
Volume 30 Issue 1 Article 1 

2022 

The next generation beneficial actions of novel probiotics as The next generation beneficial actions of novel probiotics as 

potential therapeutic targets and prediction tool for metabolic potential therapeutic targets and prediction tool for metabolic 

diseases diseases 

Follow this and additional works at: https://www.jfda-online.com/journal 

 Part of the Food Science Commons, Medicinal Chemistry and Pharmaceutics Commons, 

Pharmacology Commons, and the Toxicology Commons 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative 

Works 4.0 License. 

Recommended Citation Recommended Citation 
Cheng, Hsin-Lin; Yen, Gow-Chin; Huang, Shih-Chien; Chen, Shiuan-Chih; and Hsu, Chin-Lin (2022) "The next 
generation beneficial actions of novel probiotics as potential therapeutic targets and prediction tool for 
metabolic diseases," Journal of Food and Drug Analysis: Vol. 30 : Iss. 1 , Article 1. 
Available at: https://doi.org/10.38212/2224-6614.3396 

This Review Article is brought to you for free and open access by Journal of Food and Drug Analysis. It has been 
accepted for inclusion in Journal of Food and Drug Analysis by an authorized editor of Journal of Food and Drug 
Analysis. 

https://www.jfda-online.com/journal/
https://www.jfda-online.com/journal/
https://www.jfda-online.com/journal/vol30
https://www.jfda-online.com/journal/vol30/iss1
https://www.jfda-online.com/journal/vol30/iss1/1
https://www.jfda-online.com/journal?utm_source=www.jfda-online.com%2Fjournal%2Fvol30%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/84?utm_source=www.jfda-online.com%2Fjournal%2Fvol30%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/65?utm_source=www.jfda-online.com%2Fjournal%2Fvol30%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/66?utm_source=www.jfda-online.com%2Fjournal%2Fvol30%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/67?utm_source=www.jfda-online.com%2Fjournal%2Fvol30%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.38212/2224-6614.3396


The next generation beneficial actions of novel
probiotics as potential therapeutic targets and
prediction tool for metabolic diseases

Hsin-Lin Cheng a,1, Gow-Chin Yen b,1, Shih-Chien Huang a,c,
Shiuan-Chih Chen d,e, Chin-Lin Hsu a,f,*

a Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
b Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
c Department of Health Industry Technology Management, Chung Shan Medical University, Taichung, Taiwan
d Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
e Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
f Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan

Abstract

The prevalence of metabolic disease has rising and affected over 1,000 million populations globally. Since the
metabolic disease and its related complication are board, it has become the major health hazard of modern world.
However, Long term medication of metabolic disease may cause serious side effects and risk for adverse health prob-
lems. Recently, emerging studies focus on exploring the mechanistic details of metabolic state in disease development
and progression. Gut bacteria ecosystem was considered to play a pivotal role in regulating energy homeostasis and
great associated with the development of metabolic disease. Accumulated evidences indicated that Akkermansia
muciniphila, Faecalibacterium prausnitzii, and Roseburia hominis improve the balance of the microecology in the in-
testine of the host and have positive effects on enhancing nutrients absorption. Hence, the novel probiotics as thera-
peutic target to modify gut microbiota generally focus on improving microbiota dysbiosis, and offers new prospects for
treating metabolic disease. In the present review, we discuss the significant roles and regulatory properties of specific
bacterium in the context of intestinal microbial balance, explores the kinds of harmful/beneficial bacteria that were
likely to act as indicator for metabolic disease. Further proposed a stepwise procedure in the basis of sequencing
technology with that of innovative option to reestablish the microbial equilibrium and prevent metabolic disease.

Keywords: Disease prediction, Metabolic disease, Microbiota, Novel probiotics

1. Introduction

T he term of metabolic syndrome (MetS) refers
to a constellation of associated metabolic dis-

eases states, characterized by insulin resistance (IR),
dyslipidemia, hyperglycemia, and high blood pres-
sure, which resultant type 2 diabetes mellitus
(T2DM), central obesity, hypertension, and
increased the risk of coronary artery disease (CAD),
chronic renal failure, and malignant development.
Since various diagnostic criteria of MetS are pro-
posed, the incidence and impact are differing from

countries. The reported epidemic of the syndrome
was according to the consensus definitions, age,
gender, and ethnicity [1]. In addition, secondary
lifestyle and socioeconomic strata were suggested to
influence prevalence across the aforementioned
physiological factors. In generally, the global prev-
alence of MetS among the adult population were
reported to range between 20 and 25% across
countries and region [2]. Besides, the western di-
etary patterns were strongly correlated with devel-
oping metabolic abnormalities and a main risk
factor for chronic cardiometabolic syndrome.
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Interestingly, the gut microbiota, via extracting en-
ergy from the human diet by which it may affect
host health that was supporting the aforementioned
associations was recently emphasized.
Collectively, the metabolic diseases is a multifac-

torial and multiorgan pathophysiologic state, which
were linked to genetic architecture, healthy
behavior change, and also intensely affected by
gastrointestinal tract microbial ecosystem, is now
been considered as a pivotal role in metabolic health
and diseases, acting as a second genome [3].
Emerging studies proposed that gut microbiota
contributed to a variety of physiological functions
impacting human metabolic balance and disorders.
The genome-wide association study have shown
that gut microbiota diversity is involved in core
function, including the modulation of nutrients and
energy harvest efficiency, maintenance of intestinal
epithelial barrier functions, stimulation of host im-
mune response to discriminate commensals from
pathogens. Two predominant bacterial phyla have
been implicated in the composition of human gut
microbiota: Bacteroidetes and Firmicutes. The pop-
ulation ration of these phyla (F/B ratio) is widely
accepted as a potential indicator for maintaining gut
homeostasis. The increased F/B ratio, expanding
population of Firmicutes phyla and/or contracting
population of Bacteroidetes phyla in individuals,
which was demonstrated to characterize the dys-
biosis signature of host gut microbiota. Since spe-
cific gut microbiota composition revealed high-risk
rates for gastrointestinal dysfunction and leads to
devastating metabolic consequence, the develop
strategies for preventing perturbation of microbiota
communication is now becomes a major focus. In
addition, a rich diversity in gut microbiota and
higher abundant in probiotics is conductive to
enrich microbial consortium that are principally
produced primary metabolites, of which short-chain
fatty acids (SCFAs) directly or indirectly meliorated
peripheral inflammation, impacted immune cells
function, act through G protein-coupled-receptors
signaling activation. Indeed, the balance of the in-
testinal microbial community is crucial to promote
an overall homeostasis condition of human host
achieving global health goals.
Although both scientific and commercial advances

for probiotics that are commonly restricted to spe-
cific strain or species mainly include Lactobacillus
and Bifidobacteria, are generally identified as
traditional probiotics, other novel candidate thera-
peutic probiotics have yet been fully developed up
to now, and which are more likely to establish the
preferable mechanism for deeper investigation.

Among recent evidences on metagenome
sequencing based analysis, the SCFAs-producing
bacteria have been referred to as potential candi-
dates for the application of next generation to treat
or avert, even cure for metabolic diseases of human
beings. Besides, advanced molecular microbial
profiling technologies generated massive informa-
tion about the intestine ecological dynamics impact
in metabolic pathological processes. In order to
manage the high-dimensional data, the artificial
intelligence in machine learning technology would
be helpful to boost information processing.
Although new nucleic acid sequencing tool and
powerful algorithms enable us to deeper under-
stand microbial community, the complex interaction
between intestine microbiome and the host disease
state is still a challenge. In the present review, we
aim to provide an overview of recent literature that
focus on intestinal ecosystem dynamics in the host
with metabolic disease, and helping guide further
study will clarify the potential for and support a
novel predictive model for metabolic disease
development to promote and achieve anti-metabolic
derangement. The systemic framework based on
sample collection, NGS analysis, data connection,
and final metabolic diseases risk identification
(Fig. 1).

2. Type-2 diabetes mellitus

The resistance of peripheral tissue including
muscle, liver, and adipose tissue to insulin actions,
which forced islet b cell to increase the secretion of
insulin was mainly observed in T2DM. The detailed
mechanistic pathway and major risk factors for
T2DM is well established. Currently, scientific
research aims to verify the significance of other
factors involved, such as gut microbiota and its
secondary metabolites in T2DM development. The
first human study by Larsen et al. demonstrated a
significant difference across healthy and T2DM
subjects in terms of the composition of intestinal
microbiome [4]. Furthermore, faecal microbiota
composition profiles from 18 individuals with/or
without T2DM, characterized by a substantial
reduction of Firmicutes phyla and increasing the
relative abundance of Bacteroidetes phyla and Pro-
teobacteria phyla in T2DM patients. Although meta-
genome-wide association analysis have determined
the Bacteroidetes and Firmicutes were major phyla in
human gastrointestinal tract, the gut dysbiosis
caused by other phyla such as Actinobacteria, Pro-
teobacteria, and Fusobacteria promote susceptibility to
insulin resistance, typical pathological condition of
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diabetes [5]. In the context, emerging human data
and animal's model focus on characterizing prop-
erties of the microbiome in T2DM, and further
evaluate the relative abundance of specific bacteria
taxa to identify their relationship with this metabolic
condition. Recently, Chatelier and the colleagues
described low gene count of Roseburia intestinalis
and Faecalibacterium prausnitzii were founded in in-
dividuals with T2DM, as well as elevated oxidative
stress, inflammatory status, and gut leakage.
Deeper, microbiom taxonomic and functional pro-
files from 784 gut metagenomes showed that non-
diabetic treated T2D patients (n ¼ 106) exhibited
significantly decreased in butyrate-producing spe-
cies (Roseburia spp., Subdoligranulum spp., and Clos-
tridiales spp.) as compared to non-diabetic
participants (n ¼ 554). According to meta-analysis
pipeline and validation in all datasets, the abun-
dance of genus Akkermansia was 3-fold increased
after metformin treatment, which was in consisted

with genus Escherichia [6]. Table 1 summarizes the
findings of gut dysbiosis in the abundance and
richness from both preclinical animal models and
human trail of T2DM.

3. Obesity

Western dietary habit and sedentary lifestyle
invariably cause rapid induction of IR and hyper-
glycemia, as well as obesity. The resident microbiota
was extensively considered as an indispensable
enteroendocrine organ in the host functioning with
properties of energy harvest, especially for the
context to develop overweight and obesity. Pre-
liminary evidence from animal studies, the intesti-
nal microbiota was able to affect weight gain/or lose,
and associated with body composition. Based on
studies of germ-free mice, even microbial inocula-
tion for functional microbiome research has linked
the association between intestinal microbiota and

Fig. 1. Graphical abstract of the proposed working model system. The systemic framework based on sample collection, NGS analysis, data connection,
and final metabolic diseases risk identification.

Table 1. Main findings of gut microbial populations changing associated with T2DM.

Subjects' Characteristics Implicated microbiota References

Female participants with T2DM
(Denmark)

phylum Firmicutes Y/class Clostridia Y/class Betaproteobacteria [/genus
Roseburia Y

[4]

Male participants with T2DM
(European)

Clostridium clostridioforme [/Clostridium hathewayi [/Bacteroides intestinalis Y [41]

Participants with T2DM (Chinese) Bacteroides caccae [/Clostridium hathewayi [/Clostridium ramosum [/
Clostridium symbiosum [/Eggerthella lenta [/Escherichia coli [/Clostridiales sp.
SS3/4 Y/Eubacterium rectale Y/Faecalibacterium prausnitzii Y/Roseburia
intestinalis Y/Roseburia inulinivorans Y

[30]

Male db/db mice (8-week-old) family Bacteroidaceae Y/family Prevotellaceae Y/genus Clostridium Y/phylum
Verrucomicrobia [/species Lactobacillus reuteri [

[42]

Tsumura Suzuki obese diabetes mice
(12-week-old)

Clostridium ruminantiun [/Clostridium celatum [/Ruminococcus callidus
[/Clostridium colinum Y

[43]

Participants with pre-DM/T2DM
(Chinese)

Akkermansia muciniphila ATCCBAA-835 Y/Faecalibacterium prausnitzii L2-6
Y/Verrucomicrobiae Y

[44]

Participants with T2DM (Poland) genus Roseburia Y/family Clostridiaceae Y/genus Ruminococcus [/family
Enterobacteriaceae [

[45]
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obesity. Colonization of germ-free C57BL/6 mice
with conventional microbiota harvested from cecum
as a consequence of IR and total body fat elevated
approximately to the level of donor subjects.
Intriguingly, the increased body fat components
were in consist with it reflected increased energy
output and decreased consumption despite mark-
edly less food intake. As discussed suggested, the
intestinal microbiota may served as mediators in
energy metabolism [7]. Excepted for vitamin syn-
thesis, saccharolytic fermentation carried out by the
intestinal microbiota produced a variety of micro-
bial metabolites such as SCFA, mediated by pre-
dominant species including Roseburia, Lactobacillus,
Bifidobacterium, and Fecalibacterium. Concentration of
these microbial-produced metabolites was recently
recognized to correlate with elevated fat content and
obesity. Remely and the colleagues reported that
obese participants underwent nutrients counseling
and extra glucagon-like peptide intervention
exhibited an increased trend in abundance of Fae-
calibacterium prausnitzii and epigenetic methylation
of FFAR3 and LINE-1 [8]. The results were consisted
with other comparative study between obese and
lean participants, and showed that Faecalibacterium
prausnitzii level and systemic inflammatory markers
such as fecal calprotectin and plasma C-reactive
protein were increased in obese [9]. Similar to

animal model of diet-induced obesity, a significant
reduction in butyrate-producing probiotics related
to Roseburia app. and Eubacterum rectale in relation to
energy harvested ability of subjects with obesity
when compared to lean ones [10]. Moreover, the
prebiotic properties of Roseburia spp. was demon-
strated to along with reduced IL-6, MCP-1, subcu-
taneous adipose fat, and downregulated genes
expression involved in hepatic cholesterol synthesis
(C/EBPa, FAT/CD36, aP2, and LPL) [11]. Overall, the
main characteristic of microbiota composition is
emphasized by the depletion and repletion resul-
tant. The vast majority of those phenomenons
strongly indicated that obese phenotype exhibit a
significant shift in the richness of helpful and
potentially pathogenic bacteria in compared with
lean phenotype (Table 2).

4. Hyperuricemia

Although T2DM and obesity were most prevalent
metabolic diseases and main health concerns of
modern life nowadays. The common Western di-
etary pattern is characterized by highly saturated
fatty acid and sugar, especially fructose with the
form of corn syrup in foods and beverages. Accu-
mulated evidences demonstrated that high fructose
consumption eventually leads to elevation in

Table 2. Main findings of gut microbial populations changing associated with obesity.

Subjects' Characteristics Implicated microbiota References

Pregnant Participants with obesity
(Finland)

Bacteroides group [/Staphylococcus group [ [46]

Participants with obesity (Germany) Bifidobacterium Y/Clostridium leptum Y/Methanobrevibacter Y/Firmicutes
Y/Bacteroidetes [

[47]

Participants with obesity (Chinese) Clostridium perfringens Y/Bacteroides Y [48]
Children participants with obesity (India) Faecalibacterium prausnitzii [ [49]
Children participants with obesity

(Belgium)
Bacteroides vulgates Y/Lactobacillus spp. [ [50]

Adolescents participants with overweight/
and obesity (Spain)

Bacteroides fragilis [/Lactobacillus groups [/Clostridium coccoides Y/
Bifidobacterium longum Y/Bifidibacterium adolescentis Y

[51]

Children participants with obesity (Italy) family Ruminococcaceae [/family Bacteroidaceae Y [52]
Participants with obesity (Chinese) Akkermansia muciniphila Y/Fecalibacterum prausnitzii Y/Bacteroides

uniformis Y/Bacteroides ovatus Y/Ruminoccoccus torques [/Fusobacterium
ulcerans [

[53]

Female participants with obesity (Chinese) Roseburia spp. Y/Lachnospira spp. Y/Clostridiales spp. Y/Faecalibacterium
spp. Y/family Lachnospiraceae Y

[54]

Participants with obesity (Germany) genus Akkermansia Y/genus Dialister Y/genus Prevotella [/genus
Megamonas [/genus Phascolarctobacterium [

[55]

Male Sprague-Dawley rats (HFD-induced
obesity)

phylum Firmicutes [/phylum Proteobacteria [/phylum Actinobacteria
[/phylum Bacteroites Y

[56]

Leptin-deficient ob/ob mice (C57BL/6J) Bacteroides Y/Firmicutes [ [57]
Leptin-deficient ob/ob mice (C57BL/6J) genus Akkermansia Y/genus Dubosiella Y/genus Muribaculaceae Y/genus

Turicibacter [/genus Lactobacillus [/genus Coriobacteriaceae [
[58]

Increased Bacteroides fragilis group (P ¼ 0.001) and Lactobacillus group (P ¼ 0.030) counts, and to decreased Clostridium coccoides
group (P ¼ 0.028), Bifidobacterium longum (P ¼ 0.031), and Bifidobacterium adolescentis (P ¼ 0.044) counts.
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incidence and prevalence rate of obesity, metabolic
dysregulation, hepatic steatosis, and renal disease.
In addition, increased dietary intake of fructose was
recently reported to induce inflammatory response
and upregulated fructose metabolic pathway which
resulted chronically elevated uric acid level in
blood, also known as hyperuricemia. In recent
years, emerging studies further explored novel
pathogenic pathway of hyperuricemia is mainly in-
testinal flora, which highlighted it's the role in pu-
rine and uric acid metabolism generated by
xanthine oxidase [12]. Reversely, researches also
revealed that elevated soluble serum uric acid may
affect intestinal bacterial community and gut
mucosal barrier stability. Recent evidence of gosling
with visceral gout have reported existence of intes-
tinal dysbiosis with higher abundant of specific
germ-negative strain Proteobacteria, reflected
adverse action through increasing intestinal
epithelial permeability, elevated systemic lipopoly-
saccharide (LPS) level, and stimulate inflammatory
pathway and produce kidney injury. Similarly,
increased blood serum uric acid level was also
observed in enteropathogenic Escherichia coli infec-
ted rabbit ileal loop model, suggesting a significant
role of gut-bacteria in the development of hyper-
uricemia [13]. The authors founded that entero-
pathogenic and Shiga-toxigenic E. coli infection
resulted in xanthine oxidase released into intestinal
tissue and fluids and subsequently, leaded to

significantly increased in uric acid level both in
T84 cells and rabbit models of infection. The LPS
produced by gram-negative bacteria might partici-
pate uric acid metabolism in intestine in which
suggested affecting hyperuricemia. A therapeutic
property for purine-induced hyperuricemic rats was
contributed to fecal transplantation from normal
rats. After three-week intervention, levels of uric
acid, genera Vallitalea, genera Christensenella, and
genera Insolitispirillum of recipient hyperuricemic
rats were shown to decrease and close to normal
rats [14]. Although the detail mechanism of
increased uric acid content remain unfully investi-
gated, the correlation between intestinal dysbiosis
and uric acid level are well worthy of focus and
further studies (Table 3).

5. Coronary artery disease

Generally, CAD is indicated strongly linking to
various risk factors such as obesity, hyperglycemia,
aging, hyperlipidemia, and hypertension, and has
recently been considered to be affected by intestinal
dysbiosis. The observation from patients with
atherosclerosis showed that frequent bacterial
signature in atherosclerotic lesions and high di-
versity of bacteria DNA detected in the atheroscle-
rotic plaque area that positively correlated to
leukocytes levels. Intriguingly, specific bacteria
species presents in the plaque, oral cavity, and

Table 3. Main findings of gut microbial populations changing associated with hyperuricemia.

Subjects' Characteristics Implicated microbiota References

Participants with gout (Chinese) Bacteroides caccae [/Bacteroides xylanisolvens [/Faecalibacterium prausnitzii Y/
Bifidobacterium pseudocatenulatum Y

[12]

Male participants with gout (Ukraine) Bifidobacterium spp. Y/Eubacterium spp. Y/Fusobacterium spp. [/Veilonella spp.
[/Peptostreptococcus spp. [/Bacteroides spp. [

[59]

Male Wistar rats (high-purine-induced
hyperuricemia)

genus Vallitalea [/genus Christensenella [/genus Insolitispirillum [/genus
Prevotella Y/genus Anaerovibrio Y/genus Alloprevotella Y/genus Barnesiella Y

[14]

Uox-knockout hyperuricemia mice
(C57BL/6J)

Firmicutes Y/Bacteroides [/Akkermansia Y/Ruminococcus Y [60]

Male Sprague-Dawley rats (HFD-
induced hyperuricemia)

genus Bacteroides [/genus Lactococcus [/genus Dorea [/genus Proteus [/genus
Morganella [/genus Allobaculm [/genus Prevotella Y/genus Lactobacillus Y/genus
Streptococcus Y/genus Clostridium Y/genus Ruminococcus Y/genus Anaeroplasma Y

[61]

Table 4. Main findings of gut microbial populations changing associated with coronary artery disease.

Subjects' Characteristics Implicated microbiota References

Participants with CAD (Japan) order Lactobacillales [/phylum Bacteroidetes Y [62]
Participants with CAD (Chinese) Escherichia Shigella [/Enterococcus [/Faecalibacterium Y/

Subdoligranulum Y/Roseburia Y/Eubacterium
[63]

Participants with CAD (USA) Lachnospiraceae NK484 Y/Ruminococcus Gauvreauii Y/Ruminococcus gnavus [ [17]
Participants with CAD (Chinese) phylum Bacteroidetes Y/phylum Firmicutes Y [64]
Participants with CAD (Japan) Bacteroides vulgatus Y/Bacteroides dorei Y [65]
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intestine share same phylotypes in the same patient
which believed to involve in the development of
CAD [15,16]. A case-control study enrolled 53 par-
ticipants with advanced CAD and 53 healthy con-
trols to analyze the intestinal microbial alternation
between the two groups. The results showed that
Chao-1 index, Shannon diversity, and observed
number of operational taxonomic units (OTUs) were
founded to lower in CAD fecal samples. An alter-
nation was observed in the abundance of Lachno-
spiraceae NK4B4, Ruminooccus Gauvreauii were
significant lower, while Ruminooccus gnavus was
significant higher, and suggested to correlate with
CAD progression [17]. Previously, comparative
cohort study conducted in 218 participants with
atherosclerosis and 187 healthy participants
revealed a characteristic alteration in intestinal mi-
crobial composition and metabolic functions. The
results exhibit a significant reduction in the relative
abundance of novel probiotics, including Roseburia
intestinals and Faecalibacterium cf. prausnitzii in par-
ticipants with atherosclerosis, as well as other
functional modules correlated to atherosclerosis
[18]. Trimethylamine N-oxide (TMAO), one toxic
metabolite produced by bacteria, is pro-atherogenic
in rodent and humans [19]. The intestinal microbial-
mediated TMAO production was discovered in
genus level including Clostridium, Enterococcus, Aci-
netobacter, Citrobacter, Anaerococcus, Desulfitobacter,
Streptococcus, Desulfovibrio, Enterobacteria, Escherichia,
Klebsiella, Proteus, and Pseudomonas [20]. Notably,
higher Akkermansia level was indicated to associated
with TMAO production [21]. Although TMAO is
widely accepted as marker to the pathogenesis of
CAD, other microbial products such as SCFA, LPS,
and secondary bile acid along the TMAO cascade
are of great interest. The intestinal microbiome
alteration that involved in the onset of CAD were
summarized in Table 4.

6. Novel potential probiotics: SCFAs-
producing bacteria

Metabolic diseases including T2DM, obesity, and
hyperuricemia have achieved high proportions that
constitute multiple public health concerns confront
the human population. Moreover, recent progresses
in these metabolic disorders were reported linking
to the dramatic change in human intestinal
ecosystem diversity. Indeed, the intestinal microbial
quantity and richness is considered as a significant
marker in host health condition and confronting
disease. The metabolic diseases are originated from
low-grade inflammation which implicated in a main
triggering factor, the bacteria-produced LPS, as its

translocation was restricted to gut epithelial barrier.
However, the disruption of gut microbial bio-
network leads to downregulation of occluding,
claudins, and zonula occludens, proteins that
compose epithelial tight-junction, and which even-
tually causes intestinal mucosal barrier leaking and
results in the release of LPS into the systemic cir-
culation. The impaired intestinal permeability pro-
motes LPS translocation that may link to early
development of IR and chronic inflammation in
germ-free mice model and human subjects [22,23].
The fermented microbial production such as SCFAs,
mainly acetate, propionate, and butyrate, were
recently demonstrated to exert an anti-inflamma-
tory property, regulated carbohydrates, and fatty
acid metabolism [24]. Absorption of SCFAs by in-
testinal epithelium through specific receptors
including monocarboxylate transporters and so-
dium-coupled monocarboxylate transporters that
acts as modulators for maintaining intestinal barrier
function. Besides, SCFAs interacts with metabolite-
sensing G-protein coupled receptors, thereby stim-
ulating intracellular anti-oxidative and anti-inflam-
matory pathways. Importantly, a significant
observation in both human subject and rodent
model with metabolic disease that revealed reduced
abundance of dominant SCFAs-producing species,
such as Faecalibacterium prausnitzii and Roseburia
hominis in gastrointestinal tract and fecal samples, as
well as the SCFAs concentration appear to be
reduced when compared with health phenotype.
Roseburia spp. metabolized complex non-digestible
carbohydrate and dominantly produced butyrate
during growth under fermentation. Previously, a
large clinical trial analyzed the main composition of
intestinal microbiota between ulcerative colitis and
health participants by using denature gradient gel
electrophoresis technique. Interestingly, relative
abundance of butyrate-producing bacteria Roseburia
hominis was founded to significant lower in ulcera-
tive colitis group, and was inversely associated with
intestinal inflammation. Base on this observation,
Patterson et al. propose that mono-colonization of
Roseburia hominis may regulate host-microbe cross-
talk in germ-free mice. The presents of Roseburia
hominis in gut result in increase in intestinal barrier
integrity, anti-pathogenic activity, and T cell biology
that may serve as an anti-inflammatory commensal
bacterium [25]. Moreover, depletion of Roseburia
hominis and Faecalibacterium prausnitzii has also been
noted in ulcerative colitis and Crohn's disease [26].
To note predominant producer of butyrate in
human intestine is Faecalibacterium prausnitzii, which
has been consistently mentioned as a special
degrader of non-digestible dietary substrates. Oral
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butyrate supplementation significantly attenuated
TNF-a and IL-1b production as well as macrophage
chemoattractant protein-1 expression in white adi-
pose tissue, against HFD-induced obesity and IR in
C57BL/6 mice model [27]. In comparison to lean
control, obese and T2DM participants has lower
abundance of Faecalibacterium prausnitzii, while
nutrient counseling over 3 month could increase
quantity of Faecalibacterium prausnitzii and epige-
netically upregulate GPR41 and long interspersed
nuclear element 1 promoter activity [8]. Verdam
et al. reported that increased abundant of Faecali-
bacterium prausnitzii in health subjects and revealed
potential proinflammatory change in microbiota
diversity in obese cluster [9]. Others study also
showed a lower level of Faecalibacterium prausnitzii
species in obese cases with T2DM is directly linked
to chronic inflammation. Previously, oral adminis-
tration of commensal bacterium Faecalibacterium
prausnitzii markedly improved intestinal inflamma-
tion, partly attributed to it's metabolites production
that inhibited NF-kB-mediated inflammatory
cascade, and suggesting a potential probiotics in
Crohn's disease treatment [28]. A research reported
that Faecalibacterium prausnitzii supernatant exerted
anti-inflammatory activity and improved intestinal
barrier function, and was recently identified by
Qu�evrain and colleagues that a 15 kDa protein in the
culture supernatant may contributed to attenuate
the severity of dinitrobenzene sulfonic acid-induced
colitis in mice [29]. In addition, Faecalibacterium
prausnitzii also shown different feature of modu-
lating diabetes progression through butyrate
induced regulatory pathway. Several cohort studies
have confirmed the compositional changes in Fae-
calibacterium prausnitzii are greatly correlated with
T2DM [30]. An instance, a significant inverse asso-
ciation between low count of Faecalibacterium
prausnitzii and hemoglobin A1c (HbA1c) level
founded in T2DM patients [31]. A therapeutic effect

of Faecalibacterium prausnitzii as a potent probiotic
supplement has been proposed for preventing dia-
betes in mice model [31]. Another bacteria indicator
of maintaining intestinal health, Akkermansia muci-
niphila is recently attracted great interest. Akker-
mansia muciniphila was first isolated in 2004 and
characterized by its mucin-degrading and SCFAs-
producing abilities. Notably, Akkermansia mucini-
phila also played a critical role in maintaining in-
testinal health and it's depletion was founded to
inversely associated with several gastrointestinal-
related disorders and metabolic disease. The fecal
concentration of Akkermansia muciniphila and was
shown to reduced several fold in ulcerative colitis
and Crohn's disease patients [32]. Also, in patients of
appendicitis, the abundance of Akkermansia mucini-
phila was significant reduced. Karlsson et al.
demonstrated that the level of Akkermansia mucini-
phila-like bacteria were lower in preschool children
with overweight and obesity [33]. Compared to
normal weight gain pregnant women, Akkermansia
muciniphila numbers were lower in women with
excessive weight gain [34]. Moreover, the probiotic
potential of Akkermansia muciniphila was proposed
and further investigated in rodent models. Coloni-
zation of Akkermansia muciniphila by oral supple-
mentation normalized HFD-induced metabolic
disorders such as endotoxemia, inflammation, and
IR in obese and T2DM mice. Other studies con-
ducted gnotobiotic mice model by colonizing 14
synthetic human intestinal bacteria species in fiber-
free diet feed Swiss Webster mice, resulting in
recovering intestinal community and colonic mucus
barrier lesion [35]. Similarity, it was reported that
participant with higher abundance of Akkermansia
muciniphila exhibited great efficiencies in improving
metabolic parameters, especially in fasting blood
glucose value and body mass index [36]. Further-
more, a pili-like transmembrane protein named
Amuc_1100 was identified from Akkermansia

Fig. 2. Schematic representation of disease prediction flow chart. The flow chart caters to corresponding disease following a standardized protocol
through next-generation sequencing (NGS) analysis, data extraction, and classification.
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muciniphila, which is involved in benefiting immune
function and intestinal mucosa integrity [37]. The
aforementioned studies suggested that specific
bacteria species, particularly of Roseburia hominis,
Faecalibacterium prausnitzii, and Akkermansia mucini-
phila were referred to as next generation probiotics
which could be served as a indicator and thera-
peutic tool for metabolic disease.

7. Novel predict tool for metabolic disease

With the fast grow in collecting healthcare re-
cords, big data analysis is expected to become
popular in the future. Given that the term disease
prediction is recently regard as a novel concept
globally with major reason of it's application to
prevent or forecast disease progression of human
beings. The intestinal microbiota is recognized an
essential metabolic organ response for dietary uti-
lization and regulate host energy metabolism. It
seem that referring to novel probiotic bacteria spe-
cies, we have mentioned and a powerful analysis
tool, next-generation sequencing (NGS) for big data
construction that may suitable for extracting infor-
mation and generating a disease prediction model
(Fig. 2). To assess the linkage between diabetes and
host gut microbiota dysbiosis, compositional and
functional change of microbiota during sub-clinical
state of diabetes was analysis in 36 fecal spacemen
of Korea twin participants using metagenomic
shogun sequencing technology. A next generation
probiotic, Akkermansia muciniphilia was indicated
playing a crucial marker that precede disease onset,
and functional alteration associated with low-grade
inflammation in consist with previous observation
[38]. These results suggested that Akkermansia
muciniphilia served as an early diagnostic biomarker
of diabetes and applicable for microbial-based
metabolic therapy. Although studies have suggested
specific bacterial taxa might potentially used as a
predictor/biomarker for the early diagnosis of MetS,
global complexity of human intestinal microbiome
and individual host properties limits the develop-
ment of significant means for optimizing personal
microbial-related references and disease model. To
overcome the difficulty of intestinal microbiota
complexity and diversity over country, ethnicity,
and region, it still needs deeper and comprehensive
studies to clarify the role of specific-species bacte-
ria/novel potential probiotics in metabolic disease
and determined a new disease risk algorithm or
personalized based medicine. Emerging sequencing
technology, high throughput analysis such as next-

generation sequencing and shotgun metagenomic
methods enables generation of thousands or even
millions of sequence reads from specimens and help
profiling intestinal microbial diversity. The massive
databases of phylogenetic and functional diversity
have provided preliminary information of microbial
communities between healthy and metabolic im-
pairments. Global collaborative efforts such as In-
ternational Census of Marine Microbes project and
European Metagenomics of the Human Intestinal
Trace project have provided preliminary microbial
communities dataset and thus, necessitates methods
to acquire meaningful data for multidimensional
analysis [39]. Recently, machine learning methods
exert great potential to process large data and
applied to exploit microbial community datasets.
Supervised machine learning algorithms such as
support vector machine (SVM), random forest (RF),
and gradient boosting (GB), can help developing
multi-layer perceptrons, which might potentially
applied to extract microbiome data [40]. Therefore,
the consistently growing in vivo and in vitro in-
vestigations with metabolic associated diseases re-
quires an emergency advance from interventional
evaluation to predictive, preventive, and precision
medicine. The flow chart caters to corresponding
disease following a standardized protocol through
NGS analysis, data extraction, and classification.

8. Conclusion

To date, the intestinal microbiota has been proven
to greatly associate with host metabolic status and
disease development. Modern sequencing technol-
ogy has provided a fast and convenient way to
identified specific alteration of the intestinal micro-
biota between disease and health. However, the
present review summarized results from human
clinical trials and animal studies, and gives a
perspective of intestinal microbiota balance and
diversity modulate metabolic diseases which
emphasized the commercial development and clin-
ical application. Although there is a substantial
heterogeneity in microbial composition between
species and needs further confirmed. Finally, we
also proposed a disease predicted model in perfor-
mance of NGS based detection and suggested the
futurity of this proposed model.
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