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Abstract

The surface of cells is coated with a dense layer of glycans, known as the cell glycocalyx. The 

complex glycans in the glycocalyx are involved in various biological events, such as bacterial 

pathogenesis, protection of bacteria from environmental stresses, etc. Polysaccharides on the 

bacterial cell surface are the highly conserved and accessible molecules, and thus are excellent 

immunological targets. Consequently, bacterial polysaccharides and their repeating units have 

been extensively studied as antigens for the development of antibacterial vaccines. This review 

surveys the recent development in the synthetic and immunological investigations of bacterial 

polysaccharide repeating unit-based conjugate vaccines against several human pathogenic 

bacteria. The major challenges associated with the development of functional carbohydrate-based 

antibacterial conjugate vaccines are also considered.
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1. Introduction

Pathogens, such as bacteria, viruses, parasites, fungi, etc., are the biggest threat to human 

life.1 The recent COVID-19 pandemic is a clear example. Currently, there are two main 

strategies to address pathogenic infections. One strategy is to treat patients with antibiotics 

or antiviral and antiparasitic drugs. The other strategy is to immunize the human population 

against pathogens via vaccination. Of the two strategies, vaccination is not only effective but 

also economical and long lasting, and has helped control and even eliminate many infectious 

diseases.2, 3 Moreover, the rapid emergence of drug resistance to various antibiotics in the 

past few decades has made the vaccination strategy even more attractive.

The discovery by Edward Jenner in 1796 that humans could be protected against smallpox 

after immunization with cowpox was a historical milestone during the development of 

vaccine concept (Figure 1).4 Since then, different types of vaccines, such as attenuated or 

inactivated vaccines,5, 6 subunit vaccines7–9 and DNA or RNA vaccines,10–12 against various 

human pathogens have emerged. This review is focused on antibacterial vaccines, especially 

the subunit vaccines derived from bacterial polysaccharides and their repeating units.

The concept of carbohydrate-based antibacterial vaccines was first introduced by Avery and 

Heidelberger in the 1920s,13 when they found that the capsular polysaccharides (CPSs) of 

the Gram-positive bacterium Streptococcus pneumoniae were immunogenic.14 In addition, it 

was discovered that CPSs also played a critical role in the serotype specificity of different 

S. pneumoniae strains.15,16 Francis and Tillett further observed that intravenous injections 

of the CPSs derived from various pneumoniae serotypes elicited respective CPS-specific 

antibodies in patients.17 In 1935, after studying the antibody responses induced by type III 

and type VIII pneumococcal CPSs, Finland and Ruegsegger developed the first CPS-based 

pneumococcal vaccine.18 A 6-valent CPS-based pneumococcal vaccine was developed by 

Heidelberger et al. in 1942-1945, which was used to immunize the US air force.19 However, 

the development of antibacterial vaccines, including carbohydrate-based vaccines, stopped 

in the early 1950s due to the great success of antibiotics. It was soon discovered that 

antibiotics were not the panacea for all bacterial infections. Thus, the interest in antibacterial 

vaccines resurged. In particular, the ever-growing bacterial resistance to antibiotics in the 

past few decades has boosted the interest in developing antibacterial vaccines. In 1983, 

Merck introduced the first carbohydrate-based pneumococcal vaccine, PneumoVax, made 

up of purified CPSs from 14 pneumococcal serotypes.20 Presently, the second-generation 

pneumococcal vaccine is composed of 90 pneumococcal CPSs from 23 serotypes.21 Overall, 

carbohydrate-based antibacterial vaccines have contributed significantly to human health and 

welfare.

However, stand-alone polysaccharide vaccines are effective mainly in adult populations. 

They remain deficient in high-risk groups (e.g., children under five years of age) and 
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virtually ineffective in infants (below two years of age), mainly because polysaccharides 

alone cannot elicit strong T-cell dependent immune responses in these people.22 To address 

this problem, carbohydrate-based conjugate (glycoconjugate) vaccines have emerged. Its 

basic concept is to covalently link a highly immunogenic carrier molecule (e.g., a 

protein) to carbohydrate antigens to improve their immunogenicity and T-cell dependent 

immune responses.23, 24 The first bacterial polysaccharide-protein conjugate vaccine against 

Haemophilus influenzae type b (Hib) was approved for clinical use in 1987.25 Since then, 

a series of other bacterial polysaccharide-protein conjugate vaccines have been developed. 

These vaccines have been proved effective both in adults and in children and thus are widely 

used.

Despite the great advancement of conjugate vaccines made up of bacterial polysaccharides, 

these vaccines have their limitations mainly because the polysaccharides produced by 

bacteria are complex mixtures that are difficult to control in quality and in the conjugation 

with carrier proteins (CPs). Consequently, the resultant conjugates are complex and 

ill-defined cross-linked lattices.26–28 To address this issue, currently, great effort has 

been devoted to the synthesis of oligosaccharides containing the repeating units of 

bacterial polysaccharides and applying them to the development of oligosaccharide-based 

antibacterial conjugate vaccines.29 This type of conjugate vaccines that contain synthetic and 

structurally defined carbohydrate antigens can have several advantages, such as controlled 

conjugation chemistry and product quality, reduced contamination, and feasibility to 

perform structural and structure-activity relationship studies and vaccine optimization.30,31 

A successful example in this field is the vaccine made up of fully synthetic oligosaccharides 

of Hib polysaccharides approved by Cuba and other countries for clinical use in 1999.25 

Recently, an oligosaccharide-based vaccine for shigellosis has reached phase II clinical 

trials.32,33 In the literature, there are several reviews about carbohydrate-based vaccines and 

therapeutics,34,35,36,37,38 including a recent review by Adamo et al.39 The present review 

is unique in that it focuses mainly on antibacterial conjugate vaccines made of synthetic 

oligosaccharides and their structure–immunogenicity relationships.

2. Development of Carbohydrate-Based Antibacterial Conjugate Vaccines

2.1 The general structure of carbohydrate-based conjugate (i.e., glycoconjugate) 
vaccines:

A glycoconjugate vaccine is usually composed of three components, a carbohydrate antigen, 

a carrier molecule, and a linker. In the process of vaccine development, the first step is 

to identify the target antigen, which, theoretically, should be antigenic, conserved, and 

exposed on the cell surface to facilitate immune recognition. The next step is to select 

the proper carrier molecule, which should be an immunostimulator to help enhance the 

immunogenicity of the carbohydrate antigen. Finally, a linker is identified for carbohydrate 

antigen and carrier molecule coupling, which should be governed by the conjugation 

chemistry and related reaction conditions.

Based on the properties of the carbohydrate antigens, carrier molecules, and the preparation 

methods of glycoconjugate vaccines, they are divided into three different types (Figure 2). 

One type of glycoconjugate vaccines has polysaccharides derived from natural sources, 
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e.g., bacterial cultures, directly conjugated with CPs (Figure 2a).40 Most FDA-approved 

carbohydrate-based antibacterial conjugate vaccines belong to this type. In this case, 

the polysaccharide antigens are complex mixtures and, more importantly, need to be 

activated by methods to enable their conjugation with CPs,41 which further increases 

the degree of complexity of the polysaccharide mixtures. In addition, the conjugation 

sites for both the carbohydrate antigens and the CPs are uncontrollable. As a result, this 

type of glycoconjugate vaccines is complex and batch-to-batch different. Another type of 

glycoconjugate vaccines has synthetic oligosaccharide antigens linked to CPs, which are 

called semi-synthetic conjugate vaccines (Figure 2b).42–44 In these vaccines, the structure 

of carbohydrate antigens and their linkage forms to CPs are well defined, although 

the protein conjugation sites are usually undefined. The third type of glycoconjugate 

vaccines has synthetic carbohydrate antigens conjugated with synthetic carrier molecules, 

such as lipids, glycolipids,45 glycopeptides,46 oligosaccharides or polysaccharides23 and 

synthetic polymers,47 as well as other synthetic materials,48 which are called fully synthetic 

glycoconjugate vaccines (Figure 2c).49 These vaccines have well-defined structures that 

can be fully characterized by modern analytical techniques, including NMR and MS. This 

review is mainly focused on semi- and fully synthetic antibacterial glycoconjugate vaccines.

2.2 Bacterial carbohydrate antigen:

Bacteria express diverse polysaccharides, such as CPSs, lipopolysaccharides (LPSs) and 

exopolysaccharides (EPSs). CPSs and LPSs are conserved and exposed on the bacterial 

cell surface, making them useful immunological targets for vaccine development. However, 

bacterial polysaccharides are not only species-specific but also strain-specific. For instance, 

the antigenic diversities of bacterial polysaccharides have resulted in 13 meningococci 

serotypes50 and 90 pneumococcal serotypes.51 Therefore, it should be noted that a vaccine 

derived from a specific bacterial polysaccharide is only functional for that specific bacterium 

and strain, and an effective vaccine against an infectious disease may need to be of 

multivalent property, i.e., vaccines derived from the polysaccharide antigens of multiple 

strains of the disease-causing bacterium.

Although bacterial polysaccharides are useful for the development of vaccines, they are 

not necessarily the optimal immunogens, because large polysaccharides may affect the 

interactions of carrier molecules in the resultant glycoconjugates with immune cells. 

Furthermore, although bacterial polysaccharides are large and complex, they are usually 

composed of small repeating units of monosaccharides or oligosaccharides. Most likely, 

the immune system only recognizes some unique epitopes of a polysaccharide, often the 

non-reducing end epitope52 or the epitope containing one to several repeating units,53 

instead of the full glycan. Thus, the glycan length is always one of the concerns in 

the design of carbohydrate-based vaccines. Deciphering the optimal number of repeating 

units of a polysaccharide or glycan length required for immune recognition and vaccine 

development is not easy, because this needs in-depth analysis of the structure-activity 

relationships of carbohydrate antigens, which is challenging. Nevertheless, there is sufficient 

information to suggest that it may not be necessarily “the longer glycans, the better” 

for vaccine development. Moreover, it seems that there is not a golden standard about 

the optimal glycan length as antigens, thus the best oligosaccharide substitute for each 
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specific polysaccharide antigen may need to be determined individually. For example, 

in semi-synthetic Hib vaccine Quimi-Hib, the optimal oligosaccharide epitope ranges 

from six to eight repeating units of the Hib polysaccharide,54 but in other cases, the 

oligosaccharide length varies.55,56,57 In addition, other factors, such as the structural 

uniqueness, frameshift58 and functionalization of carbohydrate antigens59,60,61,62 and the 

epitope stability that may affect the immunogenicity and antigenicity,63 should also be taken 

into consideration during the design and development of carbohydrate-based antibacterial 

vaccines.

2.3 Vaccine carrier:

In glycoconjugate vaccines, carrier molecules also play a critical role in stimulating the 

immune system and enhancing immune responses, especially T-cell dependent immune 

responses, to the targeted carbohydrate antigens. Thus, the carrier molecule needs to contain 

T-cell helper epitopes and be immunologically active. Other properties that a vaccine 

carrier should possess are that it should be safe and easily produced in low cost and 

consistent quality. Among various vaccine carriers, proteins are the most commonly used 

for antibacterial vaccine development. In addition to the necessary properties for carrier 

molecules as mentioned above, proteins contain many and different functional groups, 

such as amino, thiol, carboxylic and hydroxyl groups, which enables various conjugation 

methods. Currently, there are several common CPs, such as mutant cross-reacting material 

(CRM) from diphtheria toxin, diphtheria toxoid (DT), tetanus toxoid (TT), meningococcal 

outer membrane protein complex (OMPC), and H. influenzae protein D (HiD), which are 

all used in licensed bacterial vaccines. Besides these established CPs, many other CPs are 

in preclinical studies or clinical trials.48 For example, recombinant Pseudomonas aeruginosa 
exotoxin A (rEPA) is utilized as a carrier for Shigella O-antigens.64 Clinical results have 

demonstrated the effectiveness of glycoconjugate vaccines, as well as the long-term and 

protective immune responses that they induce. However, it should be noted that CPs can also 

induce specific antibody responses that may supress the immune response to the conjugated 

carbohydrate antigens.65–67 Repeated immunizations using vaccines containing the same CP 

can reduce the effectiveness of vaccination as well. Thus, research to discover new CPs or 

non-protein carrier molecules is important.

2.4 Glycoconjugate vaccine linker:

It has been well established that carbohydrate antigens must be covalently linked to 

carrier molecules to exhibit enhanced immunogenicity. The choice of a proper linker 

between carbohydrate antigens and CPs depends on several factors. First, it should be 

non-immunogenic so that it will not cause unwanted antibodies or immune response. It was 

also shown that strong immune reactions to the linker can supress immune responses to the 

target carbohydrate antigen.68–70 Second, it needs to be bi- or multi-functional, as it has to 

bridge two distinctive biomolecules, i.e., the carbohydrate antigen and the CP. Furthermore, 

the conjugation reactions should be highly efficient and selective, which can help reduce the 

complexity and heterogeneity and achieve desired and consistent antigen loading of resultant 

glycoconjugates. It has been demonstrated that the antigen loading of glycoconjugate 

vaccines can have a big impact on their immunological properties.71–73 Many linkers 

and the associated conjugation methods have been developed for the preparation of glycan-
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protein conjugates.74,75 The selection of a proper linker and conjugation method for a 

vaccine is largely decided by the structure of carbohydrates and sometimes by the CP 

as well. For polysaccharide antigens, their activation method and the resulting functional 

groups dominate the conjugation method since the functionalized sugar units in the 

polysaccharide antigen usually serve as the linker directly. For synthetic oligosaccharide 

antigens, it is flexible to install various functional groups in the synthetic process to facilitate 

specific linkage forms and conjugation methods. In the literature, there are several well-

established methods developed for carbohydrate-protein conjugation, and each method has 

its advantages and limitations.76 Generally, the amino and thiol groups in CPs are frequently 

used for the attachment of carbohydrate antigens. Activated acyl groups, aldehydes or 

alkenes are also introduced to the carbohydrate antigens to enable their coupling with 

protein via chemoselective N-acylation, reductive animation, Michael addition, etc. Other 

conjugation methods involving click reaction and other chemistry are also reported.76

In summary, in the development of antibacterial glycoconjugate vaccines, the selection 

of proper carbohydrate antigens is critical. With polysaccharide antigens, their activation 

method to facilitate the conjugation with CPs is also important, as it will not only decide 

the properties (e.g., the structural integrity and molecular size) of the to-be-conjugated 

carbohydrate antigens but also the linker and linkage form, conjugation chemistry, antigen 

loading, chemical stability, product quality and biological activity consistence and, thereby, 

the immunological properties of the resultant glycoconjugate vaccines. Furthermore, the 

properties of linker and CP also have a significant impact on the immunological properties 

of glycoconjugate vaccines. Therefore, all these factors should be considered and optimized 

during the design and development of new glycoconjugate vaccines.

3. Immunology of Carbohydrate-Based Antibacterial Vaccines

Bacterial polysaccharides are promising targets for the development of glycoconjugate 

vaccines for infectious diseases. In as early as 1930’s, antibodies against pneumococcal 

polysaccharides were already observed,75 and the antibody-mediated immunity was 

found to last at least several months. Ultimately, bacterial CPSs have been developed 

into antibacterial vaccines. However, a major problem for polysaccharide vaccines, or 

carbohydrate antigens in general, is that they are not highly immunogenic and induce only 

poor quality of antibody responses, especially in children, largely due to their inability to 

be properly presented to T cells77 and provoke T-cell dependent immune responses and 

immune memory.78, 79 As shown in Figure 3a, polysaccharide vaccines mainly interact 

with B-cells to elicit quick and arbitrary innate immune responses and generate T-cell 

independent non-specific immunoglobulin M (IgM) antibodies, which have a low affinity 

toward the carbohydrate antigens.80 T-cell independent responses are less robust than 

adaptive immune responses and short-lived. Moreover, even repeated vaccination will not 

establish strong enough immune responses to fight pathogens.81

On the other hand, the covalent coupling of carbohydrates with immunogenic CPs, which 

contain T-cell epitopes, can convert them from T-cell independent to T-cell dependent 

antigens to induce adaptive immune responses involving both B- and T-cells (Figure 

3b).82 Adaptive immunities are antigen-specific, robust, and persistent but take longer 
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time to establish, when compared to innate immunities. In the development of adaptive 

immunity, antigen-presenting cells (APCs), such as dendritic cells (DCs)—the most 

important professional APCs, play a key role. APC presentation of the antigenic epitopes 

of glycoproteins to T-cell enables the cross-linkage of T-cell immunogens with B cell 

receptors (BCRs) to initiate the signalling processes of adaptive immune responses.83 The 

co-stimulatory signals from DCs and macrophages help stimulate B-cell activation and 

maturation into plasma cells and release specific antibodies.84,85 Other B-cells reproduce 

independently, and marginal zone B-cells and non-circulating mature B-cells are segregated 

in the spleen and other lymphoid tissues. Specifically, glycoconjugate vaccines are 

internalized by APCs and processed in endosomes, and the resulting carbohydrate epitopes 

are presented to T-cells along with peptides generated from CP digestion.71,86 These 

epitopes bind to major histocompatibility complex class II (MHC-II) ligand present on the 

T-lymphocyte surface through the peptide portion with the carbohydrate epitopes recognized 

by T-cell receptors (TCRs). The recognition of the glycan epitope with MHC-II ligand 

by CD4+ T-cell receptors and the secreted signaling cytokines help B-cell maturation and 

secretion of carbohydrate-specific high-affinity IgG antibodies and generation of memory B 

cells (MBCs). However, the role of B- and T-cell co-signaling is unclear. A study suggests 

that glycoproteins are processed in B-cells into small glycopeptides that bind MHC-II ligand 

with the hydrophilic glycan exposed to TCRs to interact specifically with carbohydrate-

specific CD4+ cells, elicit T-cell responses, and promote immunoglobulin switching from 

IgM to IgG.87

Of course, there are exceptions to the above scenarios. For example, the meningococcal 

A polysaccharide was observed to elicit immune responses in children and stimulate 

MBCs.88 In addition, zwitterionic polysaccharides (ZPS) also induce T-cell dependent 

immune responses with the zwitterionic epitopes involved in the activation of T-cells. In the 

activation step, MHC-II ligand is needed to present the processed antigens. Subsequently, 

they are recognized by the APCs and B-cells, macrophages, and TCRs.89,90

4. Bacterial Polysaccharide-Protein Conjugate Vaccines

Due to the advantages of conjugate vaccines over polysaccharide vaccines, great efforts 

have been devoted to developing antibacterial glycoconjugate vaccines with natural 

polysaccharides as antigens. As a result, notable advancements have been achieved 

in this field. For example, many antibacterial glycoconjugate vaccines, e.g., Hiberix® 

(Glaxo Smith Kline), Menjugate® (Chiron), PedvaxHIB® (Merck), Prevenar 13® (Wyeth 

Pharmaceuticals), etc., as listed in Table 1, have been approved for clinic use.91 In the 

meantime, many new antibacterial glycoconjugate vaccines are presently at various stages of 

clinical studies.

5. Semi- and Fully Synthetic Carbohydrate-Based Antibacterial Conjugate 

Vaccines

Despite the great success of bacterial polysaccharide-protein conjugate vaccines, they 

still have limitations as noted above.42, 92, 93 As a result, the interest in glycoconjugate 

vaccines containing structurally well-defined carbohydrate antigens, which possess several 
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potential advantages, is growing rapidly. For example, since the first oligosaccharide-protein 

conjugate vaccine against Hib was licensed in the late 1990’s,94 several oligosaccharide-

based conjugate vaccines against different infectious diseases have been developed or are 

evaluated in clinical trials (Table 1).68 Moreover, fully synthetic glycoconjugate vaccines, 

such as that against group C meningitis using monophosphoryl lipid A (MPLA) as the 

vaccine carrier, were demonstrated to exhibit promising immunological properties.49 This 

section is devoted to the review of the progresses made in this specific area.

5.1 Hib vaccine.

Hib is a Gram-negative bacterium in both encapsulated and unencapsulated forms. It causes 

severe infections such as meningitis. Hib used to be a leading cause of bacterial meningitis 

in younger children (up to five years of age) in the USA before the introduction of Hib 

vaccines. Presently, several carbohydrate-based Hib vaccines are commercially available in 

the single form or in combination with other vaccines (Table 1). These vaccines are derived 

from the poly-ribosyl ribitol phosphate (PRP) epitope. Vaccines made up of natural PRPs 

are inconsistent in carbohydrate antigen size and linkage to CPs, and thus exhibit different 

immune responses in the population40,95 Nonetheless, these glycoconjugate vaccines have 

been adopted by many countries and various immunization programs to successfully and 

drastically reduce the number of Hib infections. For example, in the USA, by 1997 

the number of reported Hib cases in children under five years of age had decreased 

by 99%.96 Similarly, in the UK, the frequency of Hib infections in children under five 

years of age reduced from over 20/100,000 to below 1.0/100,000 within three years after 

vaccines were introduced.97 The first synthetic oligosaccharide antigen-based conjugate Hib 

vaccine, Quimi-Hib, developed in Cuba was able to help reduce the cost of Hib vaccine 

significantly.94 Its efficiency is proved to be about 99.7% in children, and it shows an 

excellent safety profile.

Quimi-Hib (1, Figure 4a) comprises of synthetic oligosaccharide antigens with an average 

of seven repeating units of PRP conjugated to TT through a maleimido linker.94 To 

further investigate the appropriate length of PRP oligosaccharides as antigens for the 

development of Hib conjugate vaccines, the Seeberger group synthesized various sizes of 

PRP oligosaccharides by a [2 + 2], [4 + 2], [6 + 2], and [8 + 2] elongation strategy and 

conjugated them with CRM197. Immunological evolutions of the resultant glycoconjugates 

2-5 (Figure 1b) with the Zika rabbit model showed that 2 containing a tetramer of the 

PRP repeating unit was an excellent antigen for developing semisynthetic glycoconjugate 

Hib vaccines.98 On the other hand, the Pozsgay group reported the first total synthesis 

of PRP oligosaccharides up to twelve repeating units,99 among which the octamer and 

dodecamer were linked to bovine serum albumin (BSA) but no immunological results of 

these conjugates were reported.

5.2 Meningitis vaccine.

Meningococci are commensal bacteria in humans and observed in diversity. Some of the 

bacteria cause invasive diseases. For example, Neisseria meningitidis is a Gram-negative 

bacterium and the cause of various infections, predominantly meningococcal meningitis, 

in young children and older adults worldwide.100 One of the significant difficulties in 
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diagnosing meningococcal diseases is that its clinical manifestations are hard to differentiate 

from common and less severe illnesses. To date, 13 serogroups of N. meningitidis have been 

identified based on the chemical composition of their CPSs.101 Among them, six serogroups 

(A, B, C, W135, X, Y) are mainly responsible for invasive meningococcal infections.102 

The global picture of these serogroups is: serogroup W135 (MenW) is mainly found in 

African and South American regions; serogroup X (MenX) is found in some areas of Africa; 

serogroup A (MenA) is found in Asia and Africa, while serogroup B (MenB), C (MenC), 

and Y (MenY) are usually observed in Europe and North America.103

Currently, several vaccines are available for the disease-causing serogroups A, B, C, W135, 

Y of N. meningitidis, but there is no vaccine for serogroup X yet. These vaccines have 

helped dramatically decrease invasive meningococcal infections and associated diseases. 

They are all glycoconjugate vaccines made up of purified polysaccharides derived from 

pathogens.104 There are three licensed quadrivalent meningococcal glycoconjugate vaccines 

for serotypes A, C, Y, and W135 marketed by different manufacturers, i.e., Menveo® 

(MenA/C/W135/Y-CRM197) by GSK, Nimenirix® (MenA/C/W135/Y-TT) by Pfizer, and 

Menactra® (MenA/C/W135/Y-DT) by Sanofi Pasteur. One monovalent glycoconjugate 

vaccine (MenAfriVac) is available for serotype A and three for serotype C. Among 

the monovalent vaccines for serotype C, NeisVac-C® (Pfizer) employs TT as the CP, 

whereas the other two, Menjugate® (GlaxoSmithKline) and Meningtec® (Pfizer), use 

CRM197.105 Because natural polysaccharides are used to produce these vaccines, they are 

heterogenic in respect to antigen, linkage, and conjugation site. However, they are uniform 

in immunogenicity against bacteria of specific serotypes and eligible for all age groups from 

2 months to 55 years. In addition, other licensed monovalent conjugate vaccines against 

serogroups A and C are also available.

As shown in Figure 5, the MenA CPS is composed of repeating →6)-2-acetamido-2-

deoxy-α-D-mannopyranosyl phosphate(→ with about 70–80% O-acetylation of the 3-OH 

group.106 The Pozsgay and Oscarson groups independently reported the synthesis of 

oligosaccharides of MenA CPS.106,107 It was demonstrated that oligosaccharides higher 

than trisaccharide of MenA CPS repeat were unstable due to the hydrolysis of anomeric 

phosphates, which is enhanced by the adjacent NHAc group.108 This explains the 

poor stability of innate MenA CPS in aqueous medium. To alleviate this problem and 

develop stable glycoconjugate vaccines, several groups explored the mimics of MenA CPS 

oligosaccharides. Replacing the ring oxygen atom of the pyranose and/or the anomeric 

oxygen atom with methylene groups led to the stable carbocyclic and 1-C-phosphono 

analogs, which were conjugated with CPs to obtain respective conjugates (Figure 5).109,110 

In vivo studies of CRM197 conjugates 6-8 containing the carbocyclic analogs of MenA 

CPS oligosaccharides revealed that only antibodies induced by the trimer conjugate 8 could 

recognize MenA polysaccharide and exhibit in vitro antibacterial activity, although all other 

conjugates elicited specific antibodies against the synthetic antigens.111 In vitro biological 

studies of the 1-C-phosphono analogs 9-11, which can mimic MenA CPS oligosaccharides 

more closely, showed that these unnatural antigens were recognized by human polyclonal 

anti-MenA CPS antibodies and inhibited the binding of antibodies to MenA polysaccharide. 

This activity was independent of the anomeric configuration of the N-acetyl mannosamine 
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in 9-11 but affected by the carbohydrate chain length.112 Similarly, it was shown that the 

human serum albumin (HSA) conjugates 12-14 of oligosaccharides 9-11 induced T-cell 

proliferation in vitro by 40% at a concentration of 10 μM, in contrast to 28% induced by 

phosphonodisaccharide conjugate at the same concentration, and stimulated specific IgG 

production in vivo.113 These results suggested that the above synthetic analogues of MenA 

CPS oligosaccharides might be useful for developing anti-MenA vaccines.

The MenC CPS is a homopolymer of α-(2→9)-linked sialic acids with irregular 7/8-O-

acetylations (Figure 6). Deacetylated MenC CPS is more immunogenic than the natural 

glycan, but both can elicit protective antibodies with bactericidal activities.114 The Wu and 

Wong group developed a convergent and effective route to synthesize a series of α-(2→9)-

linked sialic acid oligomers 15-20 (Figure 6).115 The Guo group also prepared several 

α-(2→9)-linked oligosialic acids and conjugated them with keyhole limpet hemocyanin 

(KLH).116 In vivo studies showed that the resultant glycoconjugates 21-24 elicited strong 

T cell-mediated immune responses that recognized α-2,9-polysialic acid. Furthermore, the 

synthetic oligosialic acids were found to be more immunogenic than natural polysialic acid.

The synthetic α-(2→9)-oligosialic acids were also coupled with synthetic monophosphoryl 

lipid A (MPLA) to generate glycoconjugates 25-28, which represent the first fully synthetic 

antibacterial vaccines.49 Immunological studies in mice showed that conjugates 25-28 alone 

provoked robust T cell-dependent immune responses comparable to the corresponding 

KLH conjugates. Out of these conjugates, tri- and tetrasaccharide conjugates 26 and 27 
induced a higher titer of antibodies. These results suggested that MPLA was not only 

an excellent carrier molecule for antibacterial glycoconjugate vaccines but also a potent 

adjuvant to construct self-adjuvanting vaccines. The elicited antibodies were able to bind to 

N. meningitidis cells that expressed α-(2→9)-polysialic acid, suggesting the potentials of 

this type of fully synthetic glycoconjugate vaccines.

The MenW CPS is composed of a disaccharide repeating unit, →6)-α-D-Galp-(1→4)-α-D-

Neup5Ac(7/9OAc)-(2→ (Figure 7). To facilitate the development of oligosaccharide-based 

conjugate vaccines against MenW, the Wu group first developed a [2 + n] synthetic strategy 

to obtain oligomers (e.g., monomer to pentamer 29-33a) of the disaccharide repeating 

unit of MenW CPS via stereoselective glycosylation using a disaccharide donor.117 

The synthesized oligosaccharides was conjugated with CRM197, and the immunological 

properties of resultant glycoconjugates 29-33b were evaluated in mice. It was demonstrated 

that conjugates 30-33b induced robust immune responses and the induced antibodies could 

recognize both the di- and the tetrasaccharide epitopes. However, antibodies induced by 

conjugate 29b recognized only the disaccharide epitope but not the tetrasaccharide and 

other longer oligosaccharides. Among these glycoconjugates, antibodies elicited by 32b 
exhibited more potent antibacterial activity. These results imply that the minimum length 

of an oligosaccharide required to represent the characteristic antigenic epitopes of MenW 

CPS is a tetrasaccharide and that the oligosaccharide containing four disaccharide repeating 

units of MenW CPS is a promising candidate antigen for the development of anti-MenW 

vaccines.
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MenX infections spread worldwide, but a significant prevalence is observed in the region of 

sub-Saharan Africa known as the “meningitis belt”.118 For example, the outbreaks of MenX 

infections occur frequently in African counties such as Uganda,119 Niger,120 Kenya,119 

Togo,50 etc. In the past few decades, its occurrence in America, Europe,121 and China122 

is also raising. However, currently, there is no vaccine to prevent MenX. Therefore, many 

studies are focused on developing anti-MenX vaccines.

The MenX CPS is a homopolymer of the →4)-2-acetamido-2-deoxy-α-D-glucopyranosyl 

phosphate-(→ repeating unit (Figure 8). MenX CPSs of varied chain length were coupled 

with CRM197 to form glycoconjugate vaccines (Figure 8). The conjugates induced 

high titers of IgG antibodies in mice, and the elicited antibodies exhibited significant 

bactericidal activities.123 Chhikara et al. developed a synthetic route for MenX CPS 

oligosaccharides for the preparation of semi-synthetic glycoconjugate vaccines.124 Both the 

MenX tetrasaccharide-TT conjugate 34 and trisaccharide-CRM197 conjugate 35 exhibited 

lower immunogenicity than the conjugates of natural MenX CPSs.125 However, when 

the length of the oligosaccharide increased further, the resultant conjugates were able to 

induce immune responses comparable to that induced by the conjugates of natural CPSs. 

Recently, Adamo et al. developed a one-pot chemoenzymatic strategy for the synthesis 

of MenX oligosaccharides.126 This strategy allows for rapid access to complex bacterial 

oligosaccharides or CPS fragments of various lengths under pathogen-free conditions. The 

oligosaccharides were conjugated to CRM197, and the resultant conjugates were evaluated in 

mice. Glycoconjugate 36 induced antibodies comparable to those induced by the conjugates 

of natural CPSs.

5.3 Vaccine against Acinetobacter baumannii.

A. baumannii is a pathogenic aerobic Gramnegative bacterium discovered in 2003 during 

the Iraq War.127 It belongs to the Neisseriaceae family. Its outbreak occurred in Germany in 

2013, and it is multi-drug resistant (MDR), thus it is becoming a global threat. In literature, 

twenty structures128 and >90 serotypes129, 130 of A. baumannii are reported. The major 

component of the EPS of A. baumannii strain 54149 has →3)-[Pse5NAc7NAc-α-(2→6)-

Glcp-β-(1→6)]-Galp-β-(1→3)-GalNAcp-β-(1→ (Figure 9, 37a) as its repeating unit.131 

A. baumannii strain ATCC17978 expresses mainly 37c, consisting of a trisaccharide core 

→3)-α-D-Gal(1→6)-β-D-Glc(1→3)-β-D-GalNAc-(1→ and a triacetylated 2,3-diamino-D-

glucuronate and a GlcNAc residues as branches β-linked to the Gal 4-O- and 6-O-positions 

of the core, respectively. The core trisaccharide is also observed in the EPSs of other A. 
baumannii strains, such as ATCC NIPH146,132 17961,133 SMAL,134 LUH5537,128 KL22 

and PSgc9.135 Several groups are engaged in synthesizing and using the oligosaccharides 

of A. baumannii EPSs as antigens for the design of new glycoconjugate vaccines. For 

example, Li et al. prepared the conjugates (Figure 9) of pseudaminose (Pse) that mimics 

the side chain non-reducing end monosaccharide epitope of the polysaccharide.136 These 

conjugates had different sugar/protein ratios (4.76, 8.27, and 14.34 for conjugates 38-40, 

respectively), aiming to disclose the impact of antigen loading on the immunological 

properties of glycoconjugate vaccines. Pse-BSA conjugate 41 was used as a coating antigen 

to detect anti-Pse-antibodies during immunological studies. All the three conjugates elicited 

glycan-specific IgG antibodies in mice and protected mice from A. baumannii infection. 
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These results suggested that a partial structure of a bacterial polysaccharide antigen, so 

long as its epitope is sufficiently unique, may be sufficient to induce antibacterial immune 

responses and useful for vaccine development.

Recently, the Seeberger group designed and synthesized a series of well-defined mono- and 

oligosaccharide units of A. baumannii ATCC17978 EPS, including four pentasaccharides, 

three tetrasaccharides, four trisaccharides, four disaccharides and one monosaccharides, 

with an aminopentyl linker at the reducing end for microarray printing and protein 

conjugation.137 The study aimed to define the key epitopes and better understand the role 

of the acetyl groups in the tri-acetylated glucuronic fragment of 37c in antibody binding. 

The synthetic glycans were printed onto microarray slides and screened with diseased 

patient sera and a monoclonal antibody (mAb) C8. Among the sixteen glycans, acetylated 

oligosaccharides were specifically recognized by antibodies and constituted the promising 

vaccine candidates. Furthermore, they have also proposed the study of conjugates of these 

synthetic glycans in vivo for development of vaccines against A. baumannii infection.

5.4 Pneumonia vaccine.

S. pneumoniae infections remain a major challenge globally. These Gram-positive bacteria 

mainly cause invasive diseases like pneumonia, septicemia, meningitis, and otitis media in 

newborns or infants. S. pneumoniae bacteria are classified into 97 serotypes based upon their 

CPSs. Among them, the most virulent 20 serotypes cause more than 90% of pneumococcal 

infections.138 In 2016, a worldwide survey showed that S. pneumoniae was the leading 

cause of lower respiratory infection morbidity and mortality, contributing to more than one 

million deaths (1,189,937 deaths) in all age groups.139 About 36% of the global burden of 

pneumonia and 27% of the global burden of otitis media are due to S. pneumonia.

To reduce the disease burden globally, pneumococcal vaccination is crucial, especially in 

underdeveloped countries. Currently, two types of vaccines are available on the market, i.e., 

the polyvalent polysaccharide vaccine PPV23 and the glycoconjugate vaccines Prevnar13® 

and Synflorix®. The most used PPV23 vaccine (Pneumovax®23) is composed of 23 

native CPSs, and it is used to immunize people above 50 years of age. Pneumococcal 

glycoconjugate vaccine (PCV) Prevnar13® contains 13 glycoconjugate vaccines with 

CRM197 as the CP. It is approved for all age groups (infant, children, and adults over 65 

years of age), while Synflorix® (PCV10) contains 10 glycoconjugate vaccines with three 

different CPs, and it is permitted for children under five years old.140 Recently, Merk has 

developed two new 15-valent glycoconjugate PCVs (PCV15-A and PCV15-B), which have 

been verified in phase I and II clinical trials and should be available for vaccination soon.141 

PVC15 uses CRM197 as the CP, and is formulated with aluminum phosphate adjuvant.

A primary concern about these vaccines is that they do not provide protections against all 

serogroups of S. pneumoniae.142 For example, PCV7 is a 7-valent vaccine that only protects 

serotypes 4, 6B, 9V, 14, 18C, 19F, and 23F, while PCV13 protects serotypes 1, 3, 5, 6A, 

7F, and 19A in addition.143 Another concern about the multivalent vaccines is that some 

conjugates have low immunogenicity in the formulation, e.g., the vaccine against serotype 

ST3, or cannot protect some strains with structurally similar polysaccharides, e.g., ST19A 

and 19F.
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To develop more effective PVCs, many research groups have been engaged in establishing 

effective synthetic methods for oligosaccharide segments of S. pneumoniae polysaccharides 

and using them as antigens for the design of novel glycoconjugate vaccines (Figure 10). In 

this respect, serotype 1 (ST1) ZPS is an attractive target due to its unique immunological 

properties. For instance, it is the first known carbohydrate antigen that induces T-cell 

dependent immune responses without conjugation with a CP.144 Several research groups 

have developed synthetic methods for ST1 zwitterionic oligosaccharides for vaccine 

design.66, 145,146,147 To gain a better understanding of the immunomodulatory activity of 

ZPSs, the Seeberger group prepared an ST1 zwitterionic trisaccharide with a thioether 

spacer and conjugated it with CRM197 to obtain glycoconjugate 42.148 It was revealed that 

42 induced a robust antibody response in rabbits comparable to the control vaccine PCV13. 

In addition, the synthetic trisaccharide in 42 was recognized by an antiserum against the 

native polysaccharide.

The Seeberger group also synthesized and explored oligosaccharide-protein conjugates as 

vaccines for S. pneumoniae serotypes ST2 (43), ST3 (44), ST5 (45), ST8 (47), and ST14 

(48) (Figure 10).149 All these glycoconjugates induced high levels of protective antibodies 

against specific S. pneumoniae serotypes. Furthermore, combining these glycoconjugate 

vaccines with commercial PCV13 and PCV10 resulted in robust protective immunities in 

mice. It provides an example of a fully synthetic carbohydrate-based multivalent vaccine in 

combination with conjugates made up of native polysaccharides.

The Kamerling group synthesized a series of protein conjugates, such as 46 (Figure 10), 

of S. pneumoniae serotype ST6B CPS oligosaccharides.150 Immunological evaluations of 

these conjugates in rabbits revealed that they induced high levels of pneumococcal ST6B 

antibodies that could accelerate type-specific phagocytosis. Moreover, the rabbit antisera 

could passively protect mice against pneumococcal ST6B. In addition, tetrasaccharide 

conjugate 46 provoked phagocytic and protective anti-ST6 B antibodies in mice as well.

S. pneumoniae serotypes 19A (ST19A) and 19F (ST19F) can cause pneumococcal diseases 

even after immunization with PCV13. To address this problem, the Morelli151 and 

Seeberger152 groups designed chimeric oligosaccharide-containing protein conjugates as 

candidate vaccines against ST19A and ST19F. Glycoconjugate 49 synthesized by the 

Seeberger group comprised of the repeating units of ST19A and ST19F CPSs (Figure 

10).152 Immunological studies of 49 showed that it induced high titers of antibodies in 

rabbits that were bactericidal to both ST19A and ST19F strains in vitro and protected 

animals from infection in vivo.

In addition, other vaccine carriers or antigen delivery methods are explored for developing 

new anti-S.pneumoniae conjugate vaccines as well. For example, gold nanoparticles have 

been used to construct multivalent vaccines that carried the CPS motifs of different serotypes 

(e.g., ST14 and ST19F).153 Similarly, virus-like particles (VLP) have been utilized as 

carriers along with the carbohydrate antigens of ST3 and ST14 to construct vaccines that 

initiate both B- and T-cell dependent immune responses.154 These new vaccine carriers 

or antigen delivery methods gave positive results and may be further exploited in vaccine 

design.
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5.5 Vaccines against Shigella group bacteria.

In underdeveloped countries, Shigellosis is a common and devastating diarrheal disease 

in the paediatric population—children under the age of five years old. A survey of the 

mortality and morbidity rate caused by Shigella showed that this pathogen was responsible 

for 212,438 deaths and the second leading cause of diarrhea in all age groups (2.69 million 

people) worldwide in 2016.155 Shigella bacteria are Gram-negative and have 50 serotypes, 

falling into four distinct groups, namely, S. dysenteriae (15 serotypes), S. flexneri (15 

serotypes), S. boydii (19 serotypes), and S. sonnei (1 serotype). The strains S. dysenteriae 
and S. flexineri are more infectious and invasive, while S. sonnei is less virulent than 

others.156 S. flexneri 2a (SF2a) is the most virulent and a primary cause of Shigellosis.157

Shigella infections result in the expression of Shiga toxins that can cause severe 

intestinal symptomatology with many complications in humans. However, currently, 

there is no vaccine against Shigella. Most vaccine candidates are still in developmental 

or clinical trial stages.157 SF2a, the most virulent strain, expresses a LPS with 

O-polysaccharide consisting of a branched pentasaccharide repeating unit: →2)-α-D-

Glc-(1→4)-[α-L-Rha-(1→2)-α-L-Rha-(1→3)]-α-L-Rha-(1→3)-β-D-GlcpNAc-(1→.158 To 

develop anti-Shigella glycoconjugate vaccines, Mulard et al. synthesized a series of protein 

conjugates 51-53 having one, two, and three repeating units of the SF2a O-antigen linked to 

TT (Figure 11). Immunological studies of these conjugates in mice showed that they elicited 

robust IgG responses and the immune responses increased with the size of oligosaccharide 

antigens from 51 to 53. Glycoconjugate 53 containing a trimer of the pentasaccharide 

repeating unit was the best vaccine candidate, since it induced specific and long-lasting anti-

SF2a O-polysaccharide antibodies and protected mice from Shigella infection. Currently, 53 
is in Phase II clinical trials (NCT04078022).159

The Mulard group has recently reported a scalable process for the preparation of another 

synthetic glycan-based anti-Shigella conjugate vaccine 54 with TT as its CP (Figure 11).33 

The oligosaccharide antigen in 54 is a trimer of the pentasaccharide repeating unit of SF2a 

O-antigen featuring with nonstoichiometric O-acetylation, which is observed in various 

strains of SF2a.160,161 This synthetic procedure has enabled the scale-up GMP production 

of the conjugate vaccine with uniform glycan/protein ratio. Conjugate 58 has been shown 

to induce bactericidal antibody responses in mice and cleared all toxicity-related criteria. 

Furthermore, the synthetic glycoconjugate vaccine was proved to be stable for at least 66 

months.

S. dysenteriae type 1 (or Shiga Bacillus) is mainly responsible for epidemic dysentery 

and diarrhea diseases in developing countries.162 The LPS expressed by S. dysenteriae 
type 1 is a virulence factor and protective antigen, and its O-specific polysaccharide 

antigen consists of a tetrasaccharide repeating unit: →2)-α-L-Rha-(1→2)-α-D-Gal-(1→3)-

α-D-GlcNAc-(1→3)-α-L-Rha-(1→. Pozsgay and co-workers reported the first experimental 

glycoconjugate vaccines 55-58 (Figure 11) for S. dysenteriae type 1, which were made 

of synthetic oligosaccharide antigens carrying a monomer, dimer, trimer, and tetramer, 

respectively, of the tetrasaccharide repeating unit of the S. dysenteriae type 1 (O-antigen, 

Immunological studies of these glycoconjugates in mice showed that 55 induced a 
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weaker immune response than other conjugates. Conjugate 58 containing the tetrameric 

oligosaccharide antigen was the most immunogenic and provoked high levels of antigen-

specific IgG antibodies that were cross-reactive with S. dysenteriae type 1 LPS. To study 

the impact of the glycan non-reducing end sequence on the immunological properties of 

oligosaccharide antigens and glycoconjugate vaccines, they also synthesized a series of 

oligosaccharides (hexa- to tridecasaccharides) with different non-reducing ends and their 

protein conjugates.163 It was shown that the protein conjugates of glycans with GlcNAc or 

Gal at the non-reducing end elicited the highest levels of anti-LPS antibodies, but still, 

their antigenicity was lower than that of native (O-antigen-protein conjugates.164 Very 

recently, Yin and co-workers accomplished the first total synthesis of the tetrasaccharide 

of S. dysenteriae serotype 10 (O-antigen in a stereoselective manner.165 Additionally, 

corresponding (R)-4,6-O-pyruvylated and non-pyruvylated tetrasaccharides, as well as 

(S)-4,6-O-pyruvylated mannose, were also synthesized and analyzed for their antigenicity 

through glycan microarray screening. The results indicated that the tetrasachharide repeating 

unit is a crucial antigenic epitope of the S. dysenteriae serotype 10 O-antigen. Importantly, 

the direct comparison of native (S)-4,6-O-pyruvylated mannose with its analog (R)-4,6-O-

pyruvylated mannose revealed that this motif was responsible for the antibody-binding of 

the O-antigen. This finding is helpful to understand the biological significance of this rare 

pyruvyl ketal functional group in the existing pathogenic bacterial surface glycans.

5.6 Anthrax vaccine.

Anthrax is caused by a highly lethal Gram-positive bacterium Bacillus anthracis that has 

three well-known strains, Ames, Sterne, and Vollum, among which Amens is the most 

virulent.166, 167 The main virulent factors of B. anthracis are its CPSs and anthrax toxins.168 

B. anthracis spores are refractive to extreme conditions, such as stresses, desiccation 

solvents, high temperature, pressure and pH, UV light and even ionizing radiation.169 These 

properties of B. anthracis ensure its perseverance in the environments. For example, it 

can survive thousands of years in the wet state, and when favourable conditions return, 

the spores become active and undergo germination and growth processes. As a result, B. 
anthracis is a choice for biological weapons. To address the threat of B. anthracis, significant 

efforts have been made to diagnose the disease early and develop anti-anthrax vaccines.

Cell-free vaccines containing the anthrax toxin protective antigen (PA) components have 

been proven safe and effective. On the other hand, glycans in the exosporium nap layer 

of B. anthracis are also extensively explored to identify new antigenic targets. It was 

found that the non-reducing end of its poly-β-L-rhamnose (Rha) constituent is capped with 

a rare sugar, 2-O-methyl-4-(3-hydroxy-3-methylbutana-mido)-4,6-dideoxy-D-glucopyranose, 

known as anthrose (Figure 12). The unique structure of anthrose makes it a useful target for 

anti-anthrax vaccine development. The Seeberger group synthesized an anthrose-containing 

tetrasaccharide and conjugated it with KLH to get conjugate 59 (Figure 12). Its immune-

easy adjuvant (QIAGEN) formulation elicited tetrasaccharide-binding IgG antibodies that 

recognize B. anthracis.170 This work has proven the feasibility of anthrose-containing 

oligosaccharides as antigens for anti-B. anthracis glycoconjugate vaccine development. 

In the meantime, the Boons group prepared several KLH conjugates 60a-d (Figure 12) 

of the anthrax trisaccharide carrying differently acylated anthrose and analysed their 
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structure-activity relationships. This study had disclosed that even the simple N-acetylated 

trisaccharide in conjugate 60 was sufficient to elicit a desired immune response in 

rabbits. More importantly, structure-activity studies demonstrated the significance of the 

N-(3-methylbutyryl) moiety as an antigenic epitope in immune recognition of the bacterial 

spores.171 Djedaïni-Pilard et al. synthesized a simple anthrose-KLH conjugate 61 (Figure 

12) and found that it induced specific immune responses against anthrax spores in rabbits.172 

Other studies gave additional information about the immunological functions of the 2-O-Me, 

4-N-(3-methylbutyryl), and 6-Me groups in anthrose and the poly-Rha moiety.173,174 It 

was shown that all the substituents on anthrose, except for 2-O-Me, were necessary for 

the oligosaccharide antigenicity and anti-spore antibody recognition. Moreover, without 

anthrose, the poly-Rha moiety also induced immune responses against the spores of B. 
anthracis.

5.7 Vaccine against Clostridium difficile.

C. difficile is an anaerobic Gram-positive pathogen. Its spores are essential to cause 

infection and gastrointestinal diseases,175 such as hypervirulent antibiotic-associated 

diarrhea, pseudomembranous colitis, and toxic megacolon in humans.176 Like B. anthracis, 

the spores of C. difficile are robust and dormant, and can survive indefinitely outside their 

hosts. The asymptomatic persistence and resistance of C. difficile to disinfectants have made 

C. difficile infections (CDIs) a serious public health problem.177 C. difficile secretes two 

potent toxins, TcdA and TcdB, which can enormously damage intestinal epithelium to lead 

to diarrhea and colitis.178 In addition, both toxins induce the release of various chemokines 

and cytokines, which causes acute inflammation of the large intestine.179 The exact strains 

of C. difficile are difficult to diagnose; more importantly, they are resistant to antibiotics. 

Therefore, many efforts are directed toward the development of effective vaccines against 

CDI.

In this regard, toxoid-based anti-CDI vaccines are extensively explored, and several are in 

various clinical stages. These vaccines are mainly made of formalin detoxified TcdA and 

TcdB derived from the bacterial culture. Safety concerns and the low yields in large-scale 

production of toxins, stability issues, and other limitations related to storage and so on 

compel people to look for alternatives. Thus, their unique glycans have become targets 

for developing anti-CDI glycoconjugate vaccines. Structural studies on the glycocalyx of 

C. difficile cell revealed three types of important glycans, PS-I (62), PS-II (63), and 

PS-III (64) (Figure 13a).180 Particularly, PS-II is a highly conserved polysaccharide on 

the cell surface of different strains of C. difficile and hence represents a useful target for 

vaccine development.181 Several PS-II oligosaccharides with or without a phosphate group 

at their non-reducing end have been synthesized and coupled with CRM197 via different 

linkers.182, 183 In vivo studies on the resultant glycoconjugates 65-67 (Figure 13b) in mice 

revealed that they were highly immunogenic. Especially, the Seeberger group found that 

66 induced high levels of specific IgG antibodies.183 A comparison between conjugates 65, 

67, and 66 containing oligosaccharides without and with the phosphate group, respectively, 

showed that the negatively charged phosphate was vital for the elicitation of IgG antibodies 

and the recognition of the whole polysaccharide of PS-II. A comparison between conjugates 

66 and 68 containing only one and multiple repeating units of PS-II, respectively, revealed 
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that they induced comparable antibody responses. Therefore, it was concluded that the 

negatively charged hexasaccharide epitope in glycoconjugate 66 should be sufficient for the 

design and development of conjugate vaccines against C. difficile.

In addition, Monteiro et al. discovered that horse sera that contained natural anti-PS-I IgG 

antibodies could detect both the synthetic non-phosphorylated repeating unit of PS-I and the 

native PS-I with a slightly higher affinity for the latter.184 These results further demonstrated 

the potential of phosphorylated glycans in the development of anti-CDI vaccines.

5.8 Brucella vaccine.

The Brucella genus contains ten Gram-negative proteobacterial species, Brucella abortus, 
melitensis, suis, ovis, canis, neotome, microti, inopinata, pinnipedialis, and ceti. Five of 

them cause infections in both animals and human.185 They are facultative intra-cellular 

pathogens that can cause severe zoonotic bacterial diseases like brucellosis.186 Brucella 

species are genetically similar to each other, which makes the diagnosis of human 

brucellosis challenging in the laboratory and clinic.187 Many efforts have been devoted 

to developing new tools and methods to identify brucella infections. Furthermore, treating 

human brucellosis by antibiotics is a lengthy and costly process. Thus, vaccination is 

considered the best alternative to fight this disease, although currently no anti-brucellosis 

vaccine is available.

To identify proper antigens for the design of vaccines against brucella, its DNA sequences 

and surface protein and carbohydrate epitopes have been extensively analyzed. It was found 

that the brucella cell wall contains a unique LPS with the O-antigen composed of a rare 

sugar, 4,6-dideoxy-4-formamido-α-D-mannopyranose (Rha4NFo), in two distinctive linking 

patterns, known as antigen A and antigen M (Figure 14).188 Antigen A is composed of only 

a-1,2-linked Rha4NFo, which forms the long inner sequence of O-antigens, and the shorter 

antigen M has an α-1,3-linked D-Rha4NFo after every four α-1,2-linked D-Rha4NFo units, 

which forms the cap of O-antigens.189 It was found that both antigen A and antigen M were 

virulent.190

The O-antigens of Brucella are structurally unique, and this results in its complex serology. 

Since the antibodies to the Brucella O-antigens are useful for the diagnosis of infections, 

the ideal vaccine candidates should be built upon a protective epitope that does not interfere 

with the diagnosis. Early structural studies established that two epitopes, A and M, exist 

in the O-polysaccharide. The A epitope is a 1,2-linked homopolymer of 4,6-dideoxy-4-

foramido-α-D-mannopyranose,191 and the M epitope is 1,3-linked.191, 192 It was later 

realized that, in fact, the O-polysaccharide consists of α–1,2-linked polysaccharide capped 

by a 1,2-/1.3-/1,2-linked tetrasaccharide sequence.189 Prior to these definitive structural 

studies, a series of well-defined oligosaccharides 69-75a (Figure 14) were designed and 

synthesized to represent the structural epitopes of antigens A and M in different settings.193 

For example, 69a was considered as a mimic of mainly antigen M, while 70a contained the 

epitopes of both antigens A and M.

Oligosaccharides 69-75a (Figure 14) and other structures were used to probe mAbs raised 

against the whole bacteria.194 With BSA conjugates 69b and 70b as the probes, two 
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mAbs, YsT9-1 and Bm 10, were discovered in animals. It was demonstrated that the 

hexasaccharide antigen 69a preferentially bound the M antibody while the nonasaccharide 

antigen 70a bound A- and M-antibodies in equal affinity. Further studies using conjugates 

71-74b as the probes showed that the M-type disaccharide 71Da and tetrasaccharide 73a 
could detect antibodies in the sera of human and animals infected with B. suis and B. 
abortus. Both conjugates 71Db and 73b had strong binding to M-specific mAbs and weak 

to A-specific mAbs. Glycoconjugate 75 with an α-1,2-linked hexasaccharide was prepared 

and shown to elicit A-specific antibodies that also recognized M-type oligosaccharides 71a 
and 73a.193 This result suggested that a-1,2-Rha4NFo may represent the epitopes of both 

A- and M-antigenic serotypes and, thus, be useful for the development of broadly applicable 

anti-Brucella glycoconjugate vaccines.

However, these reports preceded the correct structural elucidation of the Brucella A and M 

epitopes by Vinogradov and co-worker189 and illustrated the hazard of conducting synthesis 

without full knowledge of the complete structure.189,193 Subsequent publications employed 

the structure identified by Kubler-Kielb and Vinogradov and established the structural basis 

for understanding the fine specificity of mAbs and polyclonal antibodies (pAbs) that bind 

the M antigen. This resulted in the discovery of a disaccharide that shows considerable 

potential as a diagnostic antigen for the detection of brucellosis in human and animals.195 

The ability to create discrete O-polysaccharide antigens identified an O-polysaccharide 

epitope equally common to all Brucella abortus and Brucella melitensis strains but unique to 

Brucella. The previously untapped diagnostic potential within this key diagnostic structure 

also holds significance for the design of brucellosis vaccines and diagnostics that enable the 

differentiation of infections from vaccinated animals.196

Currently available whole cell vaccines induce anti-A and M antibodies and thus infected 

animals cannot be differentiated from vaccinated animals as both produce A- and M-specific 

antibodies. It was hypothesized that chemical synthesis of a pure A vaccine would offer 

unique identification of infected animals by a synthetic M diagnostic antigen that would not 

react with antibodies elicited by the vaccine. TT conjugates of two forms of the A antigen, 

hexasaccharide 74a and heptasaccharide 75b linked to TT via the reducing and non-reducing 

terminal sugars, respectively, were synthesized and explored as vaccine candidates. Mouse 

antibody profiles to these immunogens showed that, to avoid reaction with diagnostic 

M antigen, it was essential to maximize the induction of anti-A antibodies that bind 

internal oligosaccharide sequences and minimize production of antibodies directed toward 

the non-reducing monosaccharide. This objective was achieved by conjugation of Brucella 
O-polysaccharide to tetanus toxoid via its periodate-oxidized non-reducing monosaccharide 

moiety, thereby destroying terminal epitopes to focus the antibody response to internal A 

epitopes. This established a method to resolve the decade-long challenge of how to create 

effective brucellosis vaccines without compromising diagnosis of infected animals.188, 197

5.9 Vaccines against Burkholderia pseudomallei and B. mallei.

B. pseudomallei (Bp) and B. mallei (Bm) are two highly virulent Gram-negative bacteria, 

which are serious threat to human and animal lives.198 Bp and Bm are sporadically 

found in tropical and subtropical regions of the world, and if infected patients are left 
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untreated, the fatal rate is up to 50%.199 Bp causes serious melioidosis, and Bm causes 

glanders in solipeds, both leading to death. These diseases are difficult to diagnose as 

their clinic symptoms are multifaceted, from skin abscess to acute pulmonary infection and 

fulminating septicemia. Moreover, both bacteria are CDC “Tier 1” select agents because 

of their high infectivity via inhalation, low infectious doses, and potential for misuse 

as biothreat agents. Antibiotics can be used to control these diseases, but not entirely 

due to drug resistance. However, currently, there is no approved prophylactic vaccine for 

these infections. Therefore, the development of effective countermeasures to combat these 

diseases, including vaccines, is of utmost importance.

The attractive outer surface LPS O-antigens of Bp and Bm (76a and 76b, respectively) as 

targets for the development of vaccines are depicted in Figure 15. Both O-antigens are linear 

polysaccharides with the backbone composed of a disaccharide repeating unit →3)-6-deoxy-

α-L-Tap-(1→3)-β-D-Glc-(1→, with 2-O-acetylation of the talose (Tal) residue. However, 

their non-reducing end capping disaccharide is distinctive since it contains a unique 

methylation and acetylation pattern with the terminal Tal residue and this pattern varies from 

species to species. It has been shown that, in Bm, the terminal Tal residue is 3-O-methylated 

and 2-O-acetylated, whereas it is also O-4-acetylated in Bp.200

To study the significance of O-acetyl and O-methyl modifications for the immunology of Bp 
and Bm LPSs and for the recognition of Bp and Bm by mAbs obtained with vaccinations, 

Gauthier et al. synthesized a library of di- and trisaccharides containing minimal structures 

of all reported acetylation and methylation patterns associated with Bp and Bm LPS O-

antigens and coupled them with CRM197 to afford glycoconjugates 77a and 77b (Figure 

15).201 They used the synthetic conjugates to characterize the minimal epitopes required for 

binding with a series of Bp and Bm LPS-specific mAbs, which were passively protective in 

mice models of melioidosis and glanders. It was demonstrated that Bp and Bm LPS-specific 

mAbs could bind to the terminal sugar residues of the O-antigens. Furthermore, immunizing 

mice with conjugate 77a containing a Bm-like disaccharide elicited a high level of antibody 

response that protected mice from the infection. In contrast, conjugate 77b with a Bp-like 

disaccharide could not induce a strong antibody response in BALB/c and C57BL/6 mice. 

Recently, the same group synthesized two larger oligosaccharides, 78a and 78b (Figure 15), 

comprising both the internal and terminal epitopes of Bp and Bm O-antigens.202 These 

Bp and Bm-related tetrasaccharides exhibited high reactivity towards the serum of Thai 

melioidosis patients and the similar antigenicity as native Bp O-antigen. These findings 

suggested that tetrasaccharides 78a and 78b could mimic the epitopes of Bp and Bm 
O-antigens and be useful antigens for the development of functional oligosaccharide-based 

conjugate vaccines against melioidosis and glanders.

On the other hand, Scott et al. synthesized a Bm CPS-associated linear pentasaccharide 

of β-(1→3)-linked 2-O-acetyl-6-deoxy-D-manno-heptopyranose.203 Its conjugate with the 

nontoxic Hc-domain of tetanus toxin (HcTT), namely 79 (Figure 15), was shown to elicit 

IgM and IgG antibodies, which recognized the native CPS and effectively protect against B. 
pseudomallei (strain K96243) in a mouse model. In addition, recently, Gu et al. developed 

an efficient strategy to access various oligosaccharide analogs of Bp and Bm CPS in a large 

scale. Using this strategy, they prepared a series of mono-, di-, tri-, and tetrasaccharides of 
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Bp and Bm O-antigens with and without 2-O-acetylation and coupled these oligosaccharides 

with CPs to afford glycoconjugates 80a-h and 81a-h.204 The CRM197 conjugates 80a-f 
were found to elicit robust antigen-specific T-cell dependent IgG antibody responses, 

demonstrating its desirability as a new vaccine candidate. Comparing the immunological 

properties of 80a-d and 80e-f containing 2-O-acetylated and deacetylated oligosaccharides, 

respectively, led to a conclusion that the acetyl groups at the oligosaccharide 2-O-position 

had a rather small impact on their immunogenicity. The study further reveals that gly 

coconjugates 80c and 80g are the most immunogenic among all synthetic conjugates and are 

promising vaccine candidates for BP and BM.

5.10 Cholera vaccine.

Cholera is an acute watery diarrheal disease caused by the pathogenic Gram-negative 

bacterium Vibrio cholerae.205 Cholera causes widely publicized epidemics and have an 

especially large burden in sub-Saharan Africa and South Asia countries. Thus, it is a 

challenge to the public health in many parts of the world.206, 207 According to the World 

Health Organization (WHO), in 2018, 34 countries reported a total of 1,227,391 cholera 

cases and 5654 deaths, with case-fatality rate (CFR) of 0.6%.208 Current cholera vaccines 

are oral, either attenuated or killed whole cell vaccines with or without the cholera toxins B 

subunit (CtxB).209 Although the existing cholera vaccines are able to control the pandemic 

of infection but they have limitations. For example, they cannot effectively protect younger 

populations, the major health tension in many cholera-endemic countries.210 Therefore, it is 

necessary to develop new and effective vaccines that can provide high-level and long-term 

immunity.

Over 200 serogroups of V. cholerae have been identified, and toxigenic strains of O1 

and O139 are the major causes of epidemic diseases. V. cholerae O1 strain has two 

serotypes, i.e., Ogawa and Inaba, which are classified based on the structures of their LPS 

O-antigens, which are linear homopolymers of α-1,2-linked 3-deoxy-L-glycero-tetronamido-

D-perosamine with or without a 2-O-methyl group on the non-reducing end perosamine 

moiety (Figure 16). The Ogawa serotype LPS O-antigen has been exploited for the design 

and development of cholera O1 vaccines. For example, the Kovac group has been engaged 

in developing synthetic methods to access the O-antigen oligosaccharides of V. cholera 
equipped with a squaramide linker.211,212 The BSA conjugates (Figure 16) of these synthetic 

antigens were immunologically studied to reveal that only the hexasaccharide conjugate 

83c showed the vibriocidal humoral response, suggesting that shorter oligosaccharides 

lacked the required epitope. It has also been found that conjugate 83c with the lowest 

carbohydrate loading provided a higher protective capability in mice.213 Furthermore, they 

compared immunologically the P. aeruginosa rEPA conjugates of Ogawa and Inaba serotype 

O-antigen oligosaccharides and found that the conjugates of Ogawa oligosaccharides 

boosted Inaba-primed mice, whereas the conjugates of Inaba oligosaccharides could not 

boost Ogawa-primed mice. This result implies that Ogawa and Inaba LPSs contain different 

immunodominant epitopes.214

The first emergence of a new V. cholerae serotype O139 was noticed in the southern part 

of India in 1992 and becomes the non-O1 V. cholera serotype to cause epidemic cholera.215 
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V. cholerae O139 possess a high molecular weight CPS, in distinctive composition from the 

LPS antigen.216 This O139 CPS consists of uniquely branched hexasaccharide 88 (Figure 

16), which features two units of a rare deoxysugar, 3,6-dideoxy-l-xylohexose (colitose), and 

a 4,6-cyclic phosphate group on the Gal unit. The Kovác group completed the first chemical 

synthesis of the fully protected oligosaccharide that is equipped with linker, making it ready 

for conjugation to CPs.217 Later on, an alternative synthesis of the hexasaccharide of O139 

antigen and its ester form was reported, which were then coupled with BSA via squaric acid 

chemistry to generate glycoconjugates 89a-c that were immunologically investigated.218

5.11 Tuberculosis vaccine.

Tuberculosis (TB) is a contagious, fatal, and devastating disease caused by bacillus 

Mycobacterium tuberculosis (Mtb). It is one of the leading causes of human death. The 

Global Tuberculosis Report 2021 states that a total of 1.5 million people died from TB in 

2020 worldwide.219 For TB treatment, antibiotic drugs, such as rifampin, pyrazinamide 

etc., have been proven to be effective, but prolonged regimens of multiple antibiotic 

treatments result in multiple-drug resistance.220 Moreover, TB and HIV co-infection is a 

huge problem.221 Therefore, TB is an important burden of the health care system worldwide.

To control TB, a safe and effective vaccine is highly desired. Currently, the most broadly 

used vaccine for the protection against TB, especially in children, is Bacilli Calmette-Guerin 

(BCG). However, the efficacy of this vaccine is wildly variable (from 0 to 80%).222 

Therefore, other approaches have also been explored for vaccine development. For example, 

attenuated auxotrophic strains of M. tuberculosis,223 DNA vaccines,224, 225 and sub-cellular 

(protein and peptide antigens) vaccines,226 have been investigated. Recent advancement in 

glycomics and accumulated information on the carbohydrate antigens of M. tuberculosis 
bacilli allow a new view on the development of carbohydrate-based anti-TB vaccines.

The cell envelope of M. tuberculosis consists of mainly three distinguished components, 

the plasma membrane, the cell wall core, and the outer layer, while its outer surface 

is covered by a thick layer of complex carbohydrates.227,228 Within the bacterial 

wall envelope, mycolic-arabinogalactan (mAG) complexes and lipoarabinomannan (LAM)-

related glycolipids are the two major constituents,229 which protect the bacteria and assist 

their survival.230 Furthermore, LAMs are also implicated in the immunogenicity of M. 
tuberculosis and have been shown to inhibit T-cell activation231 and various microbicidal 

activity.232 Therefore, LAMs are excellent targets for vaccine development.

As shown in Figure 17, LAMs contain a phosphatidyl myo-inositol (PI) anchor that is 

non-covalently associated with the plasma membrane of M. tuberculosis.229 The PI unit 

is extended at the inositol 2-O-position with an α-mannose (Man) residue to generate 

phosphatidylinositol mannose known as PIM1. Adding another Man unit to the inositol 

6-O-position of PIM1 leads to PIM2, and adding more α1,6-linked Man residues to 

the 6-O-Man of PIM2 gives PIM3 and PIM4. Further extension of the sugar chain 

from PIM4 is diverse. For examples, a-1,2-linked Man residues are added to PIM4 to 

form PIM5 and PIM6. PIM6 and more complex PIMs serve as key intermediates for 

the biosynthesis of polysaccharides, such as LAMs and ManLAMs, through a series of 

enzymatic mannosylation and arabinosylation.233, 234 The exact structures of the mannan 
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and arabinan polymer of the LAM backbone still remain unclear but the glycan structures of 

PIMs are well characterized.235, 236 Earlier studies have confirmed the crucial role of α-1,3, 

α-1,5, and β-1,2-linked oligoarabinofuranosyl motifs of LAMs in the immunological events 

related to mycobacterial infections.237–239 Owing to the interesting biological properties of 

LAMs, significant efforts have been devoted to the synthesis of related structures, such as 

mycobacterial PIMs, lipomannan (LMs), and LAM.240,241

Here, we will only cover the synthetic studies on LAM-related oligosaccharides and 

their conjugates that have been subjected to immunological studies as TB vaccines. The 

Seeberger group has chemically synthesized several PIM derivatives and investigated their 

activities as potential adjuvants or antigens for vaccine development.242 All of the synthetic 

PIMs contained a thiol group that enabled their immobilization onto microarray chips and/or 

conjugation with carrier molecules. Conjugation of the synthesized oligosaccharides with 

KLH through the thio-linker gave conjugates 90b-g (Figure 17). Biological studies showed 

that PIM5 and PIM6 has the highest binding affinity to dendritic cell-specific intercellular 

adhesion molecule-grabbing nonintegrin (DC-SIGN) receptor. Moreover, the PIM-KLH 

conjugates were proved as strong immunostimulators during the immunization of mice. 

PIM6 conjugate 90g induced a marked increase in anti-KLH antibodies compared to KLH 

alone. The adjuvant property of PIM6 was also confirmed by measurement of the cytokine 

production.

To facilitate development of LAM-based TB vaccines, Guo and Gu established an efficient 

method to synthesize LAM arabinofuranosyl oligosaccharides, and then conjugated them 

with BSA and KLH via a dicarboxyl linker (Figure 18).243 The resultant glycoconjugates 

91-93a were immunologically evaluated with conjugates 91-93b as coating antigens. It 

was found that all the synthetic glycoconjugates could elicit carbohydrate antigen-specific 

immune responses. Remarkably, 92a induced higher antibody titers than 91a and 93a. 

Overall, these studies have validated that LAM oligosaccharides are useful epitopes for TB 

vaccine development.

The Guo and Gu group also conjugated a LAM tetrasaccharide antigen with MPLA at its 6’-

O- and 1-O-positions to get conjugates 94 and 95, respectively (Figure 18), as fully synthetic 

glycoconjugate vaccines. They anticipated these conjugates to have self-adjuvanting activity, 

and immunological comparison of the two conjugates was expected to also reveal the 

impact of conjugation sites to MPLA on the immunological properties resultant conjugate 

vaccines.244 It was found that both conjugates induced strong antibody responses against 

LAM compared to the mixture of tetrasaccharide and MPLA. Furthermore, 6’-N-linked 

MPLA-conjugate 94 induced significantly higher IgG titer than corresponding 1-O-linked 

MPLA-glycoconjugate 95. The outcome of this study proved the vital role of MPLA as a 

vaccine carrier molecule and as a self-adjuvant and the influence of linkage site between 

carbohydrate antigen and MPLA on their immunological properties.

In addition to vaccine development, early and easy diagnosis of TB is also a curial 

step in the control of TB spread. This relies on the specificity and sensitivity of tests. 

Previous studies on TB diagnosis have shown that anti-LAM IgG antibodies are present 

in most patients and LAM-related arabinofuranosyl oligosaccharides can selectively bind 
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to anti-LAM antibodies. Therefore, anti-LAM antibodies are considered as useful tools for 

TB diagnosis.245 As a result, several groups have synthesized protein conjugates of LAM 

oligosaccharide to investigate their application to TB diagnosis.246

For example, the Kononov group synthesized two LAM arabinofuranosyl hexasaccharide 

conjugates 96a and 96b (Figure 19) employing MPB-64 and Rv0934 recombinant 

protein as carriers, respectively, and examined them as antigens for serological assays of 

TB.246 These conjugates bound to the targeted antibodies. A series of α-linked linear 

oligoarabinofuranosides with a 4-(2-chloroethoxy)phenyl aglycon were also synthesized 

and coupled with BSA to get glycoconjugates 97a-c, which are useful for biological 

study and application in TB diagnosis and vaccine development.247 The Bundle group has 

developed the biocompatible Copovidone polymer as a non-protein carrier for conjugation 

with carbohydrate epitopes and investigation of antibody binding.248 It was discovered that, 

the polymer-based glycoconjugate 96d showed similar binding properties as BSA conjugate 

96c. Some important features of the copovindone conjugates are that the glycan is stable 

to acid and the assay plate can be reused up to 3 times without any degradation in quality. 

In addition, Derda et al. linked this LAM hexasaccharide to several peptide carriers derived 

from phage display library.249 The resultant glycoconjugates 96e-h were utilized as ligands 

for selective detection of anti-LAM antibodies generated from mycobacterial infection. This 

study has demonstrated the potential of structurally defined LAM oligosaccharide-peptide 

conjugates as diagnostic reagents for active and latent tuberculosis.

5.12 Group A streptococcus vaccine.

Group A streptococcus (GAS) is a Gram-positive bacterium that can cause a wide 

spectrum of clinical syndromes.250 The severe infections range from pharyngitis, cellulitis, 

and pyoderma to necrotizing fasciitis, sepsis, pneumonia, and streptococcal toxic shock 

syndrome.251 Annually, over half a million people die from GAS infections.252 The 

economic burden from these infections in both developed and developing countries is 

significant. GAS infections are usually treated with antibiotics, but drug resistance has 

become a major issue. To develop GAS vaccines, many virulent components of GAS have 

been identified as potential targets. Among them, the cell wall M protein is one of the 

leading candidates and several M-protein vaccine candidates have entered clinical trials.253 

However, a major concern about these vaccines is immunological safety due to the cross-

immune reaction with human tissues.254, 255 Therefore, other GAS cell surface components, 

such as other surface proteins like C5a peptidase,256, 257 toxins and polysaccharides,56, 258 

have been considered as attractive alternatives for GAS vaccine development.

One of the major polysaccharides on the cell surface of GAS is 98 (Figure 20), 

composed of a branched trisaccharide repeating unit. The Pinto group has explored the 

potential of this polysaccharide for vaccine development. Accordingly, they prepared several 

oligosaccharides and linked them to CPs to get glycoconjugates that were evaluated as 

GAS vaccines.259 Their results indicated that the branch and size of the oligosaccharide 

antigens are central elements of the epitope recognized by both rabbit polyclonal and 

mouse monoclonal antibodies that bind to native polysaccharide antigens.259–262 Moreover, 

synthetic hexasaccharide-TT conjugate 99 containing in average 30 hexasaccharide haptens 
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per TT molecule elicited specific antibodies in mice and response surge with booster 

immunization, suggesting immunological memory.263 This study validated glycoconjugate 

99 as a promising GAS vaccine candidate.

Costantino and co-workers264 synthesized a series of oligosaccharides of this cell wall 

polysaccharide of different chain lengths (hexa- vs nonasaccharides) and non-reducing end 

terminal sequences, and coupled them with CRM197 to get conjugates 100a,b and 101a,b 
(Figure 20). The immunoprotective efficacies of these semi-synthetic conjugate vaccines 

were evaluated by in vitro opspnophagocytosis assays. It was disclosed that conjugates 100 
and 101 displayed equal protections in mice. Their studies further indicated the potential of 

oligosaccharide-based anti-GAS conjugate vaccines.

The Guo and Gu group69, 265 designed and synthesized a series of GAS oligosaccharide-

protein conjugates 102-104a-c (Figure 20) to systematically examine the structure-activity 

relationships of GAS oligosaccharide-based conjugate vaccines. The streptococcal C5a 

peptidase (ScpA)-193 conjugates 102a-c of GAS oligosaccharides were specially designed 

as bivalent vaccines to boost immune responses against both the cell wall polysaccharide 

and ScpA. Immunological studies in mice revealed that Scp193 conjugates 102a-c elicited 

robust antibody responses specific to not only the carbohydrate but also ScpA, suggesting 

ScpA as a promising target antigen for the development of anti-GAS vaccines. Their results 

indicate that nanasaccharide-ScpA193 conjugate 102c is a hopeful GAS vaccine candidate. 

In addition, the CRM197 conjugates 103a-c and the TT conjugates 104a-c induced even 

higher titers of antibodies, suggesting the influence of CPs on the immunological properties 

of glycoconjugate vaccines.

5.13 Vaccine against Group B streptococcus:

Since the early 1970’s, group B Streptococcus (GBS), a Gram-positive bacterium, has 

been one of the major concerns of bacterial infections in neonates and pregnant women. It 

causes many severe diseases, such as sepsis, meningitides, pneumonia, abortion, etc.,266–268 

and S. agalactiae is one of the strains mainly responsible for morbidity.269, 270 Globally, 

about 18% of pregnant women are colonized by GBS,271 which has remarkably increased 

the infection risk of pregnant women and babies. In 2015, GBS-caused diseases affected 

319,000 newborns and resulted in 90,000 deaths, as well as up to 3.5 million preterm births 

and around 57,000 fetality.272 The preventive measures aimed to reduce the risk of invasive 

GBS diseases in infants have been focused on intrapartum antibiotic prophylaxis (IAP).273 

However, IAP is effective for early-onset GBS diseases but cannot prevent late-onset GBS 

diseases. Consequently, effective vaccines against GBS are highly desirable.

GBS isolates from humans express unique CPSs as their major virulence factors to support 

their evasion of the host defense mechanisms.274 Based on the structures of their specific 

CPSs, GBS is classified into ten serotypes, including Ia, Ib, II, III, IV, V, VI, VII, VIII, and 

IX (Figure 21).275,276 Meta-analysis data revealed that five serotypes, including Ia, Ib, II, III 

and V, account for the vast majority of GBS infections.277 Most GBS CPSs are composed 

of Glc, Gal, GlcNAc, and Neu5Ac, which are differently arranged with diverse branches 

that are typically terminated with a Neu5Ac residue. These structurally unique CPSs can be 

useful immunotargets for the development of GBS vaccines. However, the oligosaccharide 
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repeating units of GBS CPSs, especially their densely branched oligomers, are challenging 

synthetic targets. Therefore, many research groups have been focused on the synthesis of 

GBS oligosaccharides,39 as well as their application to vaccine developmemt.268, 273, 277, 278 

This is a huge subject, hence we have to limit our discussion on only a few examples 

to demonstrate the recent development in the synthesis and immunological evaluations of 

oligosaccharide-based conjugate vaccines against GBS.

As depicted in Figure 22, Adamo et al. synthesized glycoconjugates 116-119 containing 

oligosaccharides of different lengths and frameshifts of the repeating units of GBS serotype 

III CPS, with CRM197 as the CP.279 Both glycoconjugates 117 and 119, but not 116, could 

bind to polyclonal antibodies derived from anti-GBS serotype III murine sera. This result 

suggests that the branching motif β-linked to the GlcNAc 6-O-position is important for 

antibody recognition. STD-NMR and X-ray studies further implicate that a hexasaccharide 

(shown in 119) spanning two repeating units of the native CPS is responsible for interactions 

with a protective mAb.280 Studies on CRM197-conjugates carrying 2 to 6 repeating units 

of GBS CPS III, obtained from degradation of natural polysaccharides, suggest that an 

oligosaccharide containing 2 repeating units is enough to represent the antigenic epitope 

of GBS CPS III.281 Moreover, hexasaccharide conjugate 119 was able to elicit functional 

immune responses comparable to that induced by the native CPS conjugates. These results 

have confirmed that the hexasaccharide is the minimal GBS III CPS epitope as a functional 

antigen for synthetic conjugate vaccine development.282 In addition, they found that the 

oligosaccharide loading degree of glycoconjugate vaccines also has a significant impact 

on their immunological properties, and a high loading is required to elicit robust immune 

responses probably due to multivalent effects.281

Recently, the Guo group reported a chemical synthesis of the pentasaccharide repeating 

unit of GBS serotype Ia CPS,283 as well as a decasaccharide representing a dimer of the 

repeating units of GBS Ia CPS. Subsequently, the synthetic oligosaccharides, both monomer 

and dimer, were conjugated with CRM197 and HSA to generate glycoconjugates 120a-d 
(Figure 22). The CRM197 conjugates 120 and 120c were immunologically investigated in 

mice, both induced robust IgG and IgM antibody responses. In addition, the antibodies 

elicited by these conjugates were cross-reactive, suggesting the potential of the synthetic 

oligosaccharides as antigens for vaccine development.

The cell glycocalyx of GBS is complex. Another unique and group-specific polysaccharide 

on GBS cell surface shared by all serotypes is comprised of a rhamnose-rich oligosaccharide 

interspaced with a glucitol phosphate.284, 285 Each repeating unit is made up of five 

L-rhamnose, one D-N-acetylglucosamine, one D-galactose, and one D-glucitol residues 

(Figure 23). The repeating units are linked through a phosphate diester group between the 

glucitol residue and the 6-O-position of the galactose residue. This unique polysaccharide 

plays a key role in GBS cell growth and immunological property. However, this 

polysaccharide is difficult to isolate from natural sources in homogeneous form and 

sufficient quantity, which hinders its potential application.286, 287 Recently, the Codee 

group reported the synthesis of several oligosaccharides of this polysaccharide and coupled 

them with CPs to generate conjugates 121-123a,b (Figure 23).288 CRM197 conjugates 

121-123a were immunologically evaluated, and the results showed that each conjugate 
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could elicit a specific immune response and the induced antibodies were cross-reactive with 

the other oligosaccharides. Immunization of mice with conjugate 123a that contained a 

large oligosaccharide elicited antibodies that recognized and bound the bacterium. It was 

also demonstrated that the glycoconjugates elicited functional immune responses against 

different GBS serotypes. Therefore, these oligosaccharides are identified as promising 

antigens for the development of multivalent vaccines against all clinically relevant GBS 

serotypes such as Ia, Ib, II, III, IV, and V.

6. Concluding Remarks

Prophylactic vaccines are useful tools to control infectious diseases and prepare people 

against epidemic situations.289 In history, vaccines have helped successively restrain and 

exterminate many fatal infectious diseases, such as smallpox, polio, rubella, etc.290 The 

power of vaccine has been demonstrated again during the recent pandemic of COVID-19. 

Therefore, vaccination is considered the most effective and cost-efficient platform against 

infectious diseases. Among various technologies for vaccine development, glycoconjugate 

vaccines are attractive because carbohydrates as antigens are abundant and exposed on 

the cell surface for the recognition by the host immune system, highly conserved on 

bacterial cells, and essential virulence factors for bacterial survival. In this regard, the 

unique polysaccharides on the bacterial cell surface are particularly useful. As a result, many 

bacterial polysaccharides and their protein conjugates have been successfully developed into 

vaccines and used in clinic to control various bacterial infections. However, as discussed 

earlier, these vaccines still have their limitations, and hence conjugate vaccines based on 

oligosaccharide analogues of bacterial polysaccharides have been actively pursued in the 

past decades. Some of the oligosaccharide-based vaccines have been approved for clinical 

use and more are in clinical trial stages.

Despite these great advancements, there are still a number of hurdles remaining in the 

field. Particularly, to design and develop effective glycoconjugate vaccines, it is necessary 

to know the structural epitopes of bacterial polysaccharides required for inducing protective 

immune responses to targeted pathogens. This is not easily achievable as it needs extensive 

structural studies and structure-activity relationship analysis of the polysaccharide antigens. 

In addition, the immunology and the exact functional mechanisms of carbohydrate-based 

vaccines are still poorly understood. Another problem is related to the synthesis of complex 

oligosaccharides, especially oligomers of the repeating units of bacterial polysaccharides, 

which remains challenging and therefore has hindered the access to these molecules in 

large quantity and to their derivatives. Furthermore, the carrier molecules for conjugate 

vaccines also need new alternatives during the development of glycoconjugate vaccines 

because repeated uses of the same CPs in various glycoconjugates can cause concerns, such 

as immunotolerance and decreased efficiency of vaccines.

On the other hand, we believe that, currently, the rapid and continuous progress and 

expansion of new methods for carbohydrate synthesis, technologies for structural study 

of carbohydrates, and in-depth understanding of the interactions between carbohydrate 

antigens and antibodies or the host immune system and of the functional mechanisms 

of carbohydrate-based vaccines, will provide more effective platforms for the design of 
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new vaccines, e.g., through rational design, and speed up the research and development 

process and result in more and efficacious vaccines. In the meantime, new biotechnologies 

are emerging as attractive alternatives to the currently chemical strategies for more 

flexible and cost-effective vaccine production.291 For example, new enzymatic strategies for 

protein glycosylation have been employed to access glycoconjugates. One of the strategies 

exploited oligosaccharyltransferase-dependent N-linked glycosylation process to produce 

glycoconjugate vaccines against bacterial pathogens and humanized glycoproteins. A recent 

application of this highly innovative glycoengineering method is to produce a Shigella 
dysenteriae O1 conjugate vaccine from E. coli,292 and the vaccine has cleared Phase 1 

clinical trials. Vaccines against other pathogens, e.g., Francisella tularensis, Staphylococcus 
aureus, etc. are currently under development.293,294 Although the bacterial glycosylation 

systems are attractive and have advantage over chemical methods, there are still some 

technical limitations associated with it, e.g., (i) the assignment of a glycosylation sequon 

to a particular site within the target protein is sometimes difficult, (ii) complications were 

observed while working with mammalian cell lines; (iii) the products generated by this 

approach has the concern of spreading viral diseases. Therefore, more glycosylation systems 

remain to be explored. Nonetheless, the new technologies will promote vaccine development 

and help fight various infections that are threatening human life and further reduce the social 

and economic burdens caused by infectious diseases, thereby strengthening the health and 

welfare of humankind.

Finally, we want to point out that the topic that this article tries to review is very broad, and 

the research area has been developing rapidly in the past few decades and is still growing. 

For example, in the process of preparing this article, Pereira and co-workers reported the 

synthesis and evaluation of some new glycoconjugate vaccine candidates for Escherichia 
coli O25B.295 Therefore, it is challenging to cover the conjugate vaccines against all 

bacterial pathogens, and we choose to review only some common bacteria and their vaccine 

development. Furthermore, even among the few bacterial pathogens selected, it is impossible 

to include all the researches related to glycoconjugate vaccine development. Here, we try to 

include the reports that contain biological evaluation of the conjugates as many as we can 

but still, some of the excellent works may be uncited. Additionally, in the literature, there are 

many excellent synthetic works about bacterial oligosaccharides and their conjugates that are 

included herein due to the limited scope of this article. We sincerely apologize for all those 

authors.
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Figure 1: 
Major milestones in the history of carbohydrate-based antibacterial vaccine development.
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Figure 2. 
Three major classes of glycconjugate vaccines. (a) The traditional polysaccharide-based 

glycoconjugate vaccines; (b) semi-synthetic glycoconjugate vaccines consisting of synthetic, 

strcuturally well-defined oligosaccharide antigens; (c) structurally defined fully synthetic 

glycoconjugate vaccines consisting of synthetic oligosaccharide antigens and synthetic 

carrier molecules.
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Figure 3. 
The general immunology of carbohydrate-based antibacterial vaccines in human.
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Figure 4. 
Structures of commercialized semi-synthetic glycoconjugate Hib vaccine Quimi-Hib 1 (a) 

and semi-synthetic glycoconjugates 2–5 explored as Hib vaccines by the Seeberger group 

(b).
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Figure 5. 
Structures of MenA CPS and its synthetic 1-C-phosphono and carbocyclic analogues, as 

well as their protein conjugates explored as MenA vaccines.
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Figure 6. 
Structures of MenC CPS, its synthetic oligosaccharides 15-20, and the protein conjugates 

21-28 of oligosaccharides 15-20.
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Figure 7. 
Structures of MenW CPS, its synthetic oligosaccharides 29-33a, and the CRM197 conjugates 

29-33b of oligosaccharides 29-33a.
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Figure 8. 
Structures of the MenX CPS and protein conjugates 34–36 of MenX CPS oligosaccharides.
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Figure 9. 
Structures of the repeating units of A. baumannii EPSs and their protein glycoconjugates.
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Figure 10. 
Structures of the synthetic oligosaccharide-protein conjugates 42-50 as vaccine candidates 

for S. pneumoniae serotypes ST1, ST2, ST3, ST5, ST8, ST6B, ST14, ST19A-F, and ST23F.
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Figure 11. 
Structures of synthetic conjugate vaccines 51–53 for S. flexneri 2a made of oligosaccharides 

of its O-antigen and 54 made of S. flexneri 2a O-antigen oligosaccharides with 

nonstoichiometric O-acetylation, as well as glycoconjugate vaccines 55–58 for S. 
dysenteriae type-1.
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Figure 12. 
Structures of synthetic glycoconjugates 59, 60a-d, and 61 explored as anti-anthrax vaccines
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Figure. 13. 
Structures of the surface polysaccharides of C. difficile PS-I, PS-II, and PS-III 62–64 
(a), synthetic glycoconjugates 65–67 consisting of PS-II oligosaccharides (b), and native 

polysaccharide PS-II-CRM197 glycoconjugate 68 (c) investigated as vaccines for C. difficile.
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Figure 14. 
Structures of Brucella O-antigen and its synthetic oligosaccharide analogs 69-75a, as well as 

their protein conjugates 69-75b.
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Figure 15. 
Structures of the type I O-PS 76a and 76b of B. pseudomallei and B. mallei and the 

protein conjugates 77a-b, 78a-b, 79, 80a-f, and 81a-f of B. pseudomallei and B. mallei CPS 

oligosaccharides.
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Figure 16. 
Structures of the O-antigens 82a and 82b of Vibrio cholerae O1 Inaba and Ogawa serotypes, 

respectively, the BSA-Ogawa serotype oligosaccharide conjugates 83a-c, and rEPA-Inaba 

and Ogawa serotype oligosaccharide 84-87a,b, as well as structures of the V. cholerae O139 

O-antigen 88 and its protein conjugates 99a-c.
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Figure 17. 
Structures of mycobacterial LAMs and related molecules (a) and the KLH conjugates 90a-f 
of synthetic PIM derivatives (b).

Rohokale and Guo Page 63

ACS Infect Dis. Author manuscript; available in PMC 2023 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 18. 
Structures of KLH and BSA glycoconjugates 91-93a and 91-93b of the synthetic LAM 

oligosaccharides and MPLA conjugates 94 and 95 of LAM tetrasaccharide
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Figure 19: 
LAM-related arabinofuranosyl oligosaccharides conjugates 96a-h and 97a-c studied as TB 

diagnostic agents.
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Figure 20. 
Structures of the conserved GAS cell wall polysaccharide 101 and GAS oligosaccharide–

protein conjugates 102-108 investigated as anti-GAS vaccines.
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Figure 21. 
Structures of the conserved CPSs on the cell surface of GBS serotypes Ia, Ib, II, III, IV, V, 

VI, VII, VIII, and IX.
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Figure 22. 
Structure of serotype III GBS oligosaccharide-CRM197 conjugates 116-119 and serotype Ia 

GBS oligosaccharide-protein conjugates 120a-d.
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Figure 23. 
Structures of the protein conjugates of oligosaccharide epitopes of a group-specific cell 

surface polysaccharide shared by different GBS serotypes.
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