表 1. Jaccard similarity coefficients for segmentation results of three algorithms.
三种算法分割结果的杰卡德相似系数
数据 | 本文 | 传统中智学 | K-means | |||||
纤维斑块 | 脂质区 | 纤维斑块 | 脂质区 | 纤维斑块 | 脂质区 | |||
1 | 0.794 5 | 0.786 2 | 0.419 8 | 0.463 8 | 0.638 1 | 0.602 6 | ||
2 | 0.850 4 | 0.817 7 | 0.426 3 | 0.456 3 | 0.529 1 | 0.565 0 | ||
3 | 0.882 5 | 0.842 3 | 0.365 6 | 0.501 2 | 0.606 5 | 0.752 3 | ||
4 | 0.819 0 | 0.778 6 | 0.456 2 | 0.435 6 | 0.613 6 | 0.467 9 | ||
5 | 0.812 4 | 0.810 9 | 0.378 6 | 0.421 3 | 0.541 6 | 0.550 3 | ||
6 | 0.900 4 | 0.785 1 | 0.368 6 | 0.402 5 | 0.623 5 | 0.612 4 | ||
7 | 0.812 5 | 0.778 7 | 0.426 7 | 0.381 2 | 0.515 0 | 0.506 4 | ||
8 | 0.785 1 | 0.767 1 | 0.415 6 | 0.375 6 | 0.594 0 | 0.569 6 | ||
9 | 0.798 4 | 0.825 6 | 0.387 6 | 0.394 3 | 0.452 4 | 0.479 1 | ||
10 | 0.840 2 | 0.774 6 | 0.375 6 | 0.454 3 | 0.564 2 | 0.530 2 | ||
11 | 0.770 9 | 0.793 6 | 0.366 5 | 0.435 6 | 0.645 4 | 0.628 6 | ||
12 | 0.806 5 | 0.764 8 | 0.412 8 | 0.421 5 | 0.645 5 | 0.565 2 | ||
13 | 0.797 0 | 0.826 8 | 0.414 6 | 0.454 8 | 0.702 3 | 0.612 8 | ||
14 | 0.813 4 | 0.789 6 | 0.368 9 | 0.465 2 | 0.645 2 | 0.562 2 | ||
15 | 0.869 4 | 0.846 6 | 0.345 2 | 0.415 3 | 0.598 4 | 0.591 7 | ||
16 | 0.844 3 | 0.787 3 | 0.325 4 | 0.402 8 | 0.644 5 | 0.410 1 | ||
17 | 0.861 8 | 0.834 6 | 0.435 2 | 0.468 9 | 0.689 1 | 0.568 9 | ||
18 | 0.886 3 | 0.821 0 | 0.347 6 | 0.472 5 | 0.563 7 | 0.623 7 | ||
19 | 0.895 2 | 0.826 3 | 0.425 3 | 0.462 1 | 0.645 3 | 0.594 6 | ||
20 | 0.853 5 | 0.812 4 | 0.413 6 | 0.412 5 | 0.638 5 | 0.625 8 | ||
均值 | 0.835 ± 0.039 | 0.803 ± 0.026 | 0.394 ± 0.035 | 0.435 ± 0.034 | 0.605 ± 0.062 | 0.571 ± 0.072 |