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Abstract

Purpose of review—Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death 

in patients with epilepsy. This review highlights the recent literature regarding epidemiology on a 

global scale, putative mechanisms, and thoughts toward intervention and prevention.

Recent findings—Recently, numerous population-based studies have examined incidence of 

SUDEP in many countries. Remarkably, incidence is quite consistent across these studies, and is 

commensurate with the recent estimates of about 1.2 per 1000 patient years. These studies further 

continue to support that incidence is similar across the ages and that comparable factors portend 

heightened risk for SUDEP. Fervent research in patients and animal studies continue to hone the 

understanding of potential mechanisms for SUDEP, especially those regarding seizure-induced 

respiratory dysregulation. Many of these studies and others, have begun to lay out a path toward 

identification of improved treatment and prevention means. However, continued efforts are needed 

to educate medical professionals about SUDEP risk and the need to disclose this to patients.

Summary—SUDEP is a devastating potential outcome of epilepsy. More is continually learned 

about risk and mechanism for clinical and preclinical studies. This knowledge can hopefully be 

leveraged into preventive measures in the near future.
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Introduction

Epilepsy is a common neurological disorder. Approximately one in 26 individuals will 

develop epilepsy within their lifetime [1]. Anti-seizure medications (ASM) are the mainstay 

for seizure control. While medications provide seizure freedom for many patients, ~35% 
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of patients will not achieve seizure freedom with ASMs [2;3] and have refractory epilepsy. 

Poor seizure control associated with refractory epilepsy puts an individual at increased 

risk of premature death [4]. Over the last decade-and-a-half, there has been an explosion 

of research with an emphasis on understanding SUDEP, including its mechanisms, risk 

factors, and potential biomarkers. While there are many ways epilepsy can result in fatality, 

including accidents, drowning, status epilepticus, suicide, and others, SUDEP is a leading 

cause death in patients with epilepsy attributing for up to 50% of epilepsy-related deaths [5]. 

Several pathophysiological mechanisms have been proposed for SUDEP. What is coming 

to light recently is that there is probably not one etiology for SUDEP, but rather different 

mechanisms may contribute to death in different patient populations or epilepsy syndromes.

Epidemiology of SUDEP

Incidence

Incidence of SUDEP has proven challenging to determine. SUDEP is not always listed as 

the cause of death, making it difficult to capture all SUDEP [6]. This is especially true 

in children and the elderly, leading to a probable underestimation of SUDEP risk in these 

populations [7]. Great strides have been made in partnership with medical examiners to 

accurately label deaths as SUDEP when appropriate. Recently, several population-based 

studies have been conducted in many different countries to evaluate incidence of SUDEP. 

The most prominent of these is from patients with epilepsy in Sweden in whom the 

incidence is approximately 1.2 per 1000 patient-years [8]. A reprise of this study in a 

Canadian cohort reported a similar incidence in children [9]. Remarkably, several newer 

studies in a variety of countries and patient populations reveal similar incidences as those 

reported in the Swedish and Canadian studies[6;10–19].

Of note, there are several patient populations that demonstrate a higher incidence of SUDEP, 

such those with the epileptic encephalopathy, Dravet Syndrome, which is due to mutations in 

the Scn1a gene encoding the voltage gated sodium channel NaV1.1 [20], and others such as 

Scn8a encephalopathy impaired NaV1.6 channel function [21].

Risk Factors

Several risk factors for SUDEP have been identified, including having frequent generalized 

convulsive seizures (GCS), nocturnal seizures, being found prone, and being male, among 

others [7]. Importantly, these same themes emerged in most of the studies conducted in other 

countries and published in the last year or so [6;10–19;22]. Many of these risk factors have 

been combined into a new risk assessment scale, the SUDEP clinical risk score (SUDEP-

CARE) [23]. This is refinement of the previously employed SUDEP-7 [24] inventory. In 

addition, it may prove valuable to extract data from electronic seizure diaries to assess risk 

[25].

Several measures have been purported to portend increased risk for SUDEP including 

reduced heart rate variability (HRV), as an indicator of general autonomic function [26], and 

postictal generalized EEG suppression (PGES) [27–30]. These measures, especially HRV, 

were the subject of intense investigation in the last year and were found to be differentially 
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affected by seizures occuring from wake versus sleep [31–33]. Duration and regularity of 

the QT interval may also be emerging as a risk indicator for SUDEP [34], and may be a 

useful tool for assessing risk at the initial visit [35]. In addition, indicators of respiratory 

function are also emerging, including incidence of ictal and postictal apnea [36–39], and 

reduction of the sensitivity of the hypercapnic ventilatory response [40;41]. It is clear from 

studies such as the multi-center retrospective Mortality in Epilepsy Monitoring Units Study 

(MORTEMUS), that multifactorial monitoring will be important to continue to understand 

and stratify SUDEP risk in patients with epilepsy. Such multimodal monitoring has begun to 

be implemented in some centers and is producing valuable information [42–45].

Mechanisms for SUDEP

There is continued ongoing discussion regarding the mechanisms for SUDEP. There is 

general consensus that there is cardiorespiratory dysfunction triggered by a convulsive 

seizure that leads to death. While breathing [46;47] and other cardiorespiratory function 

can be profoundly affected by focal seizures [48], SUDEP is thought to occur more 

commonly following GCS. It is becoming apparent that there are likely to be different 

primary mechanisms for SUDEP in different given patients depending on their seizure 

type and semiology. Both patient data and animal studies indicate that seizures can impair 

respiratory function, which contributes to seizure-related death, or SUDEP. This respiratory 

dysregulation contributes to cardiac dysregulation in many cases [20]. In MORTEMUS, 

all nine patients for which peri-ictal cardiac and respiratory activity could be discerned 

experienced terminal apnea prior to terminal asystole [49]. How seizures affect breathing has 

been a subject of intense study recently [20;50].

Breathing is a complex process involving central and peripheral components. Breathing 

is automatic, but it can be modulated by higher centers. Central pattern generators for 

breathing reside in the brainstem and drive inspiration/expiration through control of the 

diaphragm and other downstream components. These breathing centers include the pre-

Bötzinger complex [51] and parafacial nucleus [52]. Apnea can be central, resulting from 

loss of the control signals from brainstem, or obstructive resulting from blockade of the 

airflow system (e.g., loss of airway tone/pharyngeal muscle tome, tonic activation of 

diaphragm, laryngospasm, etc.). There is evidence from human studies that seizures are 

associated with central apnea [53]. This is generally ictal, but can also be post-convulsive, 

and in some instances occur prior to the seizure [38;39]. Obstructive mechanisms such as 

laryngospasm have also been identified in patients with epilepsy [54].

Seizure-induced respiratory arrest has been identified in several seizure and epilepsy models 

including audiogenic seizures in DBA/1 and DBA/2 mice [55;56], maximal electroshock 

(MES)-induced seizures in C57BL/6J mice [57–61], Lmx1b conditional knockout mice 

[62] that lack serotonin (5-HT) neurons in the central nervous system [57], mouse models 

of Dravet syndrome[63–65], and Kcna1 knockout mice lacking the KV1.1 voltage gated 

potassium channel [66;67].

Considerable work has been done recently to try to understand how seizures lead to 

breathing impairment. Elegant studies in humans [68–71] and in animals [72;73] suggest 
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involvement of forebrain structures such as amygdala. Recently, a large effort has been 

made to map connectivity of the amygdala, which paved the way for further unveiling of 

specific network mechanisms [74]. There is also evidence from animal models that seizures 

must be detected in brainstem before cardiac and respiratory effects manifest [75], and that 

when there is impaired breathing, activity in brainstem neurons (e.g., 5-HT neurons in the 

medullary raphe) is reduced [76]. Additional recent work in animal models has focused 

on determining ways to circumvent airway and/or respiratory muscle impairment, including 

stimulation of the diaphragm to reduce tonic activation [77], and carotid body/carotid sinus 

nerve stimulation to reduce airway constriction by laryngospasm [78–80]. Findings from 

some studies evaluating effects of seizures on breathing, mortality, and other factors should 

be interpreted carefully, as some of these are models of prolonged seizures. Prolonged 

seizures, or status epilepticus (SE), are dangerous and a significant cause of mortality. 

Mechanisms for death from SE need to be further elucidated; however, SE, by definition, 

excludes the death from being labelled SUDEP [81].

There may be central and obstructive mechanisms occurring concomitantly to contribute to 

seizure-related apnea. If there is cause for obstruction, removing the obstruction will only 

be useful if there is a central drive to breathe; conversely, restoration of a central drive to 

breathe will only be effective if there is no obstruction (i.e., airway is patent, respiratory 

muscles are not tonically activated, there is no laryngospasm, etc.). There is likely a critical 

window of time following a seizure for homeostatic mechanisms to come back online. 

The non-pharmacological means for circumventing some forms of obstruction mentioned 

above are attractive potential avenues for intervention because they require stimulation of 

peripheral systems, and do not require invasive intracranial hardware. As noted above, 

though, these will only be useful in cases where there is no centrally mediated apnea, or in 

which the central component is brief. For instance, during a period of concomitant central 

apnea and tonic activation of diaphragm, diaphragmatic pacing can overcome the tonic 

activation to allow phasing pumping of the lungs to circulate enough oxygen to temper the 

hypoxia and hypercapnia and allow resumption of normal breathing once the central apnea 

ends.

There is the question of how seizures reach central respiratory components to impair 

cardiorespiratory function. There are direct synaptic connections from cortex to the 

aforementioned forebrain and brainstem structures controlling breathing. Certainly, seizures 

could propagate along these channels to impair breathing and cardiac activity. Seizures 

can also trigger spreading depolarization (SD) [82–84] which is a traveling wave of 

depolarization that moves in a mass-like fashion through contiguous tissue inhibiting 

everything in its path [85;86]. It has long been known to underlie pathophysiology in 

migraine and has more recently been implicated in traumatic brain injury, epilepsy and 

SUDEP [82]. Recent studies in a hyperexcitable mouse model demonstrate that when 

SD reaches superior colliculus it is more likely to be fatal [87–89]. In certain syndromic 

epilepsies, ion channel mutations could also be present in key control regions and directly 

impair cardiorespiratory function in this manner [50].

Impairment of arousal has also been implicated in SUDEP [90]. Arousal generally speaks 

to a level of alertness ranging from fully alert/vigilant to coma with many states on a 
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continuum in between [91]. Arousal can also be used to describe awakening from sleep. 

Seizures can lead to PGES. Seizures can also lead to impairment of arousal ranging from 

mild confusion to profound obtundation [90;92;93]. Following this, patients may become 

somnolent and fall asleep. PGES and arousal impairment can occur concomitantly, but they 

do not have to, necessarily. Impairment in arousal can be associated with other features 

such as immobility [30;94]. It is clear that external stimulation can hasten recovery from the 

post-ictal state [95]. Indeed, the majority of patients that received rapid intervention in the 

MORTEMUS study did not die, but rather experienced near-SUDEP [49].

Considerable work has been done recently to evaluate anatomical and pathological changes 

in patients who died from SUDEP compared to cohorts with or without epilepsy. This has 

included examining 5-HT receptor subtypes in hippocampus and temporal cortex [96], 5-HT 

transporter in brainstem and amygdala [97], evaluating proteomic changes [98;99], and 

evaluating for anatomical changes in central autonomic regions [100–102]. Changes in 5-HT 

and serotonergic nuclei in brainstem have been evaluated previously [103]. More needs 

to be done looking for changes more broadly. Serotonergic neurons and autonomic sites 

are a good starting place, but more careful examination of brainstem respiratory centers, 

amygdala, and other forebrain and limbic structures is warranted.

Neurotransmitters involved in SUDEP

Perhaps the largest body of evidence implicates dysfunction of the 5-HT system in SUDEP. 

5-HT modulates seizures, breathing, and cardiac activity, and is involved in sleep wake 

regulation [104;105]. 5-HT is implicated in another sudden death entity, sudden infant death 

syndrome (SIDS). There are many parallels between SIDS and SUDEP [20;106]. Much 

work on the role of 5-HT in SUDEP comes from animal studies [104;107]. Enhancing 

5-HT transmission with reuptake inhibitors or receptor agonists reduces seizure-induced 

respiratory arrest following audiogenically-induced seizures in DBA/1 mice [56;108–112] 

and following MES-induced seizures in C57BL/6J mice [57]. Elimination of 5-HT neurons 

increases mortality following chemically or electrically induced seizures [57]. Optogenetic 

stimulation of 5-HT neurons in the dorsal raphe nucleus (DRN) reduces seizure-induced 

respiratory arrest in DBA/1 mice [113]. Chemical or optogenetic stimulation of DRN 

also reduces PGES and hastens termination of immobility following seizures induced by 

amygdala kindling and reduces mortality following MES-induced seizures [30]. PGES and 

prolonged immobility have been correlated with SUDEP risk in some studies [27;94;114]. 

Genetic elimination of htr2c, the gene encoding the 5-HT2C receptor, in mice leads to 

development of adult-onset epilepsy with a high risk of mortality [115].

A number of serotonergic abnormalities have been identified in patients that died of 

SUDEP, including in the medullary 5-HT neurons [100;103] and reduced volume on MRI 

in brainstem serotonergic regions [116]. Serum 5-HT level has been shown to inversely 

correlate with PGES duration [117]. This is commensurate with the findings in animal 

studies. However, serum 5-HT may not be the optimal measure of 5-HT concentration 

as 5-HT does not typically cross the blood brain barrier. More work will be needed to 

determine if the blood brain barrier disruption induced by seizures is sufficient to cause 

serum 5-HT levels to reflect 5-HT levels in the brain in these circumstances [118;118]. 
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Recently, as noted above, transcriptomic and proteomic variations have been identified in 

patients who died from SUDEP [96–98]. Among the many properties of 5-HT neurons is 

that they are CO2 chemosensors that modulate breathing in response to elevated CO2, the 

hypercapnic ventilatory response (HCVR) [119], and are involved in regulating arousal in 

response to CO2 [120–123]. Since there are profound change in CO2 with seizures, it is 

intriguing to consider that altered 5-HT neuron chemosensor function could pay a role in 

SUDEP, as it has been proposed to do in SIDS [122].Recent functional magnetic resonance 

imaging (fMRI) studies demonstrate altered activation in these regions in response to CO2 

in patients with epilepsy compared to healthy controls [124]. More will need to be done 

to understand whether this reflects a true alteration in chemosensitivity of the neurons 

or whether this reflects a change in sensitivity of the vasculature in these regions to CO2-

induced vasodilation.

Other neurotransmitters, including adenosine (ADO), norepinephrine (NE), and orexin 

(ORX) have also been implicated in SUDEP. Most evidence comes from studies in animal 

models. All these transmitters affect seizures, breathing, and sleep and wakefulness, and 

they interact with each other in various circumstances. ADO levels rise during seizures 

as adenosine triphosphate (ATP) energy stores are depleted. The ADO rise contributes to 

seizure cessation; however, ADO also suppresses breathing. ADO kinase deficient mice 

demonstrate increased seizure-related death rate [125;126]. Studies of audiogenic seizures 

in DBA/1 mice and with MES-induced seizures in C57BL/6J mice have implicated the 

norepinephrine (NE) system in seizure-related death. In both models, the NE reuptake 

inhibitor (NRI), atomoxetine, reduces seizure-induced respiratory arrest and mortality 

[60;127;128]. In the MES model another NRI, reboxetine also reduces mortality. Toxin-

mediated destruction of NE neurons increases mortality [60]. In the MES model, the effect 

of the NRI was mediated through an α1-noradrenergic receptor dependent mechanism, 

and there was interaction between the NE and 5-HT systems [60]. Work examining a 

role for orexin has been primarily undertaken in Kcna1 knockout mice. Dual orexin 

receptor antagonism improves seizures, positively affects seizure-induced cardiorespiratory 

effects, and reduces mortality in this model [129;130]. Many pharmaceutical agents are 

available that target these neurotransmitter mechanisms. These represent attractive avenues 

for investigating pharmacological reduction of SUDEP risk. Very recent work in mice 

indicates that analogs of the neuropeptide, galanin, can prevent seizure-induced respiratory 

arrest and death in kindled mice [131], which may occur through action in the amygdala 

[132].

Association between sleep, circadian rhythms, the night and SUDEP

There is a strong bidirectional interaction between sleep and epilepsy [133]. There is also 

a well-described influence of circadian rhythms and time of day on epilepsy and seizures 

[134]. A large proportion, if not most, SUDEP occurs during the night [135]. Since SUDEP 

is generally unwitnessed, if the patient is found in or near the bed, they were presumed 

to be asleep [136]. In MORTEMUS, SUDEP followed a seizure that occurred during 

sleep in 7 of the 10 patients for which there was sufficient data to determine sleep-wake 

state [49]. Animal studies demonstrate a differential role for sleep and wake in seizure-

induced mortality and on effects of seizures on breathing, cardiac function, and PGES 
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[30;58;61;107;137–139], and progressive sleep dysregulation preceding death in certain 

genetic models for seizures and seizure-related death [138;140]. Death is more common 

during the night in several animal models including a model of Dravet Syndrome [64], 

Kcna1 knockout mice [141], audiogenic seizures in DBA/1 mice, and MES-induced seizures 

in C57BL/6J mice [61]. It is somewhat surprising that the preponderance of death from 

seizures occurs during the night in both diurnal humans and nocturnal rodents. This suggests 

a conserved mechanism, one of which could be the circadian oscillation in 5-HT which is 

similar in some brain loci between species [134;135;142]. The relative importance of sleep 

state versus time or day/circadian pattern is yet to be determined.

Prevention and Intervention

The most comprehensive method for SUDEP prevention remains eradication of epilepsy. 

Short of that, since the majority of SUDEP is associated with GCS, eliminating GCS is next 

best, with aggressive medical management of GCS, compliance with and adherence to the 

seizure treatment plan, avoiding triggers and other lifestyle modifications, and early work up 

for surgery and surgery if indicated. Given that SUDEP occurs commonly at night, nighttime 

supervision, either directly or via monitoring devices, with the ability to intervene in some 

way is helpful. Devices will not be foolproof, and just having a device will not eradicate 

SUDEP, but devices have the potential to reduce the likelihood of SUDEP. The choice of 

which device and how it will be monitored is a personal one [143–145]. Many encounters 

with bereaved family members of those who died from SUDEP begin with the bereaved 

saying that they were not told about the risk of SUDEP. While it is clear that patients and 

families want to know about SUDEP [146–148], continued efforts are needed to educate all 

medical professionals, including specialists and non-specialists, who care for patients with 

epilepsy about SUDEP. This will allow them to disclose the risk of SUDEP to patients and 

to educate patients and caregivers about SUDEP, and thus make a stronger effort to best 

reduce SUDEP likelihood [149].

Conclusion

Much continues to be learned about SUDEP from both patients and animal models, 

with many consistent findings discovered between them. Now, after assessment of many 

populations of people with epilepsy, the recent estimates of SUDEP incidence remain 

remarkably consistent. While working towards seizure-freedom is always a goal of epilepsy 

therapy, this can be challenging. Further reductions in seizure frequency can come at the 

cost of burdensome side effects. Refined SUDEP risk assessment scales may be useful in 

deciding which patients to be more aggressive with despite risks of additional medication 

trials, surgery, or neuromodulation. Certainly, mechanisms for SUDEP are likely to be 

heterogeneous, with many factors coming into play in varying combinations. That said, 

cessation of breathing is a primary etiology of SUDEP in many, if not most, cases. Recent 

work to delineate neurotransmitter, circuit, and network mechanisms leading to seizure-

induced respiratory arrest have been fruitful with many potential avenues uncovered with 

which to explore treatments/preventions. Additional recent work has even presented ways 

to circumvent death in some models. As a field, we are getting better at informing patients 

and caregivers about SUDEP, identifying those individuals at highest risk, and implementing 
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tools at hand to attempt to mitigate risk. We need to continue to improve in these realms, 

and also continue advancing research into mechanisms so that we can exploit these to best 

intervene, prevent, and eradicate SUDEP.
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Key Points

• SUDEP is a major cause of death in patients with epilepsy.

• SUDEP rates are comparable in numerous recent population-based studies.

• Mechanisms for respiratory dysregulation caused by seizures and contributing 

to SUDEP are emerging.

• Potential network mechanisms for SUDEP are emerging.

• Sleep-wake state and time of day are important factors in SUDEP.
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