N-methyltransferase 
(MLL3), voltage-gated anion channel protein-1 (voltage-gated anion 
selective channel protein, VDAC1) is a biological indicator, which can be 
used to predict early abnormalities of diabetic nephropathy [134]; levels 
of leucine aminopeptidase (LAP) and dipeptidyl peptidase 4 (dipeptidyl 
peptidase 4, DPP4) are associated with biological parameters closely 
associated with the severity of diabetic nephropathy [135]. 

Stable exosomes in the urine and microRNAs contained in them are a 
sign of the development of diabetic nephropathy and play an important 
role in pathogenesis [136]. miR-130a, miR-145 and the number of 
exosomes in exosomes released from glomerular mesangial cells (GMS) 
positively correlated with glucose concentration [67]. Compared to 
patients with T2DM, exosomal microRNA in the urine of patients with 
T2DM nephropathy has abnormal expression of miP-320c, which may 
influence TGF-β signaling by mediating thrombin-1 (thrombospondin-1, 
TSP-1). the index is expected to be used as a new candidate marker of 
T2DM nephropathy to assess T2DM nephropathy [136–138]. 

MSC-derived exosomes can induce autophagy, significantly improve 
kidney function, and repair kidney tissue, which is a novel treatment for 
diabetic nephropathy [139]. Exosomes secreted by urine-derived stem 
cells (USCs) can protect podocytes in a high glucose environment, 
inhibit podocyte apoptosis, promote angiogenesis and cell survival, and 
reduce protein in rats with diabetic nephropathy. abilities as their parent 
cells [140]. Exosomes derived from adipose tissue stem cells (ADSCs) 
(ADSCs-Exo) can inhibit mTOR activation by upregulating miP-486 and 
suppressing Smad1 expression, leading to increased autophagy and 
reduced podocyte apoptosis, alleviating spontaneous diabetes mellitus 
and improving symptoms diabetic nephropathy [141]. It can be seen 
that exosomes have broad prospects for clinical application for the 
prevention of diabetic kidney damage [142]. 

4.2. Exosomes and diabetic retinopathy (DR) 

DR is a microvascular complication of diabetes and a major cause of 
vision loss in adults [143]. Diabetic peripheral vascular disease with 
ocular complications accounted for 41% of severe cases of DR. 

Studies have shown that cytokines (RANTES and Ang-2) in plasma 
exosomes are involved in modulating the course and prognosis of DR 
[144]. Exosomes secreted by pancreatic β cells contain miR-15a, which 
can induce human Müller cells to overexpress miR-15a, and then target 
Akt3 to cause oxidative stress, apoptosis, and retinal damage [105]. 
Exosomal miR-222 expression levels released from MSCs isolated from 
diabetic adipose tissue were inversely correlated with retinal repair 
[145]. The activation of the classical complement pathway by plasma 
exosomes containing IgG is also involved in the progression of DR [143]. 
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4.3. Exosomes and diabetic neuropathy 

Studies have shown that exosomes secreted by M-MSC can repair 
damaged neurons and astrocytes and reverse their dysfunction, indi-
cating that exosomes may be an ideal treatment for diabetic nerve injury 
[146]. Enriched medium (enriched medium, EE) stimulates the activa-
tion of miR-146a in exosomes secreted by endogenous M-MSCs, which 
has an anti-inflammatory effect on damaged astrocytes in the brain of 
diabetic rats and may prevent cognitive impairment caused by diabetes 
[147]. 

4.4. Exosomes and diabetic skeletal muscle and bone metabolic lesions 

Skeletal muscle exosomes regulate skeletal muscle homeostasis in a 
state of insulin resistance caused by a high-fat diet through a similar 
paracrine transmission method, and they can be absorbed by the 
pancreas [148]; miR-16 in exosomes is involved in high-fat diet Induced 
changes in the proliferation of MIN6B1 cells and islets and regulation of 
the Ptch1 gene, thereby participating in the development of the pancreas 
[60]. Bone marrow-derived exosomal miRNAs differ in quantity, type, 
and expression level, and exosomal miRNA profiles targeting insulin 
secretion and insulin signaling pathways are altered under T2DM con-
ditions, in which alterations in the Wnt signaling pathway are key to 
bone metabolism [149]. 

4.5. Exosomes and cardiovascular complications of diabetes 

Insulin is essential for cardiac contractility, growth, and metabolism, 
thus impaired insulin signaling plays a key role in diabetic cardiovas-
cular complications [150]. Diabetic cardiovascular complications are 
the main cause of disability and death in diabetic patients. These com-
plications are closely related to insulin resistance and dyslipidemia. 
Since different types of cardiac cells secrete their own cardiac exosomes, 
the academic community began to speculate that exosomes may be 
involved in the pathophysiology of cardiovascular diseases including 
diabetic cardiomyopathy (DCM) [151]. In the future, exosomes may be 
used to treat diabetic myocardial damage to some extent [152]. 

In the early stages of diabetes, hyperglycemia can lead to endothelial 
and microvascular dysfunction [153,154]. Dysregulation of myocardial 
angiogenesis has been suggested to be a key cause of diabetic cardio-
vascular disease, and cardiac endothelial cells play a key role in car-
diomyocyte function and structure [155–159]. Exosomes contain 
pathogenic factors of diabetic atherosclerosis [160]. Serum exosomes 
from diabetic db/db mice were ingested by normal mouse aortic endo-
thelial cells, and severe endothelial dysfunction occurred, which was 
caused by the transfer of arginase-1 (arginase 1) by serum exosomes to 
endothelial cells [161]. Mammalian sterile 20-like kinase 1 (MST1)-rich 
exosomes released from cardiac microvascular endothelial cells 
(CMECs) have pleiotropic effects in inhibiting autophagy and can pro-
mote cellular Apoptosis, inhibition of cellular glucose metabolism 
[162]. miRNAs (such as miR-214, miR-143/145) encapsulated in exo-
somes secreted by vascular endothelial cells also play an important role 
in angiogenesis and anti-atherosclerosis [163,164]. 

Cardiomyocyte-derived exosomes, known as cardiosomes, contain 
variable amounts of nucleic acids, proteins, and lipids, which can be 
transferred to adjacent cardiac endothelial cells and regulate their 
function [165–169]. Cardiosomes wrap miR-455, miR-29b, miR-323–5p 
and miR-466, these miRNAs can bind to metalloproteinase-9 (matrix 
metalloprotease 9, MMP9) and down-regulate its expression, reduce 
myocardial fibrosis, inhibit Cardiomyocyte decoupling, thereby pro-
moting myocardial regeneration [170]. Cardiosomes can also regulate 
glucose transport in endothelial cells [152]. The levels of miR-1 and 
miR-133a were higher in lipid-preconditioned cardiosomes, and these 
miRNAs were positively correlated with diabetic myocardial damage 
[171]. Cardiosome-rich HSP70 activates the cardioprotective signaling 
pathway induced by ERK1/2 and HSP27 in cardiomyocytes; when 
T2DM occurs, although the expression of cardiosome HSP70 still in-
creases, it loses its protective effect on the heart [172]. Diabetic car-
diosomes were used to intervene cardiomyocytes under 
hypoxia-reoxygenation, exacerbating cell death [172]. It shows that 
diabetic myocardial vascular damage may be caused by anti-angiogenic 
exosomes secreted by cardiomyocytes [166]. 

In addition, the increased angiogenesis of vasa vasrum (VV) can 
promote the rupture of T2DM atherosclerotic plaque, and ADEs 

Fig. 2. Exosomes as mediators of related organs in diabetes.  
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participate in the promotion of plaque aggravation and plaque damage, 
partly through the induction of VV angiogenesis, and partly through the 
above mentioned exosomes to aggravate diabetic atherosclerosis [173]. 

Therefore, for diabetic cardiovascular disease, exosomes can not only 
serve as potential biomarkers, but also have therapeutic effects, and can 
be used as targets or drugs to reverse the impaired insulin signaling. 

5. Conclusion 

Due to the complexity of clinical manifestations of different types of 
diabetes, sometimes relying on the current laboratory methods cannot 
be identified in time. Therefore, it is urgent to find a marker that can not 
only reflect the pathophysiological characteristics or disease progression 
in real time, but also be simple, cheap, and easy to operate [174]. 
Perhaps in the future, exosomes will be able to meet this new require-
ment for diabetes biological markers [20]. People can monitor physio-
logical and pathological changes by analyzing the contents of lipids, 
proteins, nucleic acids, etc. in exosomes (Fig. 2, Table 1). 

At the same time, exosomes have unique advantages as a natural 
endogenous drug carrier: they have good immunocompatibility, low 
immunogenicity, skillfully avoid the rapid clearance of monocytes and 
macrophages, and prolong the life of exosomes. peripheral circulation 
shows greater stability in the blood, which increases efficiency [175, 
176]; it is widespread and can even cross the complete blood-brain 
barrier [177]; its diameter is just right for use Enhanced Permeability 
and Retention Effect (EPR) selectively extravasates into certain specific 
tissues; 

Exosomes can also deliver drugs to specific tissues or organs 
[178–181]. Therefore, exosomes may overcome the current difficulties 
with the encapsulation of siRNA-based nucleic acid preparations and 
enable the widespread use of nucleic acid preparations in clinical 
practice in the future. Currently known miRNAs in exosomes that can be 
used as targets include: miR-27a, miR-155, miR-143/145, miR-16 
associated with improved miR-222, miR-146a, miR-25-3r, miR-16-5r, 
etc. associated with DM1, miR-455, miR-296 associated with DM2, 
miR-323–5p, miR-466 [151]. Exosome research has a positive impact on 
the development of future diabetes drugs, especially targeted therapies 
(see summary in Table 1 and Fig. 2). 

Current research on the role of exosomes carrying noncoding RNAs 
in diabetes is in its early stages, particularly with regards to lncRNAs, 
circRNAs, and PIWI-interacting RNAs. There is also a lack of clear 
characterizations and markers for exosomes from different cell types, 
making it challenging to determine the source of exosomes in circulation 
[182,183]. Although the use of exosomes as drug carriers has been 
widely studied, there are still challenges in developing exosome-based 
drug delivery systems, such as efficient cargo encapsulation, selecting 
appropriate exosome-originating cells, drug loading methods, and 
modifying exosome surfaces [184–188]. However, exosomal miRNAs 
and lncRNAs have been shown to play a role in modulating the pro-
gression of diabetes, including affecting metabolic and insulin signals in 
target tissues, cell viability, and pancreatic cell inflammation. 

Thus, people’s deep understanding of the mechanism of exosome 
production, regulation of secretion or uptake provides a better under-
standing of the pathophysiological mechanism of diabetes, as well as for 
the development of more methods for diagnosing and treating diabetes 
and its complications in the future are provided. 

Funding 

This work was supported by the Bashkir State Medical University 
Strategic Academic Leadership Program (PRIORITY-2030). 

Author contributions 

Albert Sufianov and Andrey Kostin conceptualized and designed the 
study. All authors have participated in the acquisition, analysis and 
interpretation of the data. Sema Begliarzade and Valentin Kudriashov 
has drafted the manuscript. Tatiana Ilyasova, Yanchao Liang and Albert 
Mukhamedzyanov contributed to the critical revisions of the manu-
script. Ozal Beylerli supervised the research. All authors agreed on the 
journal to which the article would be submitted, gave the final approval 
for the version to be published, and agreed to be accountable for all 
aspects of the work. 

Table 1 
The role of exosomes in the diagnosis and treatment of diabetes and its 
complications.  

Source of 
exosomes 

Bioactive 
factors 

Disease model Application References 

HepG2 Calpain 2 High-glucose 
conditions 

Treatment [29] 

Mouse skeletal 
muscle 

miR-16 HPD Treatment [60] 

Mouse adipocyte Caveolin 1 Obesity Treatment [34] 
Human/mouse 

adipocyte 
miR-125b/ 
lin-4 

Obesity Diagnosis [39] 

Mouse adipocyte miR-27a Obesity Treatment [41] 
Human adipose- 

derived stem 
cells 

MALAT1 Obesity Diagnosis [42] 

Mouse serum Adiponectin Obesity Diagnosis [45] 
Mouse adipocyte ap2 Obesity Treatment [47] 
3T3-L1 Shh High-glucose 

conditions 
Treatment [48] 

M-MSCs miR-29b-3p Senescence Treatment [53] 
Mouse pancreas miR-375 Normal Diagnosis/ 

treatment 
[67–70] 

Human urine miR-130a DN Diagnosis [67] 
Macrophage miR-155 Obesity Diagnosis/ 

treatment 
[71] 

PBMC miR-126 T2DM Diagnosis [72] 
Mouse plasma miR-27b-3p Obesity Diagnosis [73] 
Human/Mouse 

pancreatic β 
cells 

miR-21–5p T1DM Diagnosis [97,98] 

Human plasma miR-25–3p T1DM Treatment [99] 
Human pancreatic 

β cells 
miR-15a T2DM Diagnosis [105] 

Human plasma miR-126 Prediabetes Diagnosis [106] 
Human/Mouse 

plasma 
miR-192/ 
193 

Prediabetes Diagnosis [107] 

Human pancreatic 
β cells 

lncRNA- 
p3134 

T2DM Diagnosis [109] 

Human urine miR-145 DN Diagnosis [117] 
Human 

endothelial cells 
PAPP-A GDM Diagnosis [129] 

Mouse serum Arginase 1 db/db Diagnosis [142] 
Mouse cardiac 

microvascular 
endothelial cells 

MST1 T1DM (STZ +
mouse) 

Treatment [143] 

Human/Mouse 
endothelial cells 

miR-143/ 
145 

Lipid loaded Treatment [144] 

HMEC-1 miR-214 Senescence Treatment [145] 
Mouse 

cardiomyocyte 
mir-466 db/db Treatment [151] 

HL-1 miR-133a Lipid-loaded Diagnosis [152] 
Rat 

cardiomyocyte 
HSP70 Gotokakizaki Treatment [153] 

Human urine WT1 T1DM Diagnosis [157] 
Human urine VDAC1 DN Diagnosis [158] 
Human urine LAP T2DM Diagnosis [159] 
Human urine miR-320c DN Diagnosis [161] 
Adipose-derived 

stem cells 
miR-486 DN Diagnosis [165] 

Human plasma RANTES DR Diagnosis [168] 
Rabbit adipose 

MSCs 
miR-222 T1DM (STZ +

rabbit) 
Treatment [169] 

M-MSCs miR-146a T1DM (STZ +
rat) 

Treatment [171] 

AbbreviationM-MSCs: marrow mesenchymal stem cells; MSCs: mesenchymal 
stem cells; PBMC: peripheral blood mononuclear cell; T1DM: type 1 diabetes 
mellitus; T2DM: type 2 diabetes mellitus; GDM: gestational diabetes mellitus; 
DN: diabetic nephropathy; DR: diabetic ret-inopathy; HPD: high palmitate diet. 
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