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Voice signaling is integral to human communication, and a cortical voice area seemed to support the discrimination of voices from
other auditory objects. This large cortical voice area in the auditory cortex (AC) was suggested to process voices selectively, but
its functional differentiation remained elusive. We used neuroimaging while humans processed voices and nonvoice sounds, and
artificial sounds that mimicked certain voice sound features. First and surprisingly, specific auditory cortical voice processing beyond
basic acoustic sound analyses is only supported by a very small portion of the originally described voice area in higher-order AC
located centrally in superior Te3. Second, besides this core voice processing area, large parts of the remaining voice area in low- and
higher-order AC only accessorily process voices and might primarily pick up nonspecific psychoacoustic differences between voices
and nonvoices. Third, a specific subfield of low-order AC seems to specifically decode acoustic sound features that are relevant but
not exclusive for voice detection. Taken together, the previously defined voice area might have been overestimated since cortical
support for human voice processing seems rather restricted. Cortical voice processing also seems to be functionally more diverse and
embedded in broader functional principles of the human auditory system.
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Introduction
Previous research in human (Belin et al. 2000; Pernet
et al. 2015) and nonhuman primates (Petkov et al. 2008;
Sadagopan et al. 2015) proposed a largely extended region
in the AC, referred to as “voice area” (VA) (Yovel and
Belin 2013; Pernet et al. 2015), that covers approximately
70%–80% of the human AC, including primary (Te1.0–
1.2), secondary (planum temporale, PTe), and higher-level
AC subregions (Te3) (Pernet et al. 2015; Agus et al. 2017;
Aglieri et al. 2018). This VA was proposed to respond
to voices with high sensitivity. Besides its large spatial
extent comprising many subareas of AC, the VA seems
to also comprise 3 specific regional peaks or “patches”
of activations along the posterior-to-anterior axis of the
superior temporal cortex (STC) (Pernet et al. 2015; Belin
et al. 2018). These patches were proposed to specifically
differentiate between voice signals and other auditory
objects beyond any basic acoustic differences between
these sound categories (Belin et al. 2000; Agus et al. 2017).
However, a detailed and differential functional descrip-
tion of the VA in general and specifically of the voice
patches for generic voice processing is largely missing
(Staib and Frühholz 2020). In terms of such potential
functions of different VA subareas, some anterior STC
patches might be involved in voice identity decoding

(Belin and Zatorre 2003; Kriegstein and Giraud 2004),
anterior and middle STC patches might do some voice-
specific acoustical processing (Charest et al. 2013; Lat-
inus et al. 2013; Ahrens et al. 2014), and posterior STC
patches might integrate auditory and visual information
during voice recognition (Watson et al. 2014; Pernet et al.
2015). However, beyond this incoherent evidence for a
sensitivity of some VA subareas for decoding types of
voice information, a clearer functional description of
the entire VA and its patches is missing, including its
capability to generically discriminate voice signals from
other auditory signals.

The notion of high sensitivity or even selectivity for
voice processing across the entire VA was derived from 3
strands of evidence. First, the VA was discovered across
several mammalian species, including primates and
dogs, responding to con- and hetero-specific vocaliza-
tions (Belin et al. 2000; Petkov et al. 2008; Andics et al.
2014; Sadagopan et al. 2015). Second, given the frequent
observation for face-selective regions in the primate
visual system (Kanwisher and Yovel 2006), a parallel
functional system was assumed to also exist in the AC for
voice processing (Yovel and Belin 2013; Belin et al. 2018).
Third, recent reports comparing generic voice processing
to specific acoustically matched control sounds found
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a sensitivity of the VA for real voices. For example, a
previous study (Agus et al. 2017) has shown that the
right VA still reliably distinguishes between voice and
nonvoice sounds when controlling for acoustic features,
such as pitch, harmonic-to-noise ratio, temporal rate,
and spectral scale of the sounds. Especially the activation
in the left VA did not show a significant difference when
controlling for acoustic differences between voice and
nonvoice sounds. It was therefore proposed that the VA
is selectively and rather uniformly sensitive to human
voices compared to other nonvoice auditory objects
beyond basic acoustic differences of voice and nonvoice
sound sets used to define the VA (Yovel and Belin 2013;
Agus et al. 2017; Belin et al. 2018). Previous studies
demonstrating the nonsensitivity of the VA to acoustic
differences between voice and nonvoices, however, have
some shortcomings, such as rather arbitrary selections
of features for experimental testing and an insufficient
explanation of contradictory findings concerning voice
processing in the left VA (Agus et al. 2017).

Using a more direct and precise experimental approach,
we have also recently shown that the selectivity of the VA
for voice processing seems to be largely overestimated,
given that the entire VA can also respond with the same
activity pattern to nonvoice textural noise patterns that
are typically observed in voice processing (Staib and
Frühholz 2020). Many subareas of the VA, especially in
low- and higher-order AC, also responded nonselectively
to acoustic features in any sound, both contained in
voice and nonvoice sounds. Thus, the VA also seems to
largely respond to nonvoice noise patterns and acoustic
features with a similar cortical activity pattern, and
this similarity in the cortical processing of voice and
nonvoice sounds seems to point to some more basic
neural mechanisms for auditory recognition in large
portions of the VA beyond its assumed selectivity for
voice processing. While the concept of selectivity for
voice processing in the entire VA (Yovel and Belin 2013;
Belin et al. 2018) might thus not be adequate to describe
the mechanisms for voice processing in the VA (Staib and
Frühholz 2020), there might be however different levels
of (nonexclusive) neural sensitivity for voice stimuli and
voice features at different sound processing levels of
the AC from acoustic sound analysis to acoustic object
classifications.

Accordingly, another missing part of these previous
reports is the lack of a functional parcellation of the VA
(Belin et al. 2018). While the subdivision of the VA into 3
patches seemingly parallels sensory processing observed
for face perception in the visual system (Yovel and Belin
2013), where the so-called face patches are distinct clus-
ters with differential functional profiles (Grill-Spector
et al. 2006; Tsao et al. 2008), such a differential functional
account is surprisingly missing for VA subpatches (Belin
et al. 2018). This lack of a functional parcellation of the
VA so far might indeed reflect a rather uniform func-
tional and neural nature of VA despite diverse acoustic
stimulations (Agus et al. 2017). To determine a possible

functional parcellation of the VA, it might seem neces-
sary to apply experimental designs that more directly
account for the differential working principles of the
human auditory system and the specific psychoacoustic
properties of voice sounds. From these working princi-
ples and psychoacoustic effects, it seems possible that
a proportion of the noncore and accessory VA primarily
responds to the acoustic features and acoustic patterns
inherent to but not exclusive for voice sounds, rendering
these accessory VA areas more responsible for an acous-
tic sound pattern analysis for various sounds rather than
for generic voice processing. Complementarily, core VA
areas might generically differentiate voice from nonvoice
based on a perceptual or even socially relevant difference
between these sound categories. This approach would
overall redefine the broader VA region as a local func-
tional network in AC comprising subregions that have
a differential functional contribution to voice process-
ing.

We tested this hypothesis of a functional segregation
of the VA into core voice processing subareas and more
voice-unspecific incidental subareas by presenting stan-
dard voices and nonvoices sets (Belin et al. 2000; Capilla
et al. 2013) to human volunteers, as well as 5 matched
and carefully selected sets of acoustic equivalents (AEs)
that were generated from the original sounds. These
AEs had decreasing acoustic and perceptual similarities
to human voices and nonvoice sounds but preserved
selected features of the original sound sets (Fig. 1) such as
(i) the spectral content (Ellis 2010; Overath et al. 2015), (ii)
the general temporal and spectral envelope (Fukushima
et al. 2014), (iii) the pitch and amplitude contour (Grand-
jean et al. 2005), (iv) the harmonic-to-noise ratio (HNR)
(Lewis et al. 2009), or (v) the dynamic spectrotemporal
modulation rate (Elliott and Theunissen 2009). These
5 types of AEs were chosen as they represent impor-
tant acoustic features that support the detection and
classification of a voice signal as an auditory object to
various degrees (Lewis et al. 2009; Latinus and Belin 2011;
Frühholz et al. 2018). And these AEs have been previously
shown to elicit activity in AC subregions that also overlap
with the VA without being perceived as a sound of vocal
origin (Lewis et al. 2009; Schönwiesner and Zatorre 2009;
Fukushima et al. 2014). We expected that core subregions
reflecting generic voice processing areas of the VA should
show a strong response to voices compared to nonvoices
over and above any AE-based brain activity, indicating
their sensitivity to the perceptual distinctiveness of voice
sounds. These core VAs are expected to be localized in
higher-level AC as a potential neural site for auditory
objects classification (Kumar et al. 2007). Our study thus
followed 2 major scientific approaches: first, using this
set of AEs, we aimed to investigate a functional distinc-
tion in the general VA along acoustic and perceptual
features of the VA that would allow separation into core
and accessory VA subregions. Second, using 2 comple-
mentary analysis types in the form of a univariate and
a multivariate analysis approach, we aimed to define
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Fig. 1. Original voice and nonvoice sounds and examples of their acoustic equivalents (AEs). a) Spectrograms of examples of original voice and nonvoice
sounds and the 5 AEs that preserve certain acoustic features of the original sounds. The top row shows an original voice sounds and its corresponding
AEs, whereas the bottom row shows an example nonvoice sounds and its AEs. b) Average perceptual similarity ratings comparing each original sound
to its various AEs. The similarity rating was performed on a 10-point scale ranging from not similar at all (“0”) to highly similar (“10”).

subregions of the VA that are generic to voice processing
and voice feature decoding, respectively.

Materials and methods
Participants
Twenty-five volunteers (13 female, mean age 25.3 years,
SD 3.97) participated in the functional magnetic reso-
nance imaging (fMRI) experiment. Inclusion criteria were
normal or corrected-to-normal vision and no history of
neurological or psychiatric disorders. All participants
gave written informed consent and were financially
reimbursed for participation. The study was approved
by the cantonal ethics committee of the Canton Zurich
(Switzerland).

Stimuli
The set of natural sounds consisted of recordings of 70
vocalizations (speech and nonspeech) and 70 nonvocal-
izations (animal, natural, and artificial sounds) (Capilla
et al. 2013) of 500 ms duration. As described in Capilla
et al. (2013), vocal stimuli were recorded from 47 speakers
(from babies to elderly people) and were either speech
(nonwords) or nonspeech (laughs, sighs, and various ono-
matopoeia). Nonvocal stimuli consisted of sounds from
nature (e.g. wind, streams), animals (cries, gallops), the
human environment (cars, telephones, planes), or musi-
cal instruments (bells, harp, and instrumental orches-
tra). For each sound, 5 AEs were created (Fig. 1), from
the categories (i) envelope/spectrum preserved sounds
(AEe/s), (ii) scrambled sounds (AEscr), (iii) pitch/amplitude
preserved sounds (AEp/a), (iv) ripple sounds (AErip), and (v)
textural sound patterns (AEtsp). AEs were designed such
that their original sound identity was unintelligible by
the listener, but each AE shared an important acoustic
feature with the original sounds. Using these AEs, we
aimed to determine the part of the original VA that also
shares cortical processing for AEs that carry a certain
acoustic feature as typical for voice sounds. These AEs
were created both for the original voice and nonvoice
sounds, and we kept this original assignment for the
AEs, such that these AEs were individually defined as
being derived from either a voice or nonvoice sound.

Therefore, we performed the same contrasts on the AEs
as for defining the VA with the standard contrast [voice
> nonvoice].

Furthermore, the 5 AEs decreased in similarity to the
original sounds as can be seen from the spectrograms
(Fig. 1a) and the similarity ratings by the participants
(Fig. 1b). This is different to one of very few other
studies that are directly comparable with our approach
investigating the influence of acoustic features on
voice/nonvoice processing of the VA (Agus et al. 2017).
These authors matched sounds of vowels sung by
professional singers by pitch and HNR with tones played
on different classical instruments and created “auditory
chimeras” that have either the spectral profile of the
voices and the temporal profile of the instrumental
sounds or vice versa. However, even if this study also
includes some acoustic parameters as modulators in
their models, the auditory chimeras are by definition
artificially created mixtures of voices and nonvoices.
Furthermore, the authors admit to having controlled
for some (e.g. pitch, HNR) but not all possible acoustic
differences while creating matches between voices and
nonvoices. Last but not least, the sung vowels taken as
voice stimuli are a very selective sample of voice stimuli
compared to the often used stimuli of the VA localizer
(Belin et al. 2000; Capilla et al. 2013; Pernet et al. 2015) and
include stimuli with language content. Another study
by Norman-Haignere and McDermott (2018) compared
neural responses in AC between natural auditory objects
and matched synthetic sounds (i.e. matched according
to a sensory model of neural auditory processing) and
found similar neural responses in primary AC to both
sound sets, but divergent responses in nonprimary AC.
Nonprimary AC specifically showed some sensitivity for
the processing of speech and music. While this study
(Norman-Haignere and McDermott 2018) might have
pointed to some specificity in the neural processing of
speech as a specific voice stimulus, it does not provide
evidence for the more basic mechanisms of the neural
processing of (nonspeech) voice signal processing in
general. Their study (Norman-Haignere and McDermott
2018), however, points to a valuable experimental
approach of using matched synthetic sound to test AC
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mechanisms for sound processing. Synthetic AEs of
individual sounds that preserve only one type of acoustic
information from the original sounds offer a direct
comparison between brain responses to the originals and
their equivalents. The possibility to perform the same
contrasts on AEs and original voice and nonvoice sounds
is much more promising as an attempt to investigate
acoustic processes by the temporal VA.

A detailed description of how the AEe/s that preserve
the envelope and the spectrogram of a sound were gen-
erated can be found elsewhere (Fukushima et al. 2014).
Briefly, for AEe/s, we first calculated the amplitude of
the Hilbert transform from the original stimulus. This
amplitude envelope was then multiplied with a broad-
band white noise, resulting in sounds with the same
flat spectral content. For spectrum preserved stimuli,
broadband white noise with a duration of 500 ms was
generated, and its amplitude in the Fourier domain was
replaced by the average amplitude of the corresponding
stimulus. The result was then transformed back to the
time domain by the inverse Fourier transform. Finally,
envelope and spectrum preserved stimuli were added
together and normalized. The AEe/s are AEs that pre-
served the general temporal and spectral envelope pro-
file of the sounds, which could be one of the acoustic
markers that distinguish voice from nonvoice sounds
(Stanley 1931).

The sounds for the pitch and amplitude envelope
preserving sounds AEp/a were sounds combined out of
sine-wave rectified pitch contour of the original sounds
together with a broadband white-noise sound with an
amplitude envelope derived from the original sounds.
The modulated white-noise sound was overlaid with the
sine-wave pitch contour sounds and played at the same
time. These sounds preserved the pitch and intensity
dynamics of the original sounds (Grandjean et al. 2005).

The scrambled acoustic equivalents AEscr were created
by scrambling each audio file by moving around short,
overlapping windows within a local window, such that
spectral content over longer time scales can be pre-
served, but structure at shorter timescales is removed.
Here, the signal was first broken into multiple frequency
bands, scrambled in each band separately, and finally
recombined (ee.columbia.edu/~dpwe/resources/matlab/
scramble/) (Ellis 2010). These scrambling procedures pre-
served the overall spectral content of the sounds, but
this content was shuffled in time to destroy the temporal
dynamics of the original sounds.

The set of ripple sounds that were the basis of AErip was
created using in-house Matlab code based on a previous
description of ripple sounds (Schönwiesner and Zatorre
2009) and by selecting from 10,000 sounds with vary-
ing velocity (amplitude modulation), density (frequency
modulation), and modulation depth. For each original
sound, we selected the best matching ripple sound based
on the highest similarity in acoustic features (mean and
standard deviation of jitter, shimmer, and spectral flux
features), extracted with the publicly available toolbox

openSmile v2.3.0 (Eyben et al. 2013) and based on an
automated selection algorithm.

The set of AEtsp finally was generated with the Gaus-
sian Sound Synthesis Toolbox (Version 1.1; mcdermottlab.
mit.edu/downloads.html) (McDermott et al. 2011). First,
10’000 textural sound patterns (TSPs) of 500 ms duration
were generated with frequency and temporal correla-
tions between 0.01 and 2, respectively. For each TSP, the
mean and standard deviation of the HNR (Eyben et al.
2016) was extracted. To find a matching AEtsp for each
original sound, the sound with the minimal Euclidean
distance in a 2-dimensional acoustic space (based on
the normalized HNR features) was selected. All sounds
in this study had a 5 ms cosine rise/fall to avoid abrupt
onset/offset of the sound and were normalized to 70 dB
SPL.

Experimental procedure
The sound presentation in the MRI scanner was spread
over 8 runs, where each run lasted 315 s and contained
12 mini blocks with one stimulus type each; that is in one
block, 9 sounds were presented from either the original
sound sets or one of the 5 AE types (6 sound types in
total), separately for voice and nonvoice stimuli. The
order of mini blocks within each run was completely
randomized, and the sounds selected for a mini block
were also randomized in their order within the mini
block. The 12 mini blocks within each run were composed
of the 12 different sound categories, and thus each sound
category appeared once in each run. The time between
sounds within a mini block was jittered within 0.8–1.2 s,
and the time without any sound between the mini blocks
was 15 s. In 24 out of the 96 blocks (8 runs × 12 blocks)
across the experiment, one single sound was played twice
consecutively. Participants had to indicate whenever they
detected a repetition of a sound with a button press at
the end of the respective block. This repetition detection
task ensured that participants showed the same level of
listening engagement for all sound categories and mini
blocks, and the repetition of all sound categories in each
run and the randomization of mini blocks ensured that
no block and run order effects appeared.

In a separate perceptual rating experiment, an inde-
pendent sample (n = 26, 18 female, mean age 24.92 years,
SD 4.45) was presented with pairs of an original sound
and each of its corresponding AE in separate trials. This
procedure was repeated for each of the original sounds
(70 voices, 70 nonvoices) and its AEs, resulting in a total
of 700 trials. Participants had to rate the perceived sim-
ilarity on a discrete scale from 0 to 10 (0 = not similar at
all, 10 = highly similar).

Functional brain data acquisition
Functional brain data were recorded in a 3T-Philips
Ingenia with a standard 32-channel head coil. High-
resolution structural MRI was acquired by using T1-
weighted scans (301 contiguous 1.2 mm slices, time
repetition (TR)/time echo (TE) 1.96 s/3.71 ms, field
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of view 250 mm, in-plane resolution 1 × 1 mm). In
each run, 197 functional whole-brain images were
recorded by using a T2∗-weighted echo-planar pulse
sequence (TR 1.6 s, TE 30 ms, FA 82◦; in-plane resolution
220 × 114.2 mm, voxel size 2.75 × 2.75 × 3.5 mm; 28
slices, slice gap 0.6 mm) covering the whole brain. For
each participant, a whole-brain magnetic field mapping
sequence (TR 30 ms, TEs 0.01/3.57 ms, FA 60◦, voxel
size 2.7 × 2.7 × 4 mm) was recorded to reduce image
distortions from inhomogeneities in the magnetic field.
Cardiac and respiratory variation was measured using
the scanner inbuilt pulse oximeter and respiration belt.

Brain data preprocessing
Preprocessing of fMRI data was performed by using stan-
dard procedures in the Statistical Parametric Mapping
software (SPM12; Wellcome Trust Centre for Neuroimag-
ing, London, UK; www.fil.ion.ucl.ac.uk/spm/software/
spm12). Images were corrected for geometric distortions
caused by susceptibility-induced field inhomogeneity
(Cusack et al. 2003). A combined approach was used,
which corrects for both static distortions and changes in
these distortions from head motion (Andersson et al.
2001; Hutton et al. 2002). The static distortions were
calculated for each subject from a B0 field map that was
processed by using the FieldMap toolbox as implemented
in SPM12. With these parameters, functional images
were then realigned and unwarped, a procedure that
allows the measured static distortions to be included
in the estimation of distortion changes associated with
head motion. Slice time correction was performed to
correct for differences in acquisition time of individual
brain slices. The motion-corrected images were then
co-registered to the individual’s anatomical T1 image
by using a 6-parameter rigid body transformation.
Functional data were normalized from the participants’
space to the Montreal Neurological Institute (MNI) space
based on the IXI549 dataset (brain-development.org/ixi-
dataset/) using a unified segmentation procedure as
implemented in the Computational Anatomy Toolbox
(CAT12; www.neuro.uni-jena.de/cat/) with a 2 mm
isotropic resolution. The deformation parameters were
computed from normalizing the T1 images of each par-
ticipant. For the region of interest (ROI)-based multivari-
ate pattern analysis (MVPA) analysis in the native space
of each participant, the inverse deformation parameters
originating from the aforementioned segmentation
procedure were used to warp standardized atlas-based
brain maps into the space of each participant.

Brain data analysis
After preprocessing, we performed 2 different types of
analysis. First, we estimated the blood oxygen level-
dependent (BOLD) amplitude in each voxel using a
general linear model (GLM). This analysis was performed
on functional data that were smoothed with an isotropic
Gaussian kernel of full-width at half-maximum (FWHM)
8 mm and 4 mm in a subsequent replication analysis.

Each block of 9 sounds was modeled with a boxcar
function for the duration of the respective block, which
was then convolved with the standard hemodynamic
response function as implemented in SPM12. Addi-
tionally, a regressor to account for button presses was
included, resulting in 13 regressors (6 sound sets × 2
vocalization conditions + button press), as well as 6
regressors of no interest for head motion that were
estimated in the realignment step during preprocessing.
Cardiac and respiratory variance was modeled with 18
RETROICOR regressors (Kasper et al. 2017) implemented
in the PhysIO toolbox, which uses Fourier expansions
for the estimated phases of cardiac pulsation (third
order), respiration (fourth order), and cardiac-respiratory
interactions (first order).

For the statistical group analysis, the linear contrasts
for each of the 6 sound sets × 2 vocalization conditions
across all 8 runs (i.e. one contrast image for each of the 12
conditions, separately for each participant) were defined
and modeled in a 6 × 2

analysis of variance (ANOVA) in a full factorial analysis
in SPM12 that can be combined with a conjunction
analysis. A conjunction analysis identified voxels that
are active during 2 or more conditions (Friston et al. 2005;
Nichols et al. 2005) and was used here to estimate the
spatial overlap of voice-sensitive activations across the
original sound set and AEs. Next to this contrast-based
GLM analysis, we performed an additional analysis for
the purpose of potentially identifying “voice-selective”
subregions of the AC as previously proposed (Belin et al.
2000; Perrodin et al. 2011). This additional analysis
allowed to quantify neural voice selectivity within
and across participants and to estimate a voxel-based
measure of response magnitude to voice sounds and
to all other sounds included in this experiment. For
each participant, we therefore scaled the activation of
each voxel by subtracting the beta estimates of the
original nonvoice condition from each other condition
and divided the result by the difference between
the voice and nonvoice conditions. Using this scaling
approach, we could quantify response magnitudes for
all 12 experimental conditions relative to neural activity
elicited by nonvoice (0%) and voice sounds (100%) as
spanned by the original sound conditions. A voxel was
labeled as “voice selective” if all 10 AE conditions showed
a scaled magnitude lower than 33% (66% selectivity
criterion) (Perrodin et al. 2011). This means a “voice
selective” voxel would show a 3 times higher activation to
the original voices than to any AE, relative to nonvoices.
The binary voxel maps that distinguish selective and
nonselective voxels were then summed up across
participants (Supplementary Fig. S2).

Next to the GLM-based analysis, we performed a
MVPA using a linear support vector machine (SVM) as
implemented in The Decoding Toolbox, v3.96 (Hebart
et al. 2015) (sites.google.com/site/tdtdecodingtoolbox/).
This SVM was trained to separate 2 conditions, that
is voice sounds from nonvoice sounds for the original

www.fil.ion.ucl.ac.uk/spm/software/spm12
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sounds as well as for the AEs, respectively. The MVPA
was performed on unsmoothed functional data in the
participant’s native space, either using data from voxels
in a ROI or in a searchlight approach (Kriegeskorte et al.
2006). For each classification scheme, the BOLD esti-
mates from a separate GLM performed on unsmoothed
data in native space served as data points. In an 8-fold
cross-validation scheme with balanced data sets, a new
model was trained on the BOLD estimate from 7 runs
and tested on the remaining run, such that each data
point was entered as test data point once. The final
accuracy is the average of all 8 test predictions. After
the MVPA calculations, voxel-wise decoding accuracy
maps from the search light analysis were normalized
to MNI space (i.e. using the deformation parameters as
they originated from the segmentation approach) and
smoothed with an isotropic Gaussian kernel of FWHM
8 mm. The group-level statistical analysis was performed
as a GLM analysis using a one-sample t-test scheme for
each cross-validation approach (i.e. 6 MVPA schemes,
based on the 6 major sound categories) and cross-
classification SVM approach (i.e. 5 MVPA schemes, based
on the cross-classification between original sounds and
the AEs) across experimental conditions.

For visualization purposes, we mapped the thresh-
olded statistical maps that resulted from the various
GLM analyses to a surface representation of the human
brain using the CAT12 toolbox. Specifically, the statistical
maps were resampled to a 164 k surface mesh according
to a FreeSurfer surface template and were rendered on
an inflated version of this surface template.

ROI analysis
To further test how much information certain functional
and anatomical subregions of the auditory cortex (AC)
carry to distinguish original voice from nonvoice sound
as well as for the AEs, we included both anatomically
and functionally defined ROIs. For anatomically defined
ROIs, we used atlas-based maps (Eickhoff et al. 2005),
including primary (Te1.0, Te1.1, Te1.2), secondary (BA42),
and higher-level AC regions (Te3), that were warped into
the native space of each participant based on the defor-
mation parameters obtained during preprocessing.

Three functionally defined ROIs were defined per
hemisphere representing the 3 patches that are at the
center of the VA and proposed to be highly sensitive
to voice sounds (Pernet et al. 2015). To create the 3 ROIs
specific to our sample, we followed a procedure described
elsewhere (Aglieri et al. 2018). For each participant, the 10
peak locations of the contrast [voice > nonvoice] for the
original sounds within bilateral AC were identified. The
search space for these peak locations was constrained
to the group-level activation map resulting from the
contrast [voice > nonvoice] with a significance threshold
of P < 0.001 (uncorrected). The center of each patch
(anterior, mid, posterior) was then defined by the location
nearest to the respective coordinate reported in Pernet
et al. (2015). If the coordinate could not be identified or

were closer to each other than 10 mm, the coordinates
from Pernet et al. (2015) were used instead. Around each
peak, a sphere with a 5 mm radius was constructed that
included the voxels of the ROI.

SVM trained on acoustic features
In addition to the MVPA approach on the brain data, we
classified voice versus nonvoice original and AE sounds
based on the acoustics and compared the classification
accuracies for the different subsets of sounds (original
and 5 AEs). Here we first extracted 88 standard acoustic
features (Eyben et al. 2016) using the openSMILE tool-
box (audeering.com/opensmile/) and second trained an
SVM (Cortes and Vapnik 1995) algorithm to acoustically
discriminate original voice from nonvoice sounds as well
as voice-based and nonvoice-based AEs with each class
(cross-validation). The SVM is a binary classifier and used
a 1-vs-1 scheme as implemented by MATLAB’s fitecoc
function (MATLAB, version 2018a). The SVM parameters
were set to the MATLAB default values and the kernel
function was a third-order polynomial. In a next step, we
also applied a cross-classification approach by training
the SVM on the original sounds and tested the SVM on
each of the AEs.

Results
AEs differentially resemble original voice
and nonvoice sounds
Our goal was to compartmentalize the activation profile
of the entire VA during voice perception into core and
accessory voice processing subareas by using a selection
of AEs that varied in their acoustic and perceptual simi-
larity (or distance) to original voice and nonvoice sounds
that are frequently used to define the VA (Belin et al.
2000; Capilla et al. 2013; Pernet et al. 2015). AEs were
derived from the original sounds or were synthesized
based on central acoustic features of the original sounds.
We created 5 different AEs (Fig. 1a): AEscr were scrambled
versions of the original sounds by temporally shuffling
time intervals and they preserved the overall spherical
content (Overath et al. 2015); AEe/s were synthesized
sounds based on the mean spectral (envelope preserv-
ing sounds) and temporal profile (spectrum preserving
sounds) of the original sounds (Fukushima et al. 2014);
AEp/a were synthesized sounds of a time-varying sine-
wave rectified from the pitch contour combined with
white noise that was amplitude modulated by the inten-
sity envelope (Grandjean et al. 2005); AEtsp were TSPs
based on a Gaussian-derived spectrum that preserved
the HNR of the original sounds (Lewis et al. 2009); and
AErip were ripple sounds that resembled the spectrotem-
poral modulation rate of the original sounds (Elliott and
Theunissen 2009; Schönwiesner and Zatorre 2009).

We first rated the perceptual similarity of the AEs
to the original sounds by an independent sample of
volunteers (n = 26, 18 female, mean age 24.92, SD 4.45).
AEs based on nonvoice sounds were rated more similar

audeering.com/opensmile
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to the original sounds than voice sounds [repeated
measures ANOVA (rmANOVA), within factors were
“category” (voice, nonvoice) and “modality” (5 AEs);
F1,25 = 43.232, P < 0.001]. Across the AEs, we also found
a significant difference (F4,100 = 210.980, P < 0.001), with
differences between all AEs (all P’s < 0.001) except for
AEtsp and AErip showing no difference (P = 0.131). Based
on a significant sound × AEs interaction (F4,100 = 45.375,
P < 0.001), we found differences between AEs based
on voices or nonvoices origin for all AE categories
(all P’s < 0.001) except for the AEp/a category (P = 0.067)
(Fig. 1b).

Sensitivity of the VA subareas to nonvoice
acoustic sound patterns
We used functional neuroimaging in humans, while they
listened to the original voice and nonvoice sounds as
well as to the 5 AEs and performed an incidental 1-
back detection task. If a sound was repeated within a
block consisting of 9 sounds, participants had to press
a button at the end of the block (see Methods). The
participant’s correct positive rate was 70.83% (rate at
which a repetition was discovered, given the presence of
a repetition in a mini block). Conversely, in 22.67% of mini
blocks without a repetition, participants falsely reported
a repetition.

In the first set of MRI analyses, we used a univariate
GLM approach to define both the general VA and the
presumably core VA for voice processing. To define, first,
the commonly reported general VA, we contrasted neural
activations for original voice against nonvoice sounds
and found largely extended bilateral AC activations cen-
tered on the STC [superior temporal gyrus (STG) and mid-
dle temporal gyrus (MTG)] and especially on the higher-
level auditory region of Te3 (left n = 1,653 voxels, right
n = 1,572 voxels). This activation also extended into pri-
mary (Te1.1) and secondary AC (PTe) (Fig. 2a, left panel).
This broadly extended activation pattern in AC is com-
monly found in many studies for defining the VA (Pernet
et al. 2015; Frühholz et al. 2020). A similar result of neural
activity for original voices contrasted against original
nonvoice sounds can also be found with a lower smooth-
ing kernel applied to the functional data (Supplementary
Fig. S1a). The latter also shows a broad extension of
functional activity in the anterior-to-posterior direction
in AC, as well as functional peaks located both in superior
and MTG and in superior temporal sulcus (STS).

Second, we computed an analogous analysis for all
AEs, contrasting the AEs of voices and nonvoices. Our
hypothesis was that the AEs elicit activity in subareas
of VA, thereby sharing a common activation profile with
the original sounds. This would indicate that these areas
do not respond selectively to voices but that they share
some functional processing properties across acousti-
cally equivalent sounds. For AEe/s and AEscr, we indeed
found activity in the AC centered in mid-superior Te3, but
with a less spatial extent than the original VA. Notably, all
significant voxels for this comparison within AEe/s and

within AEscr were contained within the active cluster of
the VA derived from the original sounds (Fig. 2a, black
outlines). No other voice against nonvoice sounds for the
other AEs revealed any significant activity in AC. Further-
more, for none of the sound sets (original or AEs) did any
voxels show higher activation for nonvoices compared to
voices.

Third, to obtain a refined estimation of the VA’s
spatial extent, we next identified voxels for which
the response to original voices compared to nonvoices
exceeds the equivalent comparison in any of the AEs,
which would point to the presumable core VA based on
the GLM approach (Fig. 2b). For each AE, we computed
the interaction contrast [(ORIGvoice > ORIGnonvoice)
minus (AEvoice > AEnonvoice)] and combined them
in a conjunction analysis that returns only those
voxels where the original VA definition produces a
higher response to voices than for all AEs. Figure 2b
(upper left panel) shows a comparison between the VA
activation based on the original contrast (black outline,
Fig. 2a), overlaid on the refined area defined by the
conjunction analysis (see also Supplementary Fig. S1b,
which replicates this analysis with a lower smoothing
kernel of the functional data). The refined VA contains
significant voxels that were located in Te3 with extension
into posterior STC (left n = 549 voxels, right n = 480 voxels),
which corresponds to 33.2% (left) and 30.5% (right) of
the size of the original VA activation (left n = 1653 voxels,
right n = 1572 voxels), respectively. Notably, the refined VA
does not exclusively overlap with the highest activation
of the original VA, and 25% of it also includes lower active
voxels of the original VA.

Besides this conjunction analysis of the interactions
across AEs, the interaction contrasts are individually
reported to allow a comparison between the original
sounds with each AE separately (Fig. 2b, upper mid, right,
and lower panels). For these individual interaction anal-
yses, we found an overall increase of the spatial extent
of the refined VA into anterior and posterior AC for
AEe/s, AEscr, AEp/a, AErip, and finally AEtsp. The interaction
analysis for AEtsp did cover large parts of the original VA
but still did not fully cover the original VA, especially in
the anterior STC and the planum polare (PPo).

Fourth, as a control analysis, we aimed to identify
voxels that could exhibit a higher voice sensitivity
for a given set of AEs than for the original sounds.
For this, the reversed interaction between sound sets
and stimulus type (i.e. [AEvoice > AEnonvoice] minus
[ORIGvoice>ORIGnonvoice]) was computed, but no
voxels responded more strongly to any AE than to the
original sounds. We also repeated the interaction analy-
sis as described above using a 4-mm FWHM smoothing
kernel, replicating the result patterns as observed with
an 8-mm FWHM smoothing kernel (Supplementary Fig.
S1b).

Fifth and finally, we also aimed at determining of some
subareas of the VA would show some kind of “voice-
selectivity,” meaning that subareas would show largely

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac128#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac128#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac128#supplementary-data
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Fig. 2. Spatial extent of the VA in bilateral AC. a) Voice compared to nonvoice sounds (left panel), and the same contrasts performed for the AEs.
Blue activations P < 0.001 (uncorrected); orange activations P < 0.05 [family-wise error (FWE)-corrected]. Black dashed line denotes significant P < 0.05
(FWE) voxels from the original sound contrast, indicating that all significant voxels of AEs are contained within the original VA. White outlines indicate
anatomical subparts of the AC, especially primary AC (Te1.0–1.2), secondary AC (PTe), and higher-level AC (Te3). b) The left upper panel shows voxels
resulting from the conjunction analysis for which the contrast [voice > nonvoice] exceeds all the analogous contrasts performed on AEs (green dashed
line). The individual interaction analyses compare the [voice > nonvoice] contrasts for original sounds against the same contrast in each of the AEs
separately (shown in the mid and right upper and all lower panels). L, left; R, right, Te, temporal regions.

increased neural activity to original voice sounds as com-
pared to nonvoice sounds or any of the AEs sounds. For
each voxel and participant, we scaled neural effects for
all conditions from 0% to 100% based on neural activity
for original nonvoice (set to “0%”) and original voice
sounds (set to “100%”), respectively. If none of the 10
AEs conditions showed activity higher than 33% (66%
selectivity criterion as often used in the literature; Per-
rodin et al. 2011), a voxel was labeled as “voice-selective”
(labeled with “1,” otherwise “0”). These voxel-wise binary
maps were summed across participants (Supplementary
Fig. S2, Fig. 2b upper left panel). We found no subre-
gions of the AC that showed strong indications of voice-
selectivity, meaning the large majority of participants
showed selectivity at a certain AC or specifically VA
subarea. Some bilateral AC and VA subareas showed a
tendency towards “voice-selectivity,” such that a maxi-
mum of a little more than half the participants (n = 13 out
of 25 participants) showed consistent selectivity (Supple-
mentary Fig. S2b). These regions were located in bilat-
eral PPo and anterior STG, with the latter region partly
overlapping with the afore defined core VA based on the
interaction contrasts.

Neural pattern specificity for voice processing
in the VA
For the AC, it was recently shown that the response to
voices compared to nonvoices manifests not only in
the form of an increased voxel-wise BOLD amplitude,
but it seems also encoded in the activation pattern of
multiple neighboring voxels in the VA (Ahrens et al. 2014;

Lee et al. 2015). Such multivoxel pattern activations
can be detected with high sensitivity by multivariate
analysis methods (Kriegeskorte et al. 2006), where
a classification algorithm decodes local patterns of
activations for voice versus nonvoice sounds. This
multivariate analysis approach was the second major
methodological approach beside the univariate GLM
approach reported above. While the univariate GLM
approach so far allowed to define the presumable core
VA area, this MVPA approach is suitable to identify
subregions of the VA that process acoustic information
with a common mechanism across voices and AEs.

To identify multivoxel patterns in our study, a SVM was
trained to distinguish AC activation patterns of voices
from nonvoices for the original sounds and equally for all
AEs (Fig. 3a). This SVM analysis was performed on voxels
within a sphere (radius 5 mm) that iteratively moved its
center across all voxels in the form of a moving search-
light (Kriegeskorte et al. 2006). As shown in Fig. 3a (upper
panels), the cross-validation procedure largely replicates
the results from the above univariate GLM approach for
the original sounds and AEs in the AC. Specifically, the
MVPA succeeded in distinguishing original voice from
nonvoice sounds in a bilateral and broadly extended
cluster of voxels. This cluster contains a large portion of
STC and reaches into PAC and PTe and seems larger in
spatial extent (left n = 2,258 voxels, right n = 2,031 voxels)
compared to the GLM results. Similarly, as for the GLM
analysis, we then repeated the classification for each of
the AEs. For AEe/s, we found a bilateral AC cluster that
can distinguish the AEs of voices versus nonvoices in the

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac128#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac128#supplementary-data
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Fig. 3. Results of the MVPA. a) The upper row shows cross-validated classifications of [voice versus nonvoice] for the original sounds and AEs. Black
outlines are taken from the left-most panel (original sounds), indicating that all significant voxels within the AEs are contained within the original
VA. The lower row shows the cross-classification approach with training on the original sounds and testing on the AEs. Significant voxel clusters from
the cross-classification approach are marked with a green dashed line and displayed in the upper row. White outlines indicate Te3 as an anatomical
landmark in the AC. The 3 VA patches [posterior (p), mid (m), anterior (a)] are taken from Pernet et al. (2015) and marked by black dots in each hemisphere.
b) Average cross-classification results, highlighting that subareas of the original VA (black dashed line) in primary AC and PTe generalize the strongest
from the original sounds to the AEs. c) Cross-validation accuracy (relative to the chance level of 50%) within each sound set (“within”) and cross-
classification accuracy from the originals to AEs (“across”) for the 3 VA patches (posterior, mid, anterior). d) Cross-classification results equivalent to
(c), but on anatomically defined subregions of AC instead of a searchlight approach. L, left; R, right; Te, temporal auditory regions. Asterisks indicate
significant P < 0.05 (FDR corrected) above chance level classification.

superior part of Te3 (similar to the GLM contrast), with
additional voxels found in MTG. For AEscr, we found a left
AC cluster in mid-superior Te3 (again similar to the GLM
contrast). For AEp/a, AErip, and AEtsp, the cross-validation
approach did not reveal significant voxels.

Given the AC overlap between voice detection for the
original sounds and some of the AEs described above, we
investigated the similarity between the response profiles
of voice detection for the different levels of AEs compared
to the original voices. This was done with a searchlight
cross-classification approach, where a classifier was first
trained to discriminate the original voices from non-
voices and then tested on each of the AEs to separate AE-
based voice and nonvoice sounds (Fig. 3a, lower panels).
For AEe/s and AEscr, the classification was generalizable
from the original sound sets, indicating that the same
multivoxel representation that distinguishes the original
voices from nonvoices is shared with some AEs. For AEe/s,
we found a left AC cluster at the border of Te3 and Te1.1,
and clusters in right posterior Te3 and in MTG. For AEscr,
we found a similar left AC cluster located at the border

of Te3 and Te1.1. For AEp/a, AErip, and AEtsp, the cross-
classification also did not reveal significant voxels, which
could follow from an unsuccessful MVPA cross-validated
classification of voices from nonvoices within these AEs
(see above).

We then checked for AEe/s and AEscr whether all
patterns that discriminate voice from nonvoice equiv-
alents share this representation with the original
sounds (Fig. 3a, green outlines). For AEe/s, all voxels with
successful cross-classification are fully contained within
the areas where the cross-validation-based distinction
of voice versus nonvoice sounds within AEe/s was
significant. In turn, we found that for AEscr, local patches
where the cross-classification was successful were not
included in the within-AEscr cross-validation results,
indicating that the information representation of the
original voices can be more robust and generalizable
across AEs than the representation of scrambled voices.

To summarize the cross-classification results across
all AEs, the statistical maps from all AEs were averaged
(Fig. 3b). This revealed the highest accuracies in bilateral
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PTe and Te1.1/1.0 (green dashed line; left n = 323 voxels,
right n = 267), as part of the VA. The highest decoding
accuracies were found in Te1.0 and PTe, whereas Te3,
which marks the center of the refined core VA (see Fig. 3b,
left panel), shows moderate cross-classification results.
Using this MVPA approach, we thus were able to define
a subregion of the original VA that presumably decodes
acoustic information that is common to voice sounds but
also to several other AEs.

Region-based analysis in functional and
anatomical AC subregions
Besides its broad spatial extent in the AC, the VA was
formerly proposed to host 3 distinct neural subpatches
in both hemispheres located from posterior to anterior
STC (Pernet et al. 2015). A detailed functional definition
of these patches for voice processing is so far missing, but
they might respond differently and more selectively to
the presentation of AEs, compared to the original voices
and nonvoices. Here, we took an approach based on a
previous definition (Pernet et al. 2015) of the 3 patches
in posterior, mid, and anterior STC (Fig. 3c) and defined
these patches in each participant individually. Impor-
tantly, the original definition of these patches was not
based on peaks of the averaged activation across partici-
pants but showed the most likely location of participant-
specific peaks. We then performed the same MVPA anal-
ysis as described above on these ROI patches both in the
left and right AC. This analysis was not performed as a
searchlight analysis but on all voxels contained in the
ROIs.

Figure 3c shows the cross-validation results within
each sound set (i.e. original sounds, AEs) and the
cross-classification (training on the originals sounds
and testing on AEs) for the 3 VA patches (posterior,
middle, and anterior) in both hemispheres. We tested
for differences in classification accuracies for original
sounds and for each AE cross-validation (panels “within”)
and cross-classification accuracy from original sounds
to AEs (panels “across”) using t-tests; each accuracy
result was tested against chance-level, and we applied
FDR correction to account for multiple testing. While
all cross-validations of original sounds revealed above
chance classification accuracies in all 3 patches, within
the AEs this was only true for AEe/s (all patches but
left posterior VA patch) and the right anterior patch
in the cross-validation of AEscr. The cross-classification
approach only reveals above-chance classification
accuracy for AEe/s (in the right mid patch) and AEscr

(in the right anterior patch). The definition of these
patches was based on a GLM contrast of voice versus
nonvoice and might therefore bias the classification
towards the differentiation of voices and nonvoices. This
shortcoming was mitigated by performing the ROI-based
analysis on anatomically defined subregions of the AC
(Te1.0–1.2, PTe, and Te3) as an independent analysis
from more functionally defined subareas of AC (Fig. 3d,
FDR correction). A significant cross-validation approach

for the original sounds was found in all anatomical
subregions of the AC, except for left Te1.1. Significant
cross-classification results were obtained for some of the
AEs, such as AEe/s (bilateral Te1.2 and Te3, right Te1.0–1.1
and PTe) and AEscr (bilateral Te1.2 and Te3, right Te1.0).
Significant cross-classification results were obtained for
AEe/s (bilateral Te1.2/1.0, Te3), AEscr (bilateral Te1.2, right
Te1.0, left Te3), and AEp/a (bilateral Te1.2).

The broader VA can be potentially subdivided
into 3 functional subareas
Based on the results of the GLM and the MVPA analysis, a
potential subdivision of the broader VA emerges. The VA
in its original definition (Fig. 1a, left panel) usually covers
broad areas of the higher-order AC with a large spatial
extension from anterior to posterior STC and partly also
covering areas of primary and secondary AC. Based on
the results from the GLM interaction analysis (Fig. 2b),
a “core VA” seems this part of the original VA that is
involved in voice processing in its most specific sense
that cannot be reduced to any processing that is elicited
by the AEs (Fig. 4a). The MVPA analysis on the other hand
pointed to another subarea of the original VA that is
mainly involved in decoding acoustic features of sounds
both in original sounds and the AEs and could be poten-
tially termed as “acoustic VA” for detecting common and
distinctive sound patterns across sounds. The remaining
subparts of the original VA that were not covered by
the core VA and the acoustic were termed as “accessory
VA” here as its voice processing functions seem rather
unspecific.

To quantify the functional specificity of each of these 3
VA subareas in the left and right hemispheres, we finally
quantified effect sizes for each subarea by calculating
Cohen’s d based on the difference between the voice
and nonvoice sounds for the original sound category as
well as for every of the AEs. Mean beta estimates were
extracted for all voxels in each subarea for each par-
ticipant, and a group Cohen’s d was calculated (Fig. 4b).
The effect size was the largest for the left and right
core VA, and the effect size considerably dropped for
the AEs in the core VA, which resembles the interaction
effect from the GLM analysis (Fig. 2b). The effect sizes
in left and right acoustic VA and accessory VA were
much lower compared to the core VA, especially for the
original sound category as well as the AEe/s and AEscr
sounds. These effect size patterns highlight the notion
that voice processing is most specific in the core VA,
with some residual voice sensitivity in the accessory VA,
and stronger sensitivity to acoustic sound patterns in the
acoustic VA.

Discussion
Previous studies (Pernet et al. 2015; Aglieri et al. 2018)
provided a cortical description of the VA that included a
large spatial extension across many AC subregions and
a rather uniform functional voice specificity across all
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Fig. 4. Summary of findings. a) Parcellation of the original VA into subfields based on their specificity for voice processing. The core VA (red) originating
from the GLM interaction analysis (see Fig. 2b, green dashed line in the upper left panel) seems generic to voice processing since activity in these
regions cannot be reduced to acoustic patterns in the comparison of voice and nonvoice sounds and their AEs. An acoustic VA (green) defined by the
MVPA generalizations from original to AEs sounds (see Fig. 3b, green dashed line) seems to decode features that are relevant but not exclusive for voice
from nonvoice discrimination. The accessory VA based on the GLM (blue; see Fig. 2a, black dashed line in left panels) and the MVPA approach (gray;
see Fig. 3a, black dashed line) is only incidentally involved in voice processing. The dots denoted by a/m/p show the VA patches as previously defined
(Pernet et al. 2015) that all uniformly are located within the core VA and that all seem to have a uniform function for generic voice processing. Red
dashed line indicates potential voice-selective regions (see Fig. 2b). b) Effect size measures (Cohen’s d) for the 3 bilateral VA subareas (core VA, acoustic
VA, accessory VA) in AC based on the group effect for comparing voice sounds (or their AEs) against nonvoice sounds (or their AEs). The bilateral core VA
shows a highly increased effect size (Cohen’s d > 2.6) for original voice against nonvoice processing, which most likely originates from the interaction
contrast effects shown in Fig. 2b.

VA subareas, including the spatially more localized VA
patches. In the present study, we set out to refine the
cortical description of the VA and provide a differential
functional definition of VA subareas that are potentially
closer to the general working principles of the AC (Fig. 4a).
To this end, our study used a set of AEs to investigate the
functional distinction in the VA where 2 complementary
analysis types in the form of a univariate and a multi-
variate analysis were performed.

First, based on the results of our univariate GLM
approach and the effect size measures, we propose
a “core VA” that seems closest to a description of a
specialized cortical voice processing area and covers
only ∼30% of the cortical size of the original VA.
This confined definition of the core VA resulted from
the interaction analysis (Fig. 2b, top left panel) where
contrasting original voice against nonvoice sounds
elicited significantly larger activity than for the same
contrast for all AEs (Fig. 4b). The core VA covered large
parts of the higher-level auditory cortical field of Te3 and
extended into posterior part of the STS (pSTS). The core
VA thus seems to predominantly include cortical regions
for voice processing on a perceptual level that is beyond
a basic acoustic feature processing. However, there seem
to be some exceptions to this functional profile as we
will discuss below. Second, we propose a VA subfield that
we termed “acoustic VA” and that covers subparts of
Te1.2 and lateral PTe. The acoustic VA resulted from the
multivariate analysis approach, where a model trained to
separate AC patterns of voice from nonvoice sounds was
able to predict neural patterns for voice and nonvoice
synthesized sounds across all AEs, but mainly for AEe/s

and AEscr (Fig. 3b). Thus, the model generalized from the
original voices to AEs. Given this functional response
profile of the acoustic VA, we assume that this VA
subfield is involved in the acoustic analysis of sounds

for decoding acoustic information that is non-exclusive
to voice sounds and that might only subsequently help to
specifically detect voice sounds. Third, we propose that
the remaining cortical areas that are usually covered by
the original VA do only incidentally process voice sounds
with some residual voice sensitivity, and we termed this
area “accessory VA.” This incidental VA extends more
anteriorly and posteriorly from the core VA areas and
covers areas in the anterior and posterior STC. These
areas are rather associative cortical areas involved in
the processing of higher-order information from various
multimodal social signals but presumably also from
voice sounds (Perrodin et al. 2015; Tsantani et al. 2019).

Voice signals are specific and important acoustic
objects for human social interactions, and the existence
of a specialized brain area for voice processing seems
intuitive. Yet, the present study suggests that the cortical
spatial extent of the original VA might have been largely
overestimated and that only a small part of the VA
(∼30%) might be termed to be generically involved in
voice processing. We termed this refined area as the
“core VA” as it showed higher activity for voice sounds
beyond any acoustically similar sounds. This centrally
located part of bilateral Te3 seems to be involved in
the processing and discrimination of auditory objects
(Leaver and Rauschecker 2010) and especially of voice
sounds as a specific type of auditory object (Perrodin
et al. 2011; Bizley and Cohen 2013). The Te3 also functions
as a region for voice processing that is downstream to
the processing of more basic acoustic features that are
characteristic of voice sounds (Lewis et al. 2009; Leaver
and Rauschecker 2010). Given these results, the area of
the core VA inside Te3 seemed like a generic cortical voice
processing field.

This core VA could potentially represent a “voice-
selective” subarea of the AC as proposed in previous
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studies (Belin et al. 2000; Pernet et al. 2015). We tested
for such voice-selectivity in the AC and especially in
the broader VA by determining the response magnitude
for original voice sounds across voxels and compared
the response magnitude for all AEs with the original
voice sounds. A voxel was classified as voice-selective
if none of the magnitudes for all AEs was higher than
33%. This would mean that a region shows activity for
voice sounds that is several times higher than for any
other sound presented here. A first finding was that
none of the voxels showed consistent voice-selectivity
across all participants. Although we found regions of
voice-selectivity in some AC voxels in each participant,
there was reduced spatial overlap of the regions, with
the highest consistency of n = 13 out of the total 25
participants (Supplementary Fig. S2b). These regions
with the highest probability of voice selective voxels
across participants were located in bilateral PPo as part
of secondary AC as well as in anterior STC as part of
higher-order AC in Te3. The latter region in anterior
STC partly overlapped with the region that we defined
as core VA, which could point to the notion that part
of the core VA is indeed voice-selective, but with the
limitation that voice-selectivity was only at a small-to-
medium level in our study. The potential voice-selective
region in PPo was located outside our core VA. The PPo
is a relatively unexplored area in sound and especially
voice processing (Warren et al. 2003; Kim and Knösche
2016), but it was located within our broader accessory
VA. The PPo is sensitive to musical sounds, probably
based on decoding pitch chroma in sounds (Kim and
Knösche 2016), which is also an important feature for
voice sound detection and discrimination (Latinus and
Belin 2011). The core VA might therefore be extended to
PPo, potentially ranging into an anterior voice patch in
anterior STC as a central cortical voice processing node
(Pernet et al. 2015; Belin et al. 2018). The exact functional
role of the PPo in voice processing and its precise level
of voice-selective however might have to be determined
in future studies, also including a cross-comparison to
animal data (Petkov et al. 2008).

The results that we obtained with the multivoxel anal-
ysis indicated that the other parts of Te3 are nevertheless
also involved in some type of acoustic analysis of sound
patterns, especially in the left AC. This overlaps anatom-
ically with the mid and anterior VA patches (Pernet et al.
2015), which would point to the notion that there is some
functional processing difference between the VA patches.
When we trained a classifier to separate neural pat-
terns of voice from nonvoice sounds, we first found high
decoding accuracies for separating the original sounds
in mid and anterior VA patch as well as in Te3. This is
indicative of a specialization for voice processing in these
regions. Importantly, the VA patches were identified by
a voice/nonvoice contrast, which renders them noninde-
pendent from decoding accuracies by potentially inflat-
ing the voice versus nonvoice classification accuracy, but
the analysis provides a direct comparison with earlier

studies. Second, using this trained classifier to also pre-
dict neural pattern discriminations for the AEs, we found
significant discrimination accuracies in Te3 and left mid
VA patch for AEe/s sounds as well as in left Te3 and
anterior VA for AEscr sounds. This activation pattern was
also confirmed by the simple contrasts between the AE-
voice and AE-nonvoice sounds for the AEe/s and AEscr

categories (Fig. 2a). Thus, the data of our MVPA analysis
point to some differential acoustic representation in left
VA patches that might support voice discrimination. A
neural cross-classification from original sounds to AEe/s

(preserving the global spectrotemporal profile of original
sounds) was possible in the left mid VA patch, while
this cross-classification to AEscr (preserving spectral con-
tent) was possible in the left anterior VA patch. This
suggests that different VA patches might represent form
and content of spectral information that is necessary to
discriminate voices from nonvoices (Moerel et al. 2013;
Norman-Haignere et al. 2015).

The AEe/s and AEscr were the AEs that preserved
most of the acoustic information of the original sounds,
including the perceptual impression of a “voice-similarity”
of the sounds, as visible from the results of perceptual
ratings (Fig. 1b). This acoustic information might thus
serve to generate a first but insufficient prediction of a
sound as potentially originating from a voice source, and
this first prediction might then need to be confirmed
by further neural processing (Pachitariu et al. 2015;
Heilbron and Chait 2018). This final confirmation for this
first prediction could be provided by processes in other
dedicated subareas of Te3, but potentially also by the
pSTS as the second major and potentially downstream
subfield covered by the core VA (Rauschecker and Scott
2009).

For the posterior part of the core VA, the MVPA
showed significant decoding accuracies for separating
the original voice from nonvoice sounds, but no transfer
of this information to separate these categories for
the AE in the cross-classification approach. The pSTS
thus might be indeed involved in a generic voice sound
detection. The pSTS is relevant for classifying auditory
objects (Liebenthal et al. 2010) and auditory commu-
nication signals (Shultz et al. 2012) but also for many
subfunctions of social cognition (Deen et al. 2015) that
are also relevant for the classification of and the social
cognition from voices (Kriegstein and Giraud 2004). The
pSTS also includes fields for multisensory processing of
social information from voices accompanied by relevant
information on other sensory modalities (Kreifelts et al.
2007; Chandrasekaran and Ghazanfar 2009). The part of
the core VA located in the pSTS might therefore classify
sounds as voice signals but might also propagate this
information for further detailed processing of voice
information and social analysis. To summarize the
findings on the core VA, we could confirm that this brain
region seems specialized for voice processing beyond
decoding basic acoustic differences of voice and nonvoice
sounds as previously observed (Agus et al. 2017).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac128#supplementary-data
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However, while these authors (Agus et al. 2017) found
that the original VA still reliably distinguishes voices
from nonvoices when controlling for acoustic features
(pitch, HNR, temporal rate, and spectral scale) and
propose the VA to be specific to voices beyond acoustic
feature analysis, our core VA is smaller than the original
VA and is assisted by a distinctive acoustic VA and
accessory voice fields.

Adjacent to the core VA that covered a part of the orig-
inal VA, we identified an area that we termed acoustic VA
that was located superior to the core VA at the intersec-
tion of Te1.0/1.2 and lateral PTe. The acoustic VA covered
16.9%–19.5% of the original VA. We termed this VA sub-
field as acoustic VA, because the MVPA analysis showed
that a classification model using information from neu-
ral patterns for separating voice from nonvoice sounds
was able to separate the same categories in the AEs that
preserved some important acoustic features and pat-
terns of the original sounds. The acoustic VA thus seems
to analyze acoustic information that is contained in, but
is not exclusive to, voice sounds. Interestingly, when we
performed the MVPA analysis on anatomical subregions
of AC, no significant cross-classification results were
found for the entire region of the PTe. Although neural
patterns for original voice and nonvoice sounds were
discriminative in bilateral PTe, this information did not
generalize to the AEs in the cross-classification approach
in PTe. While this might rather indicate that there is
no acoustic information shared between original sounds
and the AEs to elicit similar neural patterns in these
regions that were underlying the acoustic VA, we have
to note that the acoustic VA only covered a small part
of these anatomical regions, especially in lateral and
anterior PTe. PTe has been associated with early audi-
tory processing and showed similar activity for listening
to nonvoices (tones) and voices (words) (Binder et al.
1996). Unlike the medial PTe, the lateral part of PTe
seems indeed more sensitive to simple acoustic sound
patterns than for complex auditory objects (Griffiths and
Warren 2002), and anterior PTe also seems sensitive to
pitch changes in sounds (Warren and Griffiths 2003) as a
potential relevant cue for voice signal detection. Unlike
for the PTe, the lateral part of primary AC on Te1.2
showed extensive cross-classification results, also with
AEs (i.e. AEp/a) that were perceptually quite distant from
the original sounds, which strongly qualifies this region
as an acoustic VA.

The core VA and the acoustic VA described above
covered parts of the original VA. We termed the remain-
ing cortical area of the original VA that was not cov-
ered by the core and the acoustic VA as the accessory
VA. The accessory VA is voice sensitive given its higher
neural activity when comparing original voices against
nonvoices, but it does not seem to have a central and
mandatory functional role in voice processing as com-
pared to the core and acoustic VA. The accessory VA
was covering the remaining 47.4%–52.7% of the original
VA and extended into anterior and posterior STC. These

anterior and posterior regions of the VA were also the
cortical areas that could not be explained by original
voice processing in the interaction analysis against any
of the AEs. Even for the AEs that were most distant to the
original sounds (AEp/a, AErip, and AEtsp), there were some
parts, especially in anterior STC and the PPo, for which
the original voices did not reveal higher activity than the
AEs. The PPo is associated with many sound processing
functions, such as pitch chroma (Warren et al. 2003) and
melodic aspects of human vocalizations (Angulo-Perkins
and Concha 2019). Unlike the PPo, the very anterior and
posterior regions of STC are assumed to be higher-order
association areas, especially for the multimodal integra-
tion of social information (Kreifelts et al. 2007; Chan-
drasekaran and Ghazanfar 2009) and for further extrac-
tion of social and potentially linguistic information from
voice signals after the stage of voice detection (Milesi
et al. 2014; Perrodin et al. 2015).

Referring to this general level of processing voice sig-
nals, voices can be discriminated from nonvoices not
only on their perceptual and neural levels as described
above, but they might also critically differ in their general
acoustic patterns. We therefore finally applied a similar
SVM decoding analysis as we used for the neural data
to the acoustic profile of voice and nonvoice sounds.
Using a cross-validation approach to separate original
voices from nonvoices based on 88 central voice features,
we revealed the highest discrimination accuracy for the
original sounds compared to the same procedure applied
to each of the AEs. For the AEs, the AEscr revealed the
highest discrimination accuracy, followed by AEp/a and
AEe/s. This order of discriminability did not exactly fol-
low the order of neural effects of the AEs, where AEe/s

revealed the strongest neural effects close to the original
sounds, followed by AEscr and AEp/a. Thus, there seemed
to be no large match between the level of the acoustic
discriminability of the AEs and their neural signature.
While a neural association with acoustic pattern discrim-
ination in primary AC is a common observation (Kumar
et al. 2014), the Te3 was the region with broad coverage
of the core VA that prima facie seemed the most distant
from the acoustic pattern discrimination level but did
include some processing properties for complex spectral
patterns inherent to sounds and specifically voices.

Given this acoustic pattern sensitivity in Te3, a final
notion concerns the differentiation into 3 bilaterally
symmetric VA patches by previous studies (Pernet et al.
2015; Belin et al. 2018). Although this differentiation
into separate VA patches would point to a functional
differentiation inside the VA, investigating the functional
properties of the VA patches is so far missing. Given that
in our study all VA patches were located inside the core
VA with a rather uniform function of discriminating
voice from nonvoice sounds at a high level of neural
abstraction, a clearer functional description and func-
tional differentiation of the VA patches seem warranted.
However, the data of our multivariate analysis point
to some differential acoustic representation in left VA
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patches that might support voice discrimination. A
neural cross-classification from original sounds to AEe/s

(preserving the global spectrotemporal profile of original
sounds) was possible in the left mid VA patch, while this
cross-classification to AEscr (preserving spectral content)
was possible in the left anterior VA patch. Thus, different
VA patches might represent form and content of spectral
information that is necessary to discriminate voices from
nonvoices (Moerel et al. 2013; Norman-Haignere et al.
2015).

Finally, our study comes with 3 potential limitations.
First, the original nonvocal sounds were more similar to
their AEs as original vocal sounds to their respective
AEs according to the perceptual ratings results. It
could be that the voice signals contain certain acoustic
features to a greater extent than the nonvoice sounds,
which reduces the similarity to their AEs when only
preserving these acoustic features. The creation of AEs
only preserving certain acoustic features thus might
have differentially affected vocal and nonvocal sounds.
However, this notion and potential limitation seem rather
implausible, as in our analysis no activation in certain
regions showed higher activity by contrasting AEs to
their original sounds ([AEvoice > AEnonvoice] minus
[ORIGvoice>ORIGnonvoice]). Second, we could show
that envelope and spectrum preserved AEs as well as
scrambled sounds seemed to carry acoustic information
relevant for the brain to distinguish voice from nonvoice
sounds, which was possible to a lesser degree only for
AEp/a, AErip, and AEtsp. These latter AEs appeared to be
less similar to the original sounds (perceptual ratings),
giving credence to the above notion of a differential
relevance for certain sound features. However, we cannot
rule out that other not investigated acoustic features
might be represented by subareas of the VA, especially
the accessory parts of the original VA. Furthermore, as
the refined core VA, which represents voice processing
specificity beyond sensitivity to certain acoustic features,
is spatially much smaller than the original VA, the acces-
sory areas might indeed process acoustic information
of AEp/a, AErip, and AEtsp. But this acoustic information
might not be sufficient to discriminate between voice
and nonvoice sounds. Third and finally, the original set
of stimuli contained 29 speech and 41 nonspeech stimuli
for the category of vocal stimuli. Previous studies have
shown that speech sometimes elicit larger AC activity
than nonspeech vocal stimuli (Norman-Haignere et al.
2015; Deen et al. 2020). Some of the neural effects of
processing voices and their AEs reported here might
therefore be driven more strongly by processing speech
rather than nonspeech vocal sounds and need to be
further explored in future studies. However, most of
the speech stimuli used here used speech material
of rather basic linguistic structure (i.e. simple words
or interjections in a foreign language) that elicit only
basic speech-specific processing dynamics compared to
complex words and sentences.

Supplementary material
Supplementary material is available at Cerebral Cortex
online.
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