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Functional imaging has been used extensively to identify and validate disease-specific networks as biomarkers in neurodegenerative
disorders. It is not known, however, whether the connectivity patterns in these networks differ with disease progression compared
to the beneficial adaptations that may also occur over time. To distinguish the 2 responses, we focused on assortativity, the tendency
for network connections to link nodes with similar properties. High assortativity is associated with unstable, inefficient flow through
the network. Low assortativity, by contrast, involves more diverse connections that are also more robust and efficient. We found
that in Parkinson’s disease (PD), network assortativity increased over time. Assoratitivty was high in clinically aggressive genetic
variants but was low for genes associated with slow progression. Dopaminergic treatment increased assortativity despite improving
motor symptoms, but subthalamic gene therapy, which remodels PD networks, reduced this measure compared to sham surgery.
Stereotyped changes in connectivity patterns underlie disease progression and treatment responses in PD networks.

Key words: brain networks; FDG PET; graph theory; metabolic connectivity; Parkinson’s disease.

Introduction
Disease-related network patterns identified with func-
tional brain imaging are increasingly being used to gain
insight into neurodegenerative disorders and to track dis-
ease progression and treatment responses in patient pop-
ulations (Meyer et al. 2017; Woo et al. 2017; Niethammer
et al. 2018; Schindlbeck and Eidelberg 2018; Wilson et al.
2020). Given the brain’s enormous capacity to compen-
sate for dysfunction—network changes are apparent on
imaging long before the onset of symptoms—it is difficult
to determine whether the novel connections that arise
reflect underlying pathology or an adaptive response to
the disease. Such studies are particularly challenging
in neurodegenerative disorders, such as Parkinson’s and
Alzheimer’s, where it is difficult to identify individuals
decades before they develop symptoms unless they have
a rare, inherited form of the disorder.

In the case of Parkinson’s disease (PD), crosscompar-
isons have begun to provide insight into the connec-
tivity patterns that are associated with more aggres-
sive or more benign disease courses. The dominant dis-
ease network, termed the PD-related covariance pat-
tern (PDRP), consists of nodes that are either more or
less metabolically active than in healthy subjects, and
these differences from baseline intensify so that pattern

expression increases with disease progression (Spetsieris
and Eidelberg 2011; Vo et al. 2017; Schindlbeck and Eidel-
berg 2018). Although PDRP (which correlates primarily
with motor dysfunction) and its cognition-related coun-
terpart network, the PD-related cognitive pattern (PDCP)
(Schindlbeck and Eidelberg 2018; Schindlbeck et al. 2020),
were identified in patients with idiopathic PD, we recently
found that patients with PD caused by the LRRK2 G2019S
mutation or GBA1 variants express the same disease
networks (Schindlbeck et al. 2020). Although this makes
sense (after all, the patients have clinical and patholog-
ical features of sporadic PD regardless of genotype), we
speculated that a deeper analysis of functional connec-
tivity within the PDRP and PDCP spaces might provide
clues as to why LRRK2-associated PD tends to progress
more slowly, and GBA1-associated PD tends to progress
more rapidly, than sporadic disease. This turned out to
be the case: Both genotypes were associated with abnor-
mal increases in connectivity compared to idiopathic PD,
but the pattern was quite different. LRRK2 mutation led
to the formation of additional connections within the
network core, particularly between the cerebellum and
putamen, which may represent protective adaptations
(Schindlbeck et al. 2020). GBA1 variants, on the other
hand, were associated with gain in connections outside
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the core, involving mainly cortico-cortical projections
(Schindlbeck et al. 2020). Of note, conventional network
metrics, such as degree centrality, clustering coefficient,
and characteristic path length, did not distinguish the
slow and rapidly progressive PD genotypes.

This led us to ask whether other descriptors of
functional connectivity within PD networks or sub-
graphs would be more informative. Specifically, we
hypothesized that pathological connectivity patterns
would be distinguished by their assortativity. Defined
as the link-averaged correlation coefficient of degree
centrality across pairs of connected nodes, assortativity
can be thought of as an index of connectional diversity
within a network (Peel et al. 2018). When a network
is dominated by links between nodes of different
degree centrality (negative degree pair correlation), it
is termed dissortative. Such networks are robust and
transfer information efficiently along the graph. When
connections predominate between nodes of similar
degree centrality, the network is termed assortative
(positive degree pair correlation). Assortative networks
are more vulnerable to random attack than their
disassortative counterparts (Zhou et al. 2012) and
information transfer is comparatively less efficient
(Newman 2003; Noldus and Van Mieghem 2015; Barabasi
2016; Murakami et al. 2017). Given these properties,
we hypothesized that pathological responses, such as
those observed over time in patient populations, would
be associated with increasing assortativity of disease
networks. Adaptive responses, on the other hand, would
be accompanied by lower assortativity or disassortativity
in the disease network space. To test this hypothesis,
we measured assortativity for the PDRP and PDCP
as a function of disease progression, genotype, and
response to 2 different treatments: intravenous levodopa
infusion, which acutely improves motor symptoms, and
subthalamic AAV2-GAD gene therapy, which remodels
motor networks over time (Niethammer et al. 2018).

Materials and methods
Study samples
Network metrics were computed for previously validated
motor and cognition-related PD topographies described
elsewhere (Woo et al. 2017; Schindlbeck and Eidelberg
2018). Group differences in the measures, as well as
the effects of disease progression, genotype, and treat-
ment were explored in previously published datasets ref-
erenced below (Supplementary Tables S1A and S2E). PD
patients in each sample were diagnosed according to UK
Parkinson Disease Society Brain Bank criteria (Hughes
et al. 1992). The subjects were evaluated at the time
of imaging according to the Unified Parkinson’s Disease
Rating Scale (Fahn and Elton 1987) at least 12 h after the
last medication dose. Ethical permission for these studies
was obtained from the Institutional Review Boards of the
participating institutions. Written consent was obtained

from each subject following detailed explanation of the
procedures.

Study cohorts
Comparison of network metrics in PD and healthy control
subjects

We studied 96 PD patients and 22 age- and gender-
matched healthy control (HC) subjects (HC1, n = 22) who
were scanned with [18F]-fluorodeoxyglucose (FDG) PET
at North Shore University Hospital as part of a long-
term diagnostic project (Tang, Poston, Eckert, et al. 2010)
(Supplementary Table S1A). For validation, we studied an
independent cohort of 146 PD and 39 HC subjects who
were scanned with FDG PET as part of 2 subsequently
published ascertainment studies (Tripathi et al. 2016; Rus
et al. 2020) (Supplementary Table S1B).

Change in network metrics with disease progression
Longitudinal progression

We studied a longitudinal cohort of early PD patients
(n = 15) who were scanned with FDG PET at baseline,
24 months and 48 months, and a matched group of HC
subjects (HC3; n = 15) (see Supplementary Table S2A).
Limited metabolic data from these subjects have
appeared previously (Huang et al. 2007).

Comparison of groups with increasing symptom duration

We compared 3 age- and gender-matched groups
of PD patients with motor symptoms of short (0–
4 years; n = 20), intermediate (5–9 years; n = 20), and
long (≥10 years; n = 20) duration, and age- and gender-
matched HC subjects (HC4; n = 20) (see Supplementary
Table S2B).

Effects of PD genotype on network metrics

We studied patients with PD associated with either the
LRRK2-G2019S mutation (PD-LRRK2; n = 14) or GBA1 vari-
ants (PD-GBA; n = 12), and matched HC subjects (HC5;
n = 14) (Supplementary Table S2C). Clinical details and
limited network data from these patients have appeared
previously (Schindlbeck et al. 2020).

Effects of levodopa infusion on network metrics

We studied PD subjects (n = 14), who underwent
metabolic imaging in the unmedicated state (“off”)
and during intravenous levodopa infusion (“on”), and a
matched group of HC subjects (HC6; n = 14)
(Supplementary Table S2D). In each patient, the lev-
odopa dose was titrated to achieve maximal clinical
benefit, without eliciting involuntary movements. Exper-
imental details and limited metabolic data from these
patients have appeared previously (Jourdain et al. 2016).

Effects of subthalamic gene therapy and sham surgery on
network metrics

We analyzed baseline and 12-month FDG PET data from
PD patients, who were randomized to either subthala-
mic AAV2-GAD (n = 16) or sham surgery (n = 21) as part
of a double-blind surgical trial, and a matched group
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of HC subjects (HC7; n = 22) (Niethammer et al. 2017)
(Supplementary Table S2E). The results of graph analysis
of the gene therapy-induced network topography have
appeared previously (Niethammer et al. 2018).

Imaging
FDG PET imaging
Study participants at North Shore underwent metabolic
imaging with FDG PET on a GE Advance tomograph
(General Electric, Milwaukee, WI) at The Feinstein
Institutes for Medical Research (Manhasset, NY) as
described in detail elsewhere (Spetsieris and Eidelberg
2011; Mattis et al. 2016). Study participants from other
centers underwent metabolic imaging on their respective
FDG PET platforms (Tripathi et al. 2016; Niethammer
et al. 2017; Rus et al. 2020). In all centers, subjects
fasted overnight prior to PET imaging; antiparkinsonian
medications were withheld for at least 12 h before
the scanning session. Scans from each subject were
realigned and spatially normalized to a standard Mon-
treal Neurological Institute (MNI)-based PET template
and were smoothed with an isotropic Gaussian kernel
(10 mm) in all directions to improve the signal-to-noise
ratio. Image processing was performed using Statistical
Parametric Mapping (SPM5) software (Wellcome Trust
Centre for Neuroimaging, Institute of Neurology).

Network analysis
PD-related networks

We used previously validated PD-related metabolic pat-
terns associated with motor and cognitive dysfunction
(PDRP and PDCP, respectively) (Niethammer and Eidel-
berg 2012; Schindlbeck and Eidelberg 2018).

These patterns were identified using spatial covari-
ance analysis of FDG PET data from PD patients and HC
subjects as described previously (Spetsieris and Eidelberg
2011; Spetsieris et al. 2015; Schindlbeck et al. 2021).
Based on prior graphical analysis, we used nodal valence
(region weight sign) to partition both networks into core
and periphery subgraphs (Ko et al. 2018). For the PDRP
(38 nodes according to the AAL atlas (Tzourio-Mazoyer
et al. 2002) (see below; Supplementary Table S3A), the 20
nodes with positive metabolic valence (i.e. those with
region weights ≥ 1.0) were found to form a discrete
topological core zone (Ko et al. 2018; Schindlbeck et al.
2020), whereas the remaining 18 nodes had negative
valence (i.e. region weights ≤ −1.0) and comprised
the network periphery (Schindlbeck et al. 2020). For
PDCP (35 nodes; Supplementary Table S3B), the core
was composed of the 16 nodes with negative valence
(Schindlbeck et al. 2020), which corresponded to the
cortical core of the default mode network (Spetsieris
et al. 2015; Betzel et al. 2017; Schindlbeck and Eidelberg
2018). The assignment of each PDRP and PDCP node to
the core or periphery of the respective network is given
in Supplementary Table S3A and B. For both networks,
assignments based on metabolic valence agreed well
with the results of modularity maximization and

information theoretic community detection algorithms
(Schindlbeck et al. 2020).

AAV2-GAD-related pattern

We utilized the previously reported AAV2-GAD-related
metabolic pattern (GADRP) identified in trial participants
scanned with FDG PET at baseline and after subthalamic
gene therapy (Niethammer et al. 2017, 2018). This
network was extracted from the metabolic data using
ordinal trends canonical variates analysis, a form of
supervised principal component analysis (Habeck et al.
2005). The details of this analysis and its results are
provided elsewhere (Niethammer et al. 2018). The GADRP
was composed of 14 nodes according to the AAL atlas
(Supplementary Table S3C). Because of its relatively
small size, this network could not be reliably partitioned;
graphical analysis was therefore performed on the
network as a whole. Preliminary graph theory analysis of
the GADRP has appeared previously (Niethammer et al.
2018). In the current study, we extended the analysis to
the PDRP and additionally measured graphical metrics
for this space in the various groups and time points.

Graph theory and network metrics
Defining nodes and edges

As noted above, for each network, nodes were defined
based on the AAL atlas (Tzourio-Mazoyer et al. 2002) in
which we parcellated the 3D image of the whole brain,
normalized to MNI space. This produced 95 standardized
anatomical regions-of-interest (ROIs) as described previ-
ously (Ko et al. 2018; Niethammer et al. 2018; Schindlbeck
et al. 2020). For the significant clusters identified by
voxel-wise network analysis, we identified corresponding
AAL nodes (see Supplementary Table S3A–C for listings).
For each node, we computed normalized metabolic activ-
ity for FDG PET scans.

Different network spaces were used in the various
analyses. Most of the studies were analyzed in PDRP
space for FDG PET (Spetsieris and Eidelberg 2011). As
mentioned above, comparison of PD genotypes (PD-
LRRK2 vs. PD-GBA) relied on prespecified subnetworks
of the PDRP and PDCP (i.e. network core and periphery)
defined in an earlier study (Schindlbeck et al. 2020).
Lastly, in addition to the PDRP, we used the treatment-
induced AAV2-GAD gene therapy network (GADRP)
reported previously (Niethammer et al. 2018) to assess
the changes in graph metrics that occurred with this
intervention and with sham surgery in this network
space and in the PDRP. The details of each of these
networks are provided in Supplementary Table S3A–C.

In this study, we used AAL ROI data from FDG PET
(globally normalized regional metabolic activity) to con-
struct matrices of pairwise correlations. We used boot-
strap methods (in-house Matlab script; MATLAB R2020a)
to generate 100 samples for each group. For each iter-
ation, we computed pairwise nodal correlation coeffi-
cients (Pearson correlations). The median values of the
iterates (100 bootstrap correlation estimates) were used
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to create an adjacency matrix for the network/subgraph
in each group. These calculations were performed using
the Machine Learning Toolbox in MATLAB R2020a.

Network metrics

To assess group differences in connectivity parameters
within the relevant network spaces, we used undirected
graphs for simplicity in hypothesis testing and compu-
tational ease. The following metrics were computed on
weighted graphical links:

1. Assortativity coefficient: The correlation coefficient
between the degrees of all nodes on two opposite
ends of a link (Newman 2003; Noldus and Van
Mieghem 2015; Barabasi 2016). The details of cal-
culating the assortativity coefficient are described
elsewhere (Barabasi 2016). For a given network, we
consider assortativity in a group of subjects to be
increased if the assortativity coefficient, which is
described as assortative for positive values, neutral
for ≈0, or disassortative for negative values, is sig-
nificantly elevated compared to values for the same
network computed in a different group. Analogously,
assortativity is considered to be reduced when the
coefficient computed for the same network is lower
than in a comparison group.

2. Degree centrality: The number of connections
(edges), within the network or subgraph, divided by
the total number of nodes in the same space.

3. Clustering coefficient: A measure of the likelihood
that the nearest neighbors of a node will also be
connected.

4. Characteristic path length: The shortest path length
between 2 nodes averaged over all pairs of nodes
in a given network. High characteristic path length
implies less efficient information transfer through
the network (Newman 2010; Rubinov and Sporns
2010).

5. Small-worldness: The ratio of clustering coefficient
to characteristic path length, which is normalized
to corresponding parameters from an equivalent
random graph (Betzel et al. 2017). This measure
quantifies the ratio of segregation to integration of
information sources in the network space.

These parameters were computed using the Brain
Connectivity Toolbox (Rubinov and Sporns 2010) and an
in-house Matlab script (MATLAB R2020a). We present
assortativity and the other network metrics over a
range of connectivity thresholds as described previously
(Niethammer et al. 2018; Schindlbeck et al. 2020). In the
current study, thresholds ranged from r = 0.3–0.6, at 0.05
increments, corresponding to graph densities between
25% and 60% (Niethammer et al. 2018; Schindlbeck et al.
2020). At lower thresholds (r < 0.3, graph density > 60%),
however, group differences may be difficult to discern
because of the inclusion of random, nonspecific links. At
higher thresholds (r > 0.6, graph density < 25%), graphs
may disconnect and distort group comparisons. By

plotting the results over a range of thresholds, we
demonstrated that group differences in a given metric
were robust beyond 2 or 3 adjacent levels.

Visualization

To visualize assortativity effects along a graph, we
generated 2D displays of the joint probability distribution
of remaining degree (i.e. the total degree centrality for
each node minus the connected edge) for random pairs
of nodes in the network space (Newman 2003; Barabasi
2016). This was done using the bivariate Gaussian copula

with the correlation matrix
∑ =

[
1 ρ

ρ 1

]
. Poisson

marginal distributions (n=1,000 random numbers,
mean = λ) were computed for each variable, where ρ

is the degree–degree correlation coefficient and λ is
the average degree of the network (Newman 2003;
Barabasi 2016). These 2 parameters were estimated
from the empiric data from each group and network.
The simulation steps were performed using an in-house
Matlab script (Statistics and Machine Learning Toolbox,
MATLAB R2020a).

To visualize differences in connectivity patterns across
groups or conditions, graphs were displayed at the min-
imum threshold (level 1, r = 0.30) for a given network.
For assortative configurations (mean ρ > 0), an exemplar
with assortativity coefficient between the mean value
and the mean + 0.5 standard deviation (SD) was selected
from the bootstrap samples described above. For disas-
sortative configurations (mean ρ < 0), an exemplar was
selected with assortativity coefficient between the mean
value and the mean − 0.5 SD. Graphical configurations
were constructed using an in-house Matlab script (math-
ematics/graph and network algorithms toolbox, MATLAB
R2020a).

Lastly, to assess differences in nodal organization
between groups and/or conditions, we ordered the nodes
hierarchically according to degree centrality. For each
configuration, we computed the Spearman rank-order
correlation coefficient for the median graph at minimum
threshold (r = 0.30). Significant correlations (P ≤ 0.05)
reflected similar nodal hierarchy across groups or
conditions. Uncorrelated rank order implied the presence
of structural differences in the 2 graphs.

Statistical analysis
Network expression values were compared across groups
using Student’s t-test or 1-way analysis of variance with
Tukey–Kramer HSD post hoc tests for multiple compari-
son correction. For the graph analysis, the bootstrapped
data or subject data were used to assess group differ-
ences in the network parameters for the relevant sub-
graphs. Group differences in each of the parameters were
evaluated using the general linear model with post hoc
Bonferroni tests across graph thresholds. These analyses
were performed using IBM SPSS Statistics for Windows,
version 21 (IBM Corp., Armonk, NY, USA) or GraphPad
Software (Version 7.0, La Jolla California, USA). Results
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Fig. 1. PDRP assortativity is increased in PD patients. Assortativity measurements in the PDRP space are elevated in FDG PET scans from 96 clinically
ascertained PD patients compared to 22 HC subjects scanned at the North Shore site (Tang, Poston, Eckert, et al. 2010) (Supplementary Table S1A). PDRP
assortativity was likewise increased in FDG PET scans from a combined validation cohort comprising 146 PD and 39 HC subjects from 2 other sites
(Supplementary Table S1B, Supplementary Fig. S1). Consistent group differences were not seen for the other PDRP network metrics (Table 1). (Levels
1–7 correspond to cutoff graph thresholds of r = 0.3–0.6 in increments of 0.05. ∗∗∗P < 0.001, compared to HC, corrected for multiple comparisons (see
Materials and methods)).

were considered to be significant for P < 0.05, with Bon-
ferroni correction for multiple independent comparisons.

Results
Network assortativity is higher in PD than in HCs
We measured PDRP assortativity, degree centrality, clus-
tering coefficient, characteristic path length, and small-
worldness in FDG PET scans previously taken from 96 PD
patients and 22 HC subjects (Supplementary Table S1A)
(Tang, Poston, Eckert, et al. 2010). We evaluated the same
metrics in FDG PET scans from an independent group of
146 PD and 39 HC subjects (Supplementary Table S1B)
studied under similar conditions (Tripathi et al. 2016;
Rus et al. 2020). Group-level analysis showed that PDRP
assortativity was greater in PD than in HCs (PCORR < 0.001
when compared to HC in both populations) (Fig. 1,
Supplementary Fig. S1A and B, Supplementary Table
S4A and G). Analysis of the other network metrics
revealed only inconsistent differences between the
patient and control samples (Table 1).

Network assortativity increases with disease
progression
If high assortativity in disease networks, such as PDRP,
indicates pathological patterns of connectivity, we would
expect to see steady increases in this measure over
time. We therefore measured PDRP assortativity in a
group of 15 early-stage PD patients who underwent
longitudinal metabolic imaging at baseline, 24 months,
and 48 months (Huang et al. 2007; Tang, Poston, Dhawan,
et al. 2010) (Supplementary Table S2A). Assortativity
(Fig. 2A, Supplementary Table S4B) was elevated in the
PDRP space at baseline and 24 months (PCORR < 0.001

at both time points when compared to HC subjects),
with further increases at 48 months (PCORR < 0.001 when
compared to baseline and 24 months as well as HC).
We next performed a cross-sectional comparison of age-
and gender-matched groups of PD patients with early (0–
4 years), intermediate (5–9 years), and long (>10 years)
duration of symptoms, along with HC subjects (n = 20
in each group; Supplementary Table S2B). PDRP assorta-
tivity (Fig. 2B, Supplementary Table S4B) was elevated
in all 3 PD groups (PCORR < 0.001); values were higher
(PCORR < 0.001) with each successive increment in disease
duration.

To visualize the changes in PDRP assortativity seen
with advancing disease, we constructed 2D matrix dis-
plays of degree–degree correlations in the PDRP space
(Fig. 2C) for the early and late PD groups and the HC sub-
jects. Each of the patient groups exhibited an assortative
connectivity pattern; this relationship, demonstrated by
an elliptical joint probability distribution (see Materials
and methods), was more pronounced in late than in early
PD patients but was not present in healthy subjects.

Genotypic differences in assortativity parallel the
rate of clinical progression
We next asked whether disease network assortativity dif-
fered for clinically matched PD patients carrying genetic
variants for slower (LRRK2) or faster (GBA1) disease pro-
gression (Davis et al. 2016; Saunders-Pullman et al. 2018;
Schindlbeck et al. 2020). As noted in the introduction,
we recently found that although both genotypes express
the same disease networks as sporadic PD, the 3 groups
differ in the pattern of connectivity within the disease
network spaces (Schindlbeck et al. 2020). We therefore

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac110#supplementary-data
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Table 1. Group differences in PDRP network metrics.

Cohort (PD/HC)a Assortativity
coefficient

Degree centrality Clustering
coefficient

Characteristic
path length

Small-worldness

North Shore (96/22) +++ +++ 0 +++ 0
Multisite (146/39) +++ +++ −− +++ −−−

Increase: +++ = P < 0.001 (PD > HC) for comparison of PD with HC (see text). Decrease: −− and −−− = P < 0.01 and P < 0.001 (PD < HC). No difference = 0
(PD = HC). aSee Supplementary Table S1A and B.

measured assortativity in the PDRP and PDCP networks
in these patient groups, which were carefully matched so
that the observed network effects were unlikely to have
been caused by differences in age or motor symptoms
(Supplementary Table S2C).

Assortativity in the PDRP space (Fig. 3A, Supplemen-
tary Table S4C) was elevated for PD-GBA (PCORR < 0.05
when compared to HC as well as PD-LRRK2) but did
not differ from normal for PD-LRRK2 (PCORR = 1.00).
Given our recent findings that genotypic differences
in PD network connectivity were more pronounced
at the subnetwork level (Schindlbeck et al. 2020), we
partitioned the PDRP space into core and periphery zones
(Supplementary Table S3A) based on metabolic valence
as described elsewhere (Ko et al. 2018) (see Materials
and methods). Assortativity in the PD-LRRK2 PDRP core
was lower than in the other groups (PCORR < 0.01 when
compared to PD-GBA and HC) (Fig. 3B, Supplementary
Table S4C) even though degree centrality was elevated
(Schindlbeck et al. 2020).

To examine connectivity patterns in the PDRP core
in greater detail, we reconstructed corresponding sub-
graphs for the 2 PD genotypes. PD-LRRK2 showed a dense
cluster of interconnected high-degree nodes (Fig. 3C,
“left”) at the center of the core zone, involving the
putamen, globus pallidus, thalamus, and supplementary
motor area (SMA) as well as the amygdala, parahip-
pocampal gyrus, and insula. These were connected to an
outer rim of low-degree nodes in the pons, cerebellum,
and hippocampus, which were also linked to each
other. This configuration was therefore characterized
by a neutral connectivity pattern, i.e. a combination
of assortative and disassortative connections, for the
subgraph as a whole. By contrast, for PD-GBA (Fig. 3C,
“right”), a set of interconnected low-degree nodes in the
globus pallidus, thalamus, and SMA formed the rim of the
subgraph. Sparse connections linked these to a cluster of
interconnected high-degree nodes in the interior of the
core zone.

Analogous group differences were seen in the PDCP
space (Fig. 4A, Supplementary Table S4D): Network
assortativity was higher in PD-GBA than in the other
groups (PCORR < 0.05 when compared to HC; PCORR < 0.001
when compared to PD-LRRK2), but PD-LRRK2 assortativ-
ity did not differ from HC (PCORR > 0.34). This is consistent
with the general lack of cognitive decline in PD-LRRK2.
Genotypic differences were also more pronounced in
the PDCP core zone (Supplementary Table S2B) when

compared to the whole network. As in the PDRP core,
the PDCP core was least assortative in PD-LRRK2
(Fig. 4B, Supplementary Table S4D) (PCORR < 0.001 when
compared to HC and PD-GBA) but most assortative in
PD-GBA (PCORR < 0.001 when compared to HC and PD-
LRRK2).

The genotypic differences in PDCP core assortativity
are highlighted in the corresponding correlation matrix
displays and subgraph reconstructions (Fig. 4C and D).
For PD-LRRK2, the connectivity pattern in this subgraph
was disassortative on average, with prominent connec-
tions linking high- and low-degree nodes in frontal and
parietal association regions. For PD-GBA, the PDCP core
was assortative. In contrast to the PD groups, HC subjects
exhibited a balance of assortative and disassortative con-
nections in the same subgraph.

Dopaminergic treatment increases PDRP
assortativity
Given that PDRP assortativity rises with disease pro-
gression, we were particularly interested in whether
treatment would affect this measure. On the one hand,
dopaminergic therapy improves symptoms; on the other
hand, the disease continues to progress, as indicated
by rising expression of PDRP (Schindlbeck and Eidelberg
2018).

We first examined changes in network assortativity
in 14 PD subjects who underwent metabolic imaging
in the unmedicated baseline state (“off”) state and
during intravenous levodopa infusion (“on”), which was
titrated to maximal clinical benefit without abnormal
involuntary movements (Jourdain et al. 2016). The
clinical and demographic features of these subjects are
provided in Supplementary Table S2D. In the PDRP space,
assortativity (Fig. 5A, Supplementary Table S4E) was
elevated in the off state (PCORR = 0.001 when compared to
HC). Values increased further during levodopa infusion
(PCORR < 0.05, “on” compared to “off”), reaching even
more abnormal levels (PCORR < 0.001, “on” compared to
HC). Interestingly, this increase (worsening) in network
assortativity was not accompanied by changes in degree
centrality (Table 2) or nodal hierarchy (see Materials and
methods), given that the rank order of degree centrality
in the network space was similar for the 2 treatment
conditions (rs = 0.69 [0.57–0.78, 95% confidence interval
{CI}], P < 0.001; Spearman correlation).

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac110#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac110#supplementary-data
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Fig. 2. PDRP assortativity increases with disease progression. A) Longitudinal PD cohort: Assortativity in the PDRP space rose over time in PD patients
(Supplementary Table S2A). B) Cross-sectional PD cohort: PDRP assortativity was elevated in the 3 PD groups compared to HC (Supplementary Table S2B).
Values were higher with each successive 4-year increment in disease duration. (Levels 1–7 correspond to cutoff graph thresholds of r = 0.3–0.6 in
increments of 0.05. ∗∗∗P < 0.001 compared to HC; †††P < 0.001 compared to PD-TP1 A) or PD-early B).) C) 2D displays of the joint probability distribution
of degree–degree correlations in the PDRP space for the groups in B). Whereas the HC group showed a relatively symmetrical distribution of probability
(P) values around the mean (center), the PD-early and PD-late groups exhibited an assortative connectivity patterns: The density of high P values
along the main diagonal (“dashed lines”) represents a tendency for PDRP connections to link nodes with similar degree centrality. (The joint probability
distribution for degree–degree correlations in the PDRP space was generated at threshold level 4 [“vertical arrow” in B)]. The color scale represents the
computed probability that a randomly selected link connects nodes with degrees di and dj (see Materials and methods). Because mean degree centrality
differed for the 3 groups, the centers of the joint distributions also varied. For comparable visualization, the x- and y-axes were shifted so that the
mean value for each group was at or near the center of the corresponding display. N = number of nodes; D = mean degree centrality; ρ = assortativity
coefficient.)

Subthalamic gene therapy reduces PDRP
assortativity
We previously found that AAV2-GAD gene therapy
induces therapeutic remodeling of brain networks
(Niethammer et al. 2018), which gives rise to what we
called the GADRP. An important test of our hypothesis

was therefore to determine whether this disease-
modifying treatment also diminishes assortativity. We
analyzed metabolic imaging data from PD patients
scanned at baseline before randomization to either
gene therapy or sham surgery, as part of a double-
blind randomized clinical trial, and again 12 months
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Fig. 3. Influence of genotype on PDRP assortativity. A) PD-GBA patients showed higher assortativity than PD-LRRK2 or HC subjects in the PDRP space
as a whole. B) In the PDRP core zone (see text), PD-LRRK2 patients showed lower assortativity than HC or PD-GBA subjects. (Levels 1–7 correspond to
cutoff graph thresholds of r = 0.3–0.6 in increments of 0.05, corrected for multiple comparisons [see Materials and methods]. ∗∗P < 0.01, ∗∗∗P < 0.001
for PD-LRRK2 or PD-GBA relative to HC. †P < 0.05, ††P < 0.01 for PD-LRRK2 relative to PD-GBA.) C) Connectivity patterns in the PDRP core zone for the
genotypic patient groups in B). PD-LRRK2 (“left”) exhibited a neutral pattern, with a combination of assortative and disassortative connections linking
subgraph nodes. By contrast, in PD-GBA (“right”), the connectivity pattern for the subgraph was assortatitve at the same threshold (|r| ≥ 0.3). (Core
nodes are represented by disks, with radius proportional to the corresponding degree centrality. Yellow = high degree (top quartile); blue = low degree
(bottom quartile); gray = intermediate degree (middle quartile). Connections were thresholded at |r| ≥ 0.3 and displayed as gray lines. N = number of
nodes; D = degree centrality; ρ = assortativity.)

after surgery (Niethammer et al. 2017) (for demographic
information, see Supplementary Table S2E).

For each group and time point, we measured assorta-
tivity for both PDRP and GADRP (Supplementary Table

S3C) (Niethammer et al. 2018). PDRP assortativity (Fig. 5B,
Supplementary Table S4E) was elevated at baseline in
the gene therapy group (PCORR < 0.001 when compared
to HC) but fell to normal levels 12 months after treat-

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac110#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac110#supplementary-data
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Fig. 4. Influence of genotype on PDCP assortativity. A) PDCP assortativity was elevated in PD-GBA patients compared to PD-LRRK2 and the control group
(HC). B) In the PDCP core zone, PD-GBA again showed the highest assortativity and LRRK2 showed the lowest. ∗P < 0.05, ∗∗∗P < 0.001 for PD-LRRK2 or
PD-GBA relative to HC. †††P < 0.001 for PD-LRRK2 relative to PD-GBA. C) 2D displays of the joint degree–degree probability distribution in the PDCP
core for the three groups. PD-LRRK2 exhibited disassortativity, as evident by the density of high P values along the secondary diagonal (“dotted line”).
PD-GBA, by contrast, showed high P values along the main diagonal (“dashed line”). The joint probability distribution was spherical for HC subjects
in the same subgraph. The joint degree probability distribution was generated at threshold level 3 (“vertical arrow” in B)) for each group. (The color
scale represents the probability that a randomly selected link connects nodes with degrees di and dj. Because mean degree centrality differed for the
3 groups, the centers of the joint distributions also varied. For comparable visualization, the x- and y-axes were shifted so that the mean value for
each group was at or near the center of the corresponding display.) D) Connectivity patterns in the PDCP core zone for the groups in C). In PD-LRRK2,
the subgraph exhibited a disassortative configuration, whereas the pattern was assortative in PD-GBA and neutral in HC (see text). (Core nodes are
represented by disks, with radius proportional to the corresponding degree centrality. Yellow = high degree (top quartile); blue = low degree (bottom
quartile); gray = intermediate degree (middle quartile). Connections were thresholded at |r| ≥ 0.3 and displayed as gray lines. N = number of nodes;
D = degree centrality; ρ = assortativity.)
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Fig. 5. PDRP network assortativity: Changes with treatment. A) Levodopa
infusion: In the PDRP space, assortativity was elevated in the unmedi-
cated (“off”) state compared to the HC group (Supplementary Table S2D)
but rose even higher during intravenous levodopa infusion (“on”).
(∗∗∗P < 0.001, “off” or “on” compared to HC. †P < 0.05, “on” compared to
“off.”) B) STN AAV2-GAD: PDRP assortativity was elevated at baseline
in the gene therapy group (Supplementary Table S2E) compared to HC
subjects but declined by 12 months after gene therapy. C) Sham surgery:
In this group (Supplementary Table S2E), PDRP assortativity increased
relative to baseline at 12 months but did not differ significantly from HC
at either time point. (Levels 1–7 correspond to cutoff graph thresholds of
r = 0.3–0.6 in increments of 0.05. ∗∗∗P < 0.001 for baseline or 12 months vs.
HC. †P < 0.05 †††P < 0.001 for baseline vs. 12 months.)

ment (PCORR < 0.001 when compared to baseline). Nodal
hierarchy in the PDRP space was not appreciably altered
by the gene therapy (rs = 0.63 [0.49–0.74, 95% CI], P < 0.05;
Spearman correlation).

In the sham group (Fig. 5C, Supplementary Table S4E),
PDRP assortativity increased somewhat at 12 months
(PCORR < 0.05 when compared to baseline) but did not
differ from HC at either time point (PCORR > 0.50). At base-
line, the rank order of nodal degree in the PDRP space was
similar for the sham surgery and gene therapy groups
(rs = 0.57 [0.42–0.69, 95% CI], P < 0.001; Spearman correla-
tion), and nodal hierarchy for this network remained the
same 12 months after sham surgery (rs = 0.84 [0.77–0.89,
95% CI], P < 0.001; Spearman correlation).

The independent GADRP network (Supplementary
Table S3C) (Niethammer et al. 2018) showed lower
assortativity (Fig. 6A, “top,” Supplementary Table S4F)
12 months after gene therapy compared to baseline
and HC (PCORR < 0.05). GADRP assortativity was higher
12 months after sham surgery compared to baseline
(PCORR < 0.01; Fig. 6B, “top,” Supplementary Table S4F),
which reached abnormally elevated levels at endpoint
compared to HC (PCORR < 0.001). The divergence of the
GADRP assortativity responses in the gene therapy and
sham groups can be seen in the graphical displays of the
treatment-induced network. In the gene therapy group,
GADRP exhibited an assortative baseline configuration
(Fig. 6A, “middle”), with a cluster of high-degree nodes,
representing the caudate nuclei, thalamus, and frontal
regions, which linked to pairs of interconnected lower-
degree nodes in the putamen and supramarginal gyrus
bilaterally. Twelve months after treatment (Fig. 6A,
“bottom,” Supplementary Table S4F), degree centrality
increased in most GADRP nodes, with a concurrent
decline in network assortativity. In the sham surgery
group, the baseline configuration (Fig. 6B, “middle”) was
also assortative, with nodal degree in similar rank order
to that observed at baseline in the gene therapy group
(rs = 0.53 [0.37–0.66, 95% CI], P < 0.05; Spearman correla-
tion). The network configuration seen after sham surgery
(Fig. 6B, “bottom,” Supplementary Table S4F), however,
was strikingly different, with an overall reduction in
degree and an increase in network assortativity. Despite
these changes, GADRP nodal hierarchy was not appre-
ciably altered after sham surgery (rs = 0.54 [0.38–0.67,
95% CI], P < 0.05; Spearman correlation). This contrasted
with the substantial network remodeling following gene
therapy, given the revision of nodal hierarchy that took
place over the same time period (rs = 0.13 [−0.7–0.32, 95%
CI], P = 0.67).

Increase in module-to-module bridging
connections in the PDRP core
In previous work, we reported an increase in GADRP
connections following STN AAV2-GAD gene therapy
(Niethammer et al. 2018). We now observed parallel
connectivity changes in the PDRP space of these subjects,

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac110#supplementary-data


An Vo et al. | 927

Table 2. Treatment-mediated changes in PDRP network metrics.

Interventiona (number of subjects) Assortativity
coefficient

Degree centrality Clustering
coefficient

Characteristic
path length

Small-worldness

Levodopa infusion (14) (“on” vs. “off” medication) ↑ 0 0 ↑ ↓
STN AAV2-GAD (16) (12 months vs. baseline) ↓↓↓ ↑↑↑ ↓↓↓ ↑↑↑ ↓↓↓
Sham surgery (21) (12 months vs. baseline) ↑ 0 ↑↑↑ 0 0

Increase: ↑ and ↑↑↑ = P < 0.05 and P < 0.001 versus baseline (see text), for comparison of treatment with baseline. Decrease: ↓ and ↓↓↓ = P < 0.05 and P < 0.001
versus baseline (see text), for comparison of treatment with baseline. No change = 0. aSee Supplementary Table S2D and E.

which were similar to those seen in PD-LRRK2 (Schindl-
beck et al. 2020). Compared to baseline, 8 new PDRP
connections developed in the 12 months following gene
therapy (Supplementary Table S5). It is worth noting
that 3 of these overlapped with the novel connections
observed in PD-LRRK2 (Schindlbeck et al. 2020). In both
groups (Fig. 7A), these connections linked basal ganglia
and limbic nodes, which are located in separate modules
within the PDRP core (Ko et al. 2018).

As previously reported in PD-LRRK2 (Schindlbeck
et al. 2020), such connections reduce the modularity
of the PDRP core (PCORR < 0.001, relative to HC; Fig. 7B),
and indeed, comparable modularity reductions were
also seen after gene therapy (PCORR < 0.001 when com-
pared to baseline and HC; Fig. 7B). Thus, low PDRP
assortativity, as occurs intrinsically in PD-LRRK2 and
following STN AAV2-GAD in sporadic PD, was accom-
panied by reductions in subgraph modularity linked
to increases in bridging connections between core
modules.

Discussion
Elevated assortativity has been observed in neurode-
generative disorders, including Alzheimer’s disease (Luo
et al. 2021) and frontotemporal dementia (Agosta et al.
2013). Here, we quantify this graph metric in specific, pre-
viously validated disease networks identified in the rest-
ing state with FDG PET (Schindlbeck and Eidelberg 2018;
Schindlbeck et al. 2020). Furthermore, to date, assorta-
tivity has not been used to discern the effects of spe-
cific interventions on connectivity patterns in these net-
works. In this study, we found that PDRP assortativity
is elevated in the course of PD, indicating overreliance
on connections between nodes of similar degree cen-
trality, which is associated with unstable network con-
figurations and inefficient information (Newman 2003;
Zhou et al. 2012; Murakami et al. 2017). Disease network
assortativity was diminished by subthalamic AAV2-GAD,
but not by levodopa, suggesting a shift toward a more
stable connectivity pattern after the former interven-
tion. In functional brain networks, assortativity is only
minimally correlated with other graph metrics (Li et al.
2011)—indeed, we observed no consistent changes in
degree centrality or characteristic path length—which
underscores the unique information this metric provides
about the architecture and dynamic properties of the

underlying circuitry (Noldus and Van Mieghem 2015; Peel
et al. 2018).

Assortativity increases with disease progression
Network assortativity increases with disease progression
and is also influenced by intrinsic factors such as geno-
type. Disease progression is relatively fast in PD patients
with GBA1 variants (Davis et al. 2016), and indeed, assor-
tativity in the PDRP/PDCP core zones was greater than
in clinically matched carriers of the more benign LRRK2-
G2019S mutation (Saunders-Pullman et al. 2018). In the
latter genotype, assortativity was reduced in the core
subgraphs of both networks, suggesting more efficient
information transfer (Noldus and Van Mieghem 2015;
Murakami et al. 2017). The current findings extend our
previous observation that the gain in functional connec-
tions in PD-LRRK2 occurred primarily in the core zone of
the 2 PD networks (Schindlbeck et al. 2020). The relatively
benign clinical course seen with this mutation can be
attributed to the enhanced integration of signal across
these subgraphs, as implied by the observed reduction in
core assortativity as well as the relatively low modularity
and increased synchronization reported previously in
these patients (Schindlbeck et al. 2020). In aggregate, the
altered pattern of functional connectivity seen in PD-
LRRK2 may represent a previously unrecognized adapta-
tion to the disease process. The pattern in PD-GBA was
quite different, however, in that connectional gain was
not centralized to the PDRP/PDCP core zones as it was
in PD-LRRK2 (Schindlbeck et al. 2020). Genotypic differ-
ences in assortativity were particularly striking in the
core zones of both networks, with significant increases
in the measure for PD-GBA compared to PD-LRRK2. This
is consistent with fragmentation of information transfer
in the former genotype, as expected in a pathological
connectivity pattern (Ko et al. 2018). By contrast, the
lower assortativity seen in PD-LRRK2 is consistent with
a more integrated response, as might be expected in a
beneficial adaptation. That said, given the small num-
bers of genotypic patients, the current findings need to be
substantiated in larger samples. It will also be important
to determine the degree to which comparable changes
are evident in asymptomatic carriers of these mutations.

In this vein, we note that while cognitive func-
tioning was grossly preserved in both patient groups
(Schindlbeck et al. 2020), genotypic differences in core
assortativity were greater for the PDCP compared
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Fig. 6. Changes in the GADRP connectivity pattern with treatment versus sham surgery. A) The GADRP connectivity pattern was assortative at baseline
but transitioned to a less assortative, neutral configuration 12 months after treatment (Supplementary Table S2E). B) In the sham surgery group, the
baseline pattern was assortative and remained so 12 months later. (“Top”: Threshold levels 1–7 correspond to cutoff thresholds of r = 0.3–0.6 in increments
of 0.05. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 for baseline or 12 months vs. HC. †P < 0.05, ††P < 0.01 for baseline vs. 12 months. “Middle, bottom”: Core nodes
are represented by disks, with radius proportional to the corresponding degree centrality. High, low, and intermediate degree nodes [top, bottom, and
middle quartile] are depicted in yellow, blue, and gray, respectively. Connections were thresholded at |r| ≥ 0.3 and displayed as gray lines. N = number of
nodes; D = degree centrality; ρ = assortativity.)

to PDRP. The propensity for neocortical Lewy body
formation is also greater in PD-GBA patients (Neumann
et al. 2009; Shiner et al. 2016). Thus, the increases in
PDCP core assortativity seen in these patients suggest
that pathological connectivity changes develop in

this subgraph before clinically identifiable cognitive
decline. In this regard, the disassortativity observed
in the PDCP core zone in PD-LRRK2 patients may be
compatible with an adaptive response that slows the
transition to dementia in patients with this mutation.
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Fig. 7. Increase in connections linking PDRP core modules: A shared adaptive response. A) Map of functional connections between PDRP core nodes in
low-assortativity configurations associated with genotype (PD-LRRK2; Schindlbeck et al. 2020) or treatment (12 months after subthalamic [STN] AAV2-
GAD; Niethammer et al. 2018). In both groups, novel connections were observed between 2 previously identified modules (“dashed circles”) in the PDRP
core zone (Ko et al. 2018). The PDRP network is composed of 38 nodes (Supplementary Table S3A) (Ko et al. 2018), which are represented by circles with
radius proportional to the corresponding degree centrality. The core zone is composed of 20 metabolically active regions (“red circles”) and 18 relatively
underactive nodes (“blue circles”) which form the network periphery. PDRP node-to-node connections were displayed at minimum threshold (|r| = 0.3)
and were represented by thin gray lines for PD-LRRK2. B) In the PDRP core, both PD-LRRK2 and STN AAV2-GAD patients 12 months after gene therapy
showed lower modularity than HC subjects and PD patients scanned at baseline. (∗∗∗P < 0.001 for the PD groups [gene therapy or PD-LRRK2] relative to
HC. †††P < 0.001 for gene therapy baseline vs. 12 months or for gene therapy baseline vs. PD-LRRK2.)

Prospective imaging studies will be needed to determine
whether increased baseline assortativity in the PDCP
core predicts future cognitive deterioration in individual
PD patients.

Changes in assortativity distinguish treatment
responses
Mean PDRP expression increases with disease progres-
sion, paralleling the changes in network assortativity

seen over time in the same groups of patients. While
these measurements relate to a fixed PDRP, it is also pos-
sible to identify similar yet topographically more exten-
sive disease patterns at each successive time point (Spet-
sieris and Eidelberg 2011; Spetsieris et al. 2015). In this
context, the magnitude of the corresponding eigenvalue
would rise, leading potentially to parallel increases in
network assortativity (Van Mieghem 2010; Noldus and
Van Mieghem 2015). It is therefore not surprising that
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for PDRP, assortativity and mean pattern expression both
increase with advancing disease.

That said, the 2 network measures exhibit divergent
responses to treatment. Levodopa administration con-
sistently improves motor symptoms in PD patients by
repleting nigrostriatal dopamine. Although levodopa
lowers PDRP expression levels (Niethammer and Eidel-
berg 2012; Vo et al. 2017), network assortativity increased
in these individuals during treatment. It is conceivable
that transient increases in PDRP assortativity occur with
each levodopa dose. Under such circumstances, repeated
daily administration of the drug may lead over time
to development of a maladaptive connectivity pattern
in the network space (Picconi et al. 2018). It would be
interesting to see whether changes in PDRP assortativity
appear with chronic treatment and, if so, how they relate
to the appearance of levodopa-induced dyskinesia.

A much different set of network changes follow sub-
thalamic AAV2-GAD gene therapy: PDRP expression lev-
els increase over time, consistent with disease progres-
sion (Niethammer et al. 2018), yet PDRP assortativity
substantially declined in the treatment group. Treatment
reduced assortativity in the GADRP space to subnormal
levels and extensively reorganized network structure,
as indicated by treatment-mediated changes in nodal
hierarchy for this network but not for PDRP.

Thus, assortativity provides complementary infor-
mation not obtained by routine network expression
measurements. In this context, it is worth noting that
treatment-mediated modulation in PDRP assortativity
(Table 2) was not associated with parallel changes in
degree centrality or the other connectivity metrics.
The response of PDRP small-worldness to treatment is
interesting in this regard. Assortativity in this network
increased with levodopa and sham surgery and declined
with gene therapy. PDRP small-worldness, by contrast,
declined toward normal after either levodopa or gene
therapy. Given that significant clinical improvement
occurred with both treatments, it is possible that
normalization of PDRP small-worldness is a feature of
the symptomatic benefit seen with both interventions
(Ko et al. 2018; Niethammer et al. 2018). The reductions in
PDRP assortativity, on the other hand, may reflect longer-
term adaptive responses that occur with gene therapy
but not with acute levodopa treatment.

As mentioned above, symptomatic PD treatments
are generally associated with suppression of PDRP
activity (Niethammer and Eidelberg 2012; Vo et al.
2017). By contrast, the network changes that occur with
disease modification are likely to be more complex, with
remodeling of disease networks, treatment-induced
regional patterns, or both. In this regard, graphical
analysis of network connectivity patterns becomes
a useful means of documenting such longer term
treatment effects. In the current FDG PET study, network
metrics were necessarily quantified at the group level.
However, to evaluate treatment, these changes should
optimally be determined for individual patients. Resting-

state functional magnetic resonance imaging (MRI) (rs-
fMRI) provides a useful alternative in that regard. PDRP
and PDCP networks closely related to their FDG PET
counterparts have already been characterized by this
method (Vo et al. 2017; Rommal et al. 2021; Schindlbeck
et al. 2021). Moreover, unlike FDG PET, rs-fMRI time series
data can be used to assess connectivity patterns in
individual subjects. Whether network metrics such as
assortativity can be reliably quantified in single cases
using this method is a topic of ongoing investigation. If
successful, the results will support the use of functional
networks for the evaluation of new treatments for PD
and other brain disorders.
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