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Abstract

High-throughput omics technologies have enabled the profiling of entire biological systems.

For the biological interpretation of such omics data, two analyses, hypothesis- and data-

driven analyses including tensor decomposition, have been used. Both analyses have their

own advantages and disadvantages and are mutually complementary; however, a direct

comparison of these two analyses for omics data is poorly examined.We applied tensor

decomposition (TD) to a dataset representing changes in the concentrations of 562 blood

molecules at 14 time points in 20 healthy human subjects after ingestion of 75 g oral glu-

cose. We characterized each molecule by individual dependence (constant or variable) and

time dependence (later peak or early peak). Three of the four features extracted by TD were

characterized by our previous hypothesis-driven study, indicating that TD can extract some

of the same features obtained by hypothesis-driven analysis in a non-biased manner. In

contrast to the years taken for our previous hypothesis-driven analysis, the data-driven anal-

ysis in this study took days, indicating that TD can extract biological features in a non-biased

manner without the time-consuming process of hypothesis generation.

Introduction

The introduction of high-throughput technologies has enabled the profiling of entire biologi-

cal systems by acquiring omics data such as genomes, transcriptomes, epigenomes, and meta-

bolomes [1, 2]. The biological interpretation of such omics data requires integrating,

summarizing, and visualizing the omics data to acquire a complete picture of the biological

system [3]. A variety of bioinformatics methodologies have been developed to address the chal-

lenge of processing large amounts of complex omics data [4–7]. There are two analyses used

for omics analyses: hypothesis-driven and data-driven [4, 8]. Hypothesis-driven analysis tests

the hypothesis made by the researcher, whereas data-driven analysis does not require a

hypothesis to be made by the researcher in advance. Hypothesis-driven analysis is a subjective
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analysis that extracts the features of omics data by intuition. This result and its biological inter-

pretation are direct and easy to understand. However, because hypothesis-driven analysis is a

human-task, hypothesis generated by the same data may differ between individuals, and the

extraction of features can be biased depending on prior knowledge. Also, hypothesis genera-

tion relies on human inspections and trial and error, which makes it time-consuming. Data-

driven analysis is an objective analysis that extracts features by statistical analysis. Because

data-driven analysis is a computational task, feature extraction (FE) can avoid bias from indi-

viduals and prior knowledge and is much faster than hypothesis-driven analysis. However, the

extracted feature is not necessarily easy to understand and it is sometimes difficult to interpret

the biological data. Hypothesis- and data-driven analyses have their own advantages and dis-

advantages, and are mutually complementary. However, a direct comparison between these

two analyses is poorly examined.

We previously used hypothesis-driven analysis for time series data of various blood metab-

olites such as amino acids and lipids, including blood glucose and hormones during oral glu-

cose ingestion, and found four features with temporal patterns among individuals and

molecules [4]. However, because the number of molecules targeted was limited and different

statistical methods were used to calculate the features, analyst bias is a concern. In addition,

the FE took years. To address these issues, we attempted a non-biased FE using tensor decom-

position (TD).

Here, we used a data-driven approach based on TD as a multivariate analysis method

applied to multi-omics datasets. TD enables data-driven analyses such as data dimensionality

reduction, classification, and potential FE [9, 10] and has been widely applied to omics studies

[3, 7, 11–26]. Omberg et al. integrated genome-scale mRNA expression data from three cell

cycle time courses in yeast to identify genes and the differential effects of gene-mediated bio-

logical processes on cell cycle progression using TD. TD also has been applied to analyses

within each omics [11, 12, 15, 16, 18] and among multiple omics [3, 14, 17]. Recently, the

application of TD-based unsupervised FE was proposed [7, 20, 21, 23, 24, 26]. Taken together,

the data-driven analyses using TD in these studies have shown that biologically meaningful

features can be extracted by a data-driven non-biased method from datasets with various

modes. However, TD has not been applied to a time series dataset of human blood metabolites

and hormone concentrations before and after glucose ingestion. Among several TD-based

data-driven analyses, we used the algorithm used in the previously proposed TD-based unsu-

pervised FE [7, 20, 21, 23, 24, 26].

In this study, we applied TD to time series datasets representing changes in the concentra-

tions of 562 molecules (555 human blood metabolites and 7 hormones) in 20 healthy subjects

before and at 14 time points after ingestion of 75 g oral glucose to extract features. We obtained

the core tensor and individual-, time-, and molecule-related singular vectors. Reconstructing

the time series using only the dominant singular vectors allowed us to better interpret the fea-

tures of the temporal patterns of the molecules. We characterized each molecule by individual

dependence (constant or variable) and time dependence (later or earlier peaks). The molecule-

related singular vectors obtained by TD reflected three of the four features characterized by

our previous hypothesis-driven study [4]. We also extracted 68 molecules showing feature

time and individual dependencies through the unsupervised learning method by using TD.

The extracted molecules significantly overlapped with the analyzed molecules in our previous

study [4]. Therefore, by applying TD to the dataset characterized in our earlier study, we were

able to extract the features of the target molecules and reveal the temporal patterns in that

study [4]. This result not only confirms the validity of our previous findings but also shows the

usefulness of TD as a FE method.
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Next, we applied the TD method to a dataset representing the concentration changes of 40

molecules in three healthy subjects at 26 time points by three different oral doses (25g, 50g,

75g) and two different patterns of glucose ingestion (bolus or 2h-continuous ingestion). We

obtained the core tensor and individual-, time-, molecule-, and experimental condition-related

singular vectors. Reconstructing the time series using only the dominant singular vectors

allowed us to better interpret the features of the temporal patterns of the molecules. We char-

acterized the temporal pattern of each molecule by its experimental condition dependence

(constant or variable) and time dependence (early or late peaks). Thus, we applied TD to a

time series dataset of human blood metabolites and hormone concentrations before and after

glucose ingestion with various modes, and extracted the features in a non-biased manner. Of

the four features of temporal patterns in the hypothesis-driven analysis from our previous

study [4], the following three features were extracted by data-driven analysis: the “amplitude

and rate” components of temporal patterns, the similarity of temporal patterns among individ-

uals, and the similarity of temporal patterns among molecules. The only feature not extracted

was the relationship among individuals over time. This resultindicates that TD can extract

some of the same features obtained by hypothesis-driven analysis in a non-biased manner. In

addition, FE using TD took only days in this study. As we extracted biological features in a

non-biased manner without the time-consuming process of hypothesis generation, we propose

that TD be the first choice for the analysis of omics data.

Methods

Subjects

The study included 20 healthy subjects for ‘third-order tensor with individual mode, time mode,

and molecule mode’ and 3 healthy subjects for ‘fourth-order tensor with individual mode, time
mode, experimental condition mode, and molecule mode.’ The subjects’ profiles are shown in

S1 Table, and all subjects provided written informed consent. Subjects were recruited through

a snowball sampling and self-selection.

Blood sampling experiment

We used human blood samples obtained previously [4, 27]. Briefly, after a 10 h overnight fast,

subjects underwent the oral glucose tolerance test in the morning. An intravenous catheter

was inserted into the vein of the forearm and fasting samples were drawn twice.

‘third-order tensor with individual mode, time mode, and molecule mode’

A glucose solution containing 75 g glucose (TRELAN-G751; Ajinomoto Inc., Tokyo, Japan]

or the same amount of water was orally ingested within a few minutes. Blood samples were

obtained at 10, 20, 30, 45, 60, 75, 90, 120, 150, 180, 210, 240 min after ingestion as previously

described [4].

‘fourth-order tensor with individual mode, time mode, experimental

condition mode, and molecule mode’

A glucose solution containing 25, 50, or 75 g glucose was orally ingested. The ingestion method

was rapid within a minute (bolus ingestion) and continuous over the course of 2 h (2 h contin-

uous ingestion). For continuous ingestion, we connected the tube to a noncontact microdis-

penser robot (Mr. MJ; MECT Co., Osaka, Japan) [28]. The glucose solution was ingested from

the tube, and blood samples were obtained every 10 min until 240 min after sugar ingestion

[27]. Subjects remained at rest throughout the test. Blood samples were rapidly centrifuged.
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Here, we set an interval of 1–2 months for each experiment, because these types of studies take

a long period of time and require several hours and fasting by the subjects for each experimen-

tal condition.

Sample preparation and measurement

Sample preparation and measurement were performed as previously described [4, 27]. Plasma

(40 μL) was extracted with the addition of 400 μL ice-cold methanol containing internal stan-

dards (10 mM L-methionine sulfone [Wako, Tokyo, Japan], 100 mM 2-morpholinoethanesul-

fonic acid [Dojindo Molecular Technologies, Rockville, MD, USA], 100 mM D-

10-camphorsulfonic acid [Wako]), 400 μL chloroform, and 120 μL water. After centrifugation

at 10,000 × g for 3 min at 4˚C, the separated aqueous layer was filtered through a 5 kDa cutoff

filter (Millipore, Burlington, MA, USA) to remove protein contamination. The filtrate

(300 μL) was lyophilized and dissolved in 20 μL water containing two reference compounds

(200 μM each of trimesate [Wako] and 3-aminopyrrolidine [Sigma-Aldrich, St. Louis, MO,

USA]) for migration time and then injected into a capillary electrophoresis time-of-flight mass

spectrometry system (Agilent Technologies, Santa Clara, CA, USA) [29–31]. Among the mea-

sured molecules, gastric inhibitory polypeptide (GIP) (active) was measured using an enzyme-

linked immunosorbent assay kit. Blood hormones and some metabolites were measured

according to methods developed by LSI Medience Co., Ltd. (Tokyo, Japan).

Ethics committee certification

We complied with Japan’s Ethical Guidelines for Epidemiological Research, and the study was

approved by the institutional review board and ethics committee of Tokyo University Hospital

(No. 10264-(4)).

Data preprocessing

Because we focused on temporal patterns in this study for ‘third-order tensor with individual
mode, time mode, and molecule mode,’ we included only metabolites and hormones that we

measured to obtain our time series data. Thus, we excluded the molecules included in S2 Table

from our TD analysis. We considered the missing values to be zero [21]. For ‘third-order tensor
with individual mode, time mode, and molecule mode,’ we considered the mean value of -10

min and 0 min as the fasting value; and for ‘fourth-order tensor with individual mode, time
mode, experimental condition mode, and molecule mode,’ we considered the mean value of -5

min and 0 min as the fasting value.

Introduction of TD

For ‘third-order tensor with individual mode, time mode, and molecule mode,’ we applied TD to

the multimodal data of 562 blood molecules after ingestion of 75 g oral glucose at 14 time

points in 20 healthy subjects (Fig 1). Multimodal data are a data structure X with three axes

(modes): molecules, individuals, and time. We applied a TD called Tucker decomposition. We

schematically illustrate the Tucker decomposition model for the three-dimensional data case

in Fig 1. The data cube X (X2R20×14×562) was decomposed into several components by Tucker

decomposition, and the number of components differed in the three modes (i.e., dimensions

or axes). Here, G(l1l2l3)2R20×14×562 is the core tensor and U2R562×562, V2R20×20, W2R14×14

are the orthogonal matrices. The extracted components were characterized by the columns of

the three orthogonal matrices (U, V, W) (i.e., the singular vectors of each mode), meaning that

the extracted components had a dependence on each column of the original data. The model
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of the original data is a weighted sum of the outer products among the columns of (U, V, W).

The core tensor G represents the weighted value of the product of single components.

xijk ¼
X20

l1¼1

X14

l2¼1

X562

l3¼1

Gðl1l2l3Þul1 ivl2 jwl3k: ð1Þ

We applied one of the algorithms of the Tucker decomposition, called higher order singular

value decomposition (HOSVD) because the proposed application of TD-based unsupervised

FE used this method [7, 20, 21, 23, 24, 26].

This method is easier to compute and has a more converging algorithm than the other

method because it does not need initialization and the iterative computation [21]. The compo-

nents of X (xijk) can be decomposed as in (Eq 1), where G(l1l2l3)2R20×14×562 is the core tensor;

U ¼ ful1 ig 2 R
20�20

, V ¼ fvl2 jg 2 R
14�14

; W ¼ fwl3kg 2 R
562�562

are the orthogonal matrices;

i means individual; j means time point; and k means molecule.

For ‘fourth-order tensor with individual mode, time mode, experimental condition mode, and
molecule mode,’ The data were formatted as a tensor (X = {xijkm}2R3×26×6×40), representing the

concentration of the i th individual, j th time point, k th condition, and m th molecule. We

normalized xijkm as
P26

j¼1
xijkm ¼ 0;

P26

j¼1
x2

ijkm ¼ 1. HOSVD [21] was applied to xijk.

xijkm ¼
X3

l1¼1

X26

l2¼1

X6

l3¼1

X40

l4¼1

Gðl1l2l3l4Þul1 ivl2 jwl3kyl4m: ð2Þ

G(l1l2l3l4)2R3×26×6×40 is the core tensor; and U ¼ ful1 ig 2 R
3�3, V ¼ fvl2 jg 2 R

26�26; W ¼
fwl3kg 2 R

6�6
; Y ¼ fyl4mg 2 R

40�40
are the orthogonal matrices.

Fig 1. Tensor decomposition using the Tucker model is a weighted sum of outer products between the components

stored as columns in U, V, W. Twenty healthy subjects orally ingested glucose with 75 g bolus ingestion. The data

structure X2R20×14×562) had three axes: 20 individuals × 14 time points × 562 molecules. G(l1l2l3)2R20×14×562 is the

core tensor and U2R20×20, V2R14×14, W2R562×562 are the singular matrices of individuals, time, and molecules.

https://doi.org/10.1371/journal.pone.0281594.g001
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TD-based unsupervised FE

For ‘third-order tensor with individual mode, time mode, and molecule mode,’ we chose wl3k to

select biologically meaningful molecules. After selecting wl3k, assuming that wl3k were normally

distributed, the p-values were attributed to the k th molecules using the χ squared distribution as:

Pðl3Þi ¼ Pw2 >
wl3k

swl3

 !2" #

: ð3Þ

where swl3
is the standard deviation of wl3k, and Pχ2[> x] is the probability that the argument is

larger than x under the assumption that the arguments obey a χ squared distribution. The p-val-

ues were further adjusted by the Benjamini-Hochberg (BH) criterion [21], and those molecules

associated with adjusted p< 0.1 were selected.

Reconstructed time courses

For ‘third-order tensor with individual mode, time mode, and molecule mode,’ the original time

series of the molecule was reconstructed using only constant individual dependence

(ul1 i; l1 ¼ 1) and variable individual dependence (ul1 i; l1 ¼ 2) (Fig 3, see Result). For “individ-

uals similar pattern” and “individuals different pattern,” the concentration of the i th individ-

ual of the j th time point of the kth molecule is defined as follows:

xIndividuals similar
ijk ¼

X14

l2¼1

X562

l3¼1

Gð1l2l3Þðul1 i; l1 ¼ 1Þvl2jwl3k: ð4Þ

xIndividuals different
ijk ¼

X14

l2¼1

X562

l3¼1

Gð2l2l3Þðul1 i; l1 ¼ 2Þvl2 jwl3k: ð5Þ

where (1 or 2l2l3)2R20×14×562 is the core tensor, U ¼ ful1ig 2 R
20�20

, V ¼ fvl2 jg 2

R14�14
; and W ¼ fwl3kg 2 R

562�562
are the orthogonal matrices.

For ‘fourth-order tensor with individual mode, time mode, experimental condition mode, and
molecule mode,’ the original time series of the molecule was reconstructed using only constant

experimental condition dependence (wl3k; l3 ¼ 1) and variable individual dependence

(wl3k; l3 ¼ 2) (Fig 7). For “conditions similar pattern” and “conditions different pattern,” the

concentration of the i th individual’s of the j th time point of the k th molecule of the m th

experimental condition is defined as follows:

xConditions similar
ijkm ¼

X3

l1¼1

X26

l2¼1

X40

l4¼1

Gðl1l21l4Þul1 ivl2 jðwl3k ¼ 1Þyl4m: ð6Þ

xConditions different
ijkm ¼

X3

l1¼1

X26

l2¼1

X40

l4¼1

Gðl1l22l4Þul1 ivl2 jðwl3k ¼ 2Þyl4m: ð7Þ

where G(l1l21 or 2l4)2R3×26×6×40 is the core tensor, U ¼ ful1 ig 2 R
3�3; V ¼ fvl2 jg 2

R26�26
; W ¼ fwl3kg 2 R

6�6
; Y ¼ fyl4mg 2 R

40�40
are the orthogonal matrices.
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Results

Singular vectors obtained by TD (‘third-order tensor with individuals mode,

time mode, and molecule mode’)

We performed TD of three modes data of the concentrations of 562 blood molecules (7 hor-

mones, 555 metabolites) at 14 time points in 20 healthy subjects after ingestion of 75 g oral glu-

cose, and attempted to capture the differences in temporal patterns of molecular

concentration among individuals and molecules by glucose ingestion with TD. The data are

formatted as tensor X = {xijk}2R20×14×562, representing the concentration of the i th individual

of the j th time point of the k th molecule (Fig 1). We normalized xijk as
P14

j¼1
xijk ¼ 0;

P14

j¼1
x2

ijk ¼ 1. Higher order singular value decomposition [21] (HOSVD) was

applied to xijk. Note that the molecular assay used in this study was absolute quantitation, thus

normalization for inter-sample comparisons of blood samples is not required.

To select a set of molecules with specific time and individual dependence, we used the

method proposed by Taguchi (2020). In this method, we focused on the absolute value of G
(l1l2l3) and investigated the combinations of ul1 i; vl2 j; wl3k that shared a large absolute value of

G(l1l2l3). ul1 i; vl2 j; wl3k are singular vectors related to individuals, time, and molecules, respec-

tively. This is because we could consider a molecule with a large value of ul1 i, which shares a

large absolute value of G(l1l2l3) with a specific pair of individual and time singular vectors, as

shown in S1A Fig, to have specific individual and time dependencies. Because ul1 i; vl2 j; wl3k

are the unit vectors, note that G(l1l2l3) represents the weighted value of the product of any sin-

gle component, as well as how much each dependence is related to each other (Eq 1).

We sorted core tensor components G(l1l2l3) in the order of their absolute values (Table 1),

focusing only on the top four core tensor components and associated singular vectors (S1B

Fig, Table 1). Explained variance indicates the ratio of the variance of the low-rank approxima-

tion using each component to the variance of the original data.

As discussed later, these four were sufficient for replicating the features of temporal patterns

that characterized differences among molecules and individuals in our previous study [4].

These large absolute values of G(l1l2l3) corresponded to the singular vectors

ul1 i; l1¼ 1; 2; vl2 j; l2 ¼ 1; 2; wl3k; l3 ¼ 1; 2; 4 of individual, time, and molecule (Table 1).

Thus, we next interpreted these singular vectors.

ul1 i are the individual-related singular vectors; these values mean individual dependence

(Fig 2A and 2B). ul1 i; l1 ¼ 1 showed a constant value among individuals (Fig 2A). For

Table 1. Top ranked 10 G(l1l2l3)s with larger absolute values among l1, l2, l3.

Core tensor G(l1l2l3) Individual l1 Time l2 Molecule l3 Explained variance (%)

-84.7015 1 1 1 18.4596

-48.7344 2 1 2 5.622549

-13.5831 1 2 2 0.668828

13.39838 2 2 4 0.464222

-12.2486 3 1 5 0.367243

-11.7349 2 1 3 0.283308

11.14193 1 2 6 0.279568

-10.397 3 4 3 0.27922

-10.2323 1 4 6 0.248974

10.05849 1 4 7 0.227089

-9.91736 1 5 7 0.224841

https://doi.org/10.1371/journal.pone.0281594.t001
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Fig 2. Singular vectors obtained by tensor decomposition (‘third-order tensor with individuals mode, time mode, and molecule
mode’). A Individual-related singular vectors (ul1 i; l1 ¼ 1). B Individual-related singular vectors (ul1 i; l1 ¼ 2). C Time-related

singular vectors (Magenta line : vl2 j; l2 ¼ 1 Orange line : vl2 j; l2 ¼ 2). D Time-related singular vectors (Purple line:

vl2 j; l2 ¼ 3; Cyan line : vl2 j; l2 ¼ 4). E Molecule-related singular vectors (wl3k; l3 ¼ 1; 2). Representative molecules are labeled.

Abbreviations for the representative molecules are as follows: Cit, citrulline; CRP, C-reactive peptide; FFA, free fatty acid; 3-OH,
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ul1 i; l1 ¼ 2, the values showed variable among individuals. (Fig 2B). This result means that

ul1 i; l1 ¼ 1 represents the common component among individuals and ul1 i; l1 ¼ 2 represents

the variable component among individuals. This result also means that the common compo-

nent among individuals is larger than the variable component among individuals because

ul1 i; l1 ¼ 1 shares a larger absolute value of G(l1l2l3) than ul1 i; l1 ¼ 2.

vl2 j are the time-related singular vectors (Fig 2C and 2D). These values are time-dependent.

vl2 j; l2 ¼ 1 peaked at the later time point (later than 60 min) (Fig 2C), vl2 j; l2 ¼ 2 peaked at the

earlier time point (at 60 min) (Fig 2C), and vl2 j; l2 � 3 showed a zigzag temporal pattern with

different periods (Fig 2D). This result indicates that the early and late peaks are the main com-

ponents of temporal changes. wl3k are the molecule-related singular vectors (Fig 2E). These val-

ues mean molecule dependence. wl3k; l3 ¼ 1 showed large values for amino acids such as

leucine and valine (Fig 2E). wl3k; l3 ¼ 2 showed large values for glucose metabolism-related

molecules such as glucose and insulin (Fig 2E). Both wl3k; l3 ¼ 1; 2 showed large values for lip-

ids such as free fatty acid (FFA) and ketone (Fig 2E). wl3k; l3 ¼ 4 showed large values for the

amino acid glutamic acid and succinate, which is a component of the tricarboxylic acid cycle

(TCA) cycle (S2A Fig). This result indicates that molecules with similar value share similar

individual and time dependencies, whereas molecules with different value have different indi-

vidual and time dependencies.

We focused on the top four core tensor components G(l1l2l3) in terms of absolute values

(S1B Fig, Table 1). Following this, p-values were attributed to the i th molecule for each of

wl3k; l3 ¼ 1; 2; 4 (Methods). P-values were corrected using the BH criterion [21], resulting in

the selection of 20 molecules for wl3k; l3 ¼ 1, 23 molecules for wl3k; l3 ¼ 2, and 19 molecules

for wl3k; l3 ¼ 4 (S3 Table).

Set of molecules selected by TD and decomposed time series by the dominant singular

vectors (‘third-order tensor with individuals mode, time mode, and molecule mode’). We

investigated the overlap among the selected sets of molecules using wl3k; l3 ¼ 1; 2; 4, and

found that the overlap was small and the time and individual dependencies of each selected set

of molecules were specific (Fig 3A). To better interpret the features of the temporal patterns of

the molecules, we reconstructed the time series using only the singular vectors that we focused

on (Fig 3B, see Methods). This is equivalent to a low-rank approximation of the tensor.

Because we were interested in features of the temporal patterns that are similar among indi-

viduals of each molecule and the temporal patterns that are different among individuals, we

reconstructed the original time series of the molecule using only the constant individual

dependence ðul1 i; l1 ¼ 1Þ but also the variable individual dependence (ul1i; l1 ¼ 2) (Fig 3B, see

Methods). Here, we refer to the time series reconstructed using only (ul1 i; l1 ¼ 1) as “individu-

als similar pattern,” and the time series reconstructed using only (ul1i; l1 ¼ 2) as “individuals

different pattern.” We focused on leucine, FFA, glutamic acid, and glucose, which showed sig-

nificant responses before and after glucose ingestion in our previous study [4].

For leucine, as one of the representative molecules of the amino acid (Fig 3B), “individuals

similar pattern” peaked at 150 min and showed a sustained temporal pattern. “individuals dif-

ferent pattern” showed the most variation at 45 min, but the absolute value of”individuals dif-

ferent pattern” was smaller than “individuals different pattern” for the other molecules

(Fig 3B). Twenty-three molecules selected only by wl3k; l3 ¼ 1 included branched chain amino

3-hydroxybutyric acid; Ketone, Total ketone body; Glc, glucose; Ins, insulin; Leu, leucine; Val, valine. The label colors correspond

to the metabolic group list.

https://doi.org/10.1371/journal.pone.0281594.g002
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Fig 3. Set of molecules selected by tensor decomposition and decomposed time series by the dominant singular

vectors (‘third-order tensor with individuals mode, time mode, and molecule mode’). A Venn diagram of the set of

molecules selected by tensor decomposition. These sets include the molecules whose time series are shown in B. B

Decomposed time series by the dominant singular vectors. Decomposed time series by other than the dominant

singular vectors (ul1 i
; l1 > 2Þ are omitted. The black lines in “individuals similar” indicate the time point of the peak.

The black boxes and black lines in “individuals different” indicate time points of high variability among individuals.

The color of each line indicates each individual. Abbreviations for the molecule are as follows: FFA, free fatty acid.

https://doi.org/10.1371/journal.pone.0281594.g003

PLOS ONE Features extracted by tensor decomposition reflect the biological features of the human blood metabolome

PLOS ONE | https://doi.org/10.1371/journal.pone.0281594 February 15, 2023 10 / 26

https://doi.org/10.1371/journal.pone.0281594.g003
https://doi.org/10.1371/journal.pone.0281594


acids such as leucine and valine, and aromatic amino acids such as tyrosine and phenylalanine

(Fig 3, S1 Table). These molecules had a constant individual dependence (ul1 i; l1 ¼ 1) with a

sustained time dependence (vl2 j; l2 ¼ 1) (Fig 2, Table 1). This result suggests that the amino

acids selected only wl3k; l3 ¼ 1 had similar sustained temporal patterns among individuals.

For FFA selected only by wl3k; l3 ¼ 2, the “individuals similar pattern” showed a early peak

with a peak at 150 min (Fig 3), which is similar to leucine. However, the “individuals difference

pattern” of FFA showed the most variation at 210 min, and also showed variation between -10

min and 10 min, which differed from leucine. Twenty-five molecules selected only by

wl3k; l3 ¼ 2 included glucose metabolism-related molecules and lipids such as FFA and aceto-

acetic acid (Fig 3, S1 Table). These molecules had variable individual dependence ðul2 ; j; l2 ¼
2Þ with time dependence of the later peak (vl2 j; l2 ¼ 1), while constant individual dependence

ðul1 i; l1 ¼ 1Þ with time dependence of the earlier peak (vl2 j; l2 ¼ 2) (Fig 2, Table 1). This result

suggests that the glucose metabolism-related molecules and lipids, which were selected only by

wl3k; l3 ¼ 2; had similar temporal patterns for the earlier peak and different temporal patterns

for the later peak among individuals.

For glutamic acid selected only by wl3k; l3 ¼ 4, the “individual similar pattern” peaked at

210 min and showed a temporal patterns for the later peak, which is slower than leucine and

FFA. “individual different pattern” of glutamic acid showed a large variation from 120 to 240

min (Fig 3), and also showed a large variation from 30 to 45 min (Fig 3), which is different

from leucine and FFA. Seventeen molecules selected only by wl3k; l3 ¼ 4 included molecules

such as citrate, succinate, and malate, which constitute the TCA cycle, and amino acids such as

glutamic acid and glutamine (Fig 3, S1 Table). These molecules had a time dependence of the

earlier peak (vl2 j; l2 ¼ 2) with variable individual dependence ðul1 i; l1 ¼ 2Þ (Fig 2, Table 1).

This result suggests that the time dependence of the earlier peak of these molecules are differ-

ent among individuals. For glucose both selected by both wl3k; l3 ¼ 2, “individuals similar pat-

tern” peaked at 50 min and showed a time dependence of the earlier peak, which is faster than

leucine, FFA, and glutamic acid. The “individuals difference pattern” of glucose showed the

largest variation at 180 min (Fig 3), and also showed a large variation from -10 to 10 min, from

75 to 90 min, and at 240 min (Fig 3), which is different from leucine, FFA, and glutamic acid.

For the overlap, the molecules selected by both wl3k, l3 = 2 and l3 = 4 were glucose, creatine,

and creatinine (Fig 3, S1 Table). This result suggests that these molecules are characterized by

both similar temporal patterns for the earlier peak among individuals and different temporal

patterns for the later peak among individuals; and different temporal patterns for the earlier

peak among individuals.

For “individuals similar patterns,” leucine and glutamic acid showed temporal patterns for

the later peak, whereas FFA, and glucose showed temporal patterns for the earlier peak (Fig 3,

Table 1). Furthermore, the different temporal patterns among individuals were later peak for

glucose-related molecules and lipids (Table 1). For the “individuals different pattern,” the four

molecules did not show a clear time dependence, but the time points with large variation were

different among molecules (Fig 3). Taken together, each metabolic group was characterized by

individual dependence (constant or variable) and time dependence (later peak or earlier peak).

Comparison of the results of our previous study with this study

In our previous study, we used hypothesis-driven analysis and characterized the temporal pat-

terns among individuals and molecules by hypothesis-driven analysis with the following four

features [4]: the decomposability into “amplitude” and “rate” components, the similarity of

temporal patterns among individuals, the relationship among individuals’ over time, and the
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similarity of temporal patterns among molecules (S3 Fig). In this study, we used TD as data-

driven analysis. We investigated whether the features extracted by data-driven analysis in this

study reflected the four features derived from the hypothesis-driven analysis. Here, we used

the value of the square of wl3k to select the molecules.

In our earlier study of the hypothesis-driven analysis, we decomposed the temporal pattern

of the molecule into “amplitude of response (AUC)” and “rate of response (TAUC1/2)” as the

first feature [4]. The larger the value of AUC positively or negatively, the larger the response

from fasting after glucose ingestion positively (increase) or negatively (decrease), respectively.

The larger the value of TAUC1/2, the slower the response. In this data-driven analysis, we used

wl3k; l3 ¼ 1; 2; 4 to select molecules whose time dependence was later peak or earlier peak. In

other words, wl3k; l3 ¼ 1; 2; 4 are likely to capture the features of the temporal pattern such as

the amplitude and rate of response. Therefore, we investigated the relationship between the

values of wl3k; l3 ¼ 1; 2; 4 and AUC, TAUC1/2. Correlation analysis showed a significant rela-

tionship between the value of abs (wl3k; l3 ¼ 1) and the amplitude of the response, and

between the value of abs (wl3k; l3 ¼ 2) and the rate of the response, respectively (Fig 4A and

4B, Table 2). Thus, the value of wl3k; l3 ¼ 1 was negatively correlated with the amplitude of

response, and the value of wl3k; l3 ¼ 2 was negatively correlated with the rate of response, indi-

cating that these two values extracted by data-driven analysis reflected the features of ampli-

tude and rate of response derived from the hypothesis-driven analysis.

In our earlier study, we defined the feature of the similarity of temporal patterns among

individuals, by calculating for each molecule a correlation coefficient connecting all time

courses, combining two selected from all individuals as the index of the similarity (S3 Fig) [4].

The higher the value of this index of similarity, the higher the similarity of temporal patterns

among individuals. Because we used wl3k; l3 ¼ 1 and 2 to select the molecule with constant

individual dependence (Fig 2A), we investigated the relationship between the absolute values

of both wl3k; l3 ¼ 1; 2 and the similarity of temporal patterns among individuals. Multiple

regression analysis showed a significant relationship between the value of abs(wl3k; l3 ¼ 1; 2)

and the index of the similarity (adjusted coefficient of determination is 0.598 (p = 5.75 x 10−15)

(Fig 4C). Thus, the value of wl3k; l3 ¼ 1; 2 reflects the similarity of the temporal pattern among

individuals.

In our earlier study, we defined the feature of the change in the relationship among individ-

uals over time, by calculating the average changes in z-score values over time for each molecule

at each time point as the index of the change in the relationship among individuals over time

[4]. The larger the value of the index, the more constant the relationship among individuals

over time. Because we used both wl3k; l3 ¼ 2 and 4 to select molecules with variable individual

dependence, we investigated the relationship between the absolute values of wl3k; l3 ¼ 2; 4 and

the magnitude of the change in the relationship among individuals over time. Correlation

analysis showed no significant relationship between the value of abs (wl3k; l3 ¼ 2; 4) and the

magnitude of the change in the relationship among individuals over time (Table 2). We also

investigated other relationships between the absolute value of wl3k; l3 ¼ 1 and the magnitude

of the change over time in the relationship among individuals. Correlation analysis showed a

significant relationship between the value of abs(ul1 ; i; l1 ¼ 1) and the magnitude of the change

in the relationship among individuals over time, but the correlation coefficient was low

(r = 3.51 x 10−1) (Fig 4D, Table 2). Therefore, we conclude that TD cannot be used to extract

features that reflect the magnitude of the change in the relationship among individuals over

time.
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Fig 4. Comparison of tensor decomposition analysis with hypothesis-driven analysis. A The distribution of abs

(wl3k; l3 ¼ 1) and magnitude of response for each molecule. B The distribution of abs (wl3k; l3 ¼ 2) and rate of

response for each molecule. C The distribution of abs (wl3k; l3 ¼ 1), abs (wl3k; l3 ¼ 2) and the similarity of temporal

pattern among individuals for each molecule. D The distribution of abs (wl3k; l3 ¼ 1) and the change in the

relationship among individuals over time for each molecule. E The distribution of abs (wl3k; l3 ¼ 1) and the number of

molecules with similar temporal pattern for each molecule. Dot colors correspond to the metabolic groups (inset).

Representative molecules are labeled. Their abbreviations are as follows: Cit, citrulline; CRP, C-reactive peptide; FFA,

free fatty acid; GIP, gastric inhibitory polypeptide (active); Glc, glucose; Ile, isoleucine; Ins, insulin; Ketone, total

ketone bodies; Leu, leucine.

https://doi.org/10.1371/journal.pone.0281594.g004
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In our earlier study, we defined the feature of the similarity of temporal patterns among

molecules [4]. Because the similarity of temporal patterns among molecules was defined for a

pair of molecules, we defined the index as a quantitative value of the similarity of temporal pat-

terns among molecules for each molecule. Molecules with large values of this index have a

large number of molecules with similar temporal patterns. For details, please refer to our ear-

lier study [4]. In this study, we used wl3k; l3 ¼ 1; 2; 4 to select molecules whose time depen-

dence is later peak or ealier peak. Therefore, we investigated the relationship between the

absolute values of wl3k; l3 ¼ 1; 2; 4 and the number of molecules with similar temporal pat-

terns. Correlation analysis showed that a significant relationship between the value of abs

(wl3k; l3 ¼ 1) and the number of molecules with similar temporal patterns (Fig 4E, Table 2).

Therefore, the value of wl3k; l3 ¼ 1 reflects the similar temporal patterns among molecules.

Taken together, the following three features were extracted by data-driven analysis: the

“amplitude and rate” components of temporal patterns, the similarity of temporal patterns

among individuals, and the similarity of temporal patterns among molecules. The only feature

not extracted was the relationship among individuals over time, indicating that TD can extract

some of the same features obtained by hypothesis-driven analysis in a non-biased manner

(Fig 4, S3 and S4 Figs).

Molecules targeted in our earlier study and extracted molecules in this

study

In this study, we used TD to extract 68 molecules showing specific time dependence and indi-

vidual dependence by unsupervised learning (Fig 5, S4 Table). We examined the overlap with

the 83 molecules analyzed in our earlier study; the number of overlapped molecules was 55,

which is 55/83 = 66% compared to the 83 molecules analyzed in our earlier study (Fig 5, S4

Table). This result indicates that our earlier hypothesis driven analysis [4] included most of the

specific molecules extracted by data-driven analysis using TD in this study. Fisher’s exact test

showed that the overlap was significant at a significance level of 0.01 (p = 3.88 x 10−43). The

overlapped molecules included glucose and insulin, amino acids such as leucine and valine,

and lipids such as FFA and total ketone body (Fig 5, S4 Table), which we analyzed in detail in

our earlier study [4]. The set of molecules extracted by TD but not analyzed in our earlier

study included molecules such as adrenaline, acetoacetic acid, and noradrenalin (Fig 5, S4

Table). Although these molecules look to show specific temporal patterns, they had many

missing points and were excluded from the analysis in our earlier study. Note that the TD was

analyzed with missing points as zero [21].

Table 2. Correlation between features of temporal patterns by hypothesis-driven analysis and features of each molecule extracted by data-driven analysis.

abs(wl3 ; k
; l3 ¼ 1) abs(wl3 ; k

; l3 ¼ 2) abs(wl3 ; k
; l3 ¼ 4)

r p r p r p
Amplitude -8.40 5.60 5.00 2.92 7.08 6.81

x 10−1 x 10−6 x 10−1 x10-2 x 10−1 x 10−4

Rate 6.26 3.36 -7.3 3.53 -5.4 1.52

x 10−1 x 10−3 x 10−1 x 10−4 x 10−1 x 10−2

Temporal variation of relation among individuals 3.51 1.20 -1.80 9.37 -2.00 8.52

x 10−1 x 10−3 x 10−1 x 10−2 x 10−1 x 10−1

The number of molecules with similar temporal patterns 5.74 3.71 -3.6 5.28 -4.3 7.50

x 10−1 x 10−6 x 10−1 x 10−3 x 10−1 x 10−4

https://doi.org/10.1371/journal.pone.0281594.t002
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By contrast, many of the molecules included in our earlier hypothesis-driven analysis but

not extracted by TD were ions and other metabolites (Fig 5, S4 Table). These molecules did

not show a specific temporal pattern by glucose ingestion, although they had no missing

points. The overlapped 55 molecules was 55/68 = 81% compared to 68 molecules extracted

using TD (Fig 5). This result indicates that the features extracted by TD are useful in biology,

as data-driven analysis sufficiently captured the features obtained by our previous hypothesis-

driven analysis.

Taken together, we extracted the features of the molecules and temporal patterns that were

targeted in our earlier hypothesis-driven analysis by applying TD to the datasets that were

characterized in our earlier study [4]. This result shows not only the validity of the results of

our previous study, but also the usefulness of TD as a FE method.

Singular vectors obtained by TD (‘fourth-order tensor with individuals
mode, time mode, experimental condition mode and molecule mode’)

We further analyzed a new dataset that additionally included differences in experimental con-

ditions such as different doses of glucose and ingestion patterns of glucose ingestion (S5

Table). As a new dataset, we targeted molecules of glucose metabolism-related, amino acids,

and lipids. For these data, three healthy volunteers ingested either three different doses of glu-

cose (25, 50, and 75 g) rapidly or glucose over 2 h in six experiments to obtain time series data

(S5 Fig) [27]. The rapid ingestion paradigm is referred to as bolus ingestion, whereas the slow

ingestion paradigm is referred to as continuous ingestion over 2 h. We performed TD of four

modes data of the concentrations of 40 blood molecules (4 hormones, 36 metabolites) at 26

time points in three healthy subjects by three different oral doses and two different patterns of

glucose ingestion, and tried to capture the differences of temporal pattern of molecular con-

centration among individuals, molecules, and experimental conditions by TD.

We sorted the core tensor components G(l1l2l3l4) in the order of their absolute values

(Table 3, see Methods), and focused only on the top four core tensor components and

Fig 5. Molecules targeted in the hypothesis-driven and data-driven analyses. Venn diagram of molecules targeted in

our earlier study [4] and extracted molecules in this study. The molecules included in each Venn diagram are listed in

S4 Table.

https://doi.org/10.1371/journal.pone.0281594.g005

PLOS ONE Features extracted by tensor decomposition reflect the biological features of the human blood metabolome

PLOS ONE | https://doi.org/10.1371/journal.pone.0281594 February 15, 2023 15 / 26

https://doi.org/10.1371/journal.pone.0281594.g005
https://doi.org/10.1371/journal.pone.0281594


associated singular vectors (S6 Fig, Table 3). As discussed later, these four were sufficient to

characterize the differences in experimental conditions. These large absolute values of G
(l1l2l3l4) corresponded to the singular vectors ul1 i; l1¼ 1; vl2 j; l2 ¼ 1; 2; wl3k; l3 ¼
1; 2; yl4m; l4 ¼ 1; 2 of individual, time, experimental condition, and molecule (Table 3). Thus,

we next interpreted these singular vectors.

ul1 i are the individual-related singular vectors. This value means individual dependence

(Fig 6A). ul1 i; l1 ¼ 1 showed a constant value among individuals (Fig 6A). vl2 j are the time-

related singular vectors (Fig 6B). This value means time-dependence. vl2 j; l2 ¼ 1 peaked at the

later time point (later than 60 min) (Fig 6B), vl2 j; l2 ¼ 2 peaked at the earlier time point (at 60

min) (Fig 6B). This result indicated that the early and late peaks were the main components of

the temporal pattern.

wl3k are the experimental condition-related singular vectors (Fig 6C and 6D). This value

means experimental condition dependence. wl3k; l3 ¼ 1 shows the constant values among the

experimental conditions (Fig 6C). wl3k; l3 ¼ 2 shows the variable values among the experimen-

tal conditions (Fig 6D). wl3k; l3 ¼ 2 also shows that the value of bolus condition decreases

from positive to negative in a dose-dependent manner, and the value of continuous condition

negatively increase in a dose-dependent manner. Taken together, wl3k; l3 ¼ 2 divides not only

the duration of the bolus or continuous condition but also the axis of the dose.

The individual-related singular vectors and decomposed time series by the

dominant singular vectors (‘fourth-order tensor with individuals mode, time
mode, experimental condition mode and molecule mode’)

We selected the top four pairs as relatively large G(l1l2l3l4) (S6 Fig, Table 3). In previous sec-

tions (Figs 2–5), We calculated the p-values for each molecule in order to select biologically

meaningful molecules. However, we could not extract molecules with a significantly large

value of yl4m possibly because of the small number of molecules. Therefore, we summarized the

features of the temporal patterns of the molecules based on the distribution of yl4m (Fig 7A).

The magnitude of the absolute value of the molecule-related singular vectors captured the

features of the temporal pattern after glucose ingestion (Fig 4, S2 Fig). We focused on the abso-

lute value of the molecule-related singular vectors. Abs (yl4m) values are the absolute value of

the molecule-related singular vectors. Abs (yl4m; l4 ¼ 1) values of amino acids such as leucine

and valine (Fig 7A) and lipids such as FFA and ketone (Fig 7A) were larger, and those of the

molecules related to glucose metabolism such as glucose and insulin (Fig 7A) were smaller.

Table 3. Top ranked 10 G(l1l2l3l4)s with larger absolute values among l1, l2, l3, l4.

Core tensor G(l1l2l3l4) Individual l1 Time l2 Condition l3 Molecule l4 Explained variance (%)

81.01551 1 1 1 1 36.64219

-43.2383 1 2 1 2 10.46794

-24.8579 1 2 2 1 3.509575

-17.0224 1 1 2 2 1.601282

-16.9991 1 3 1 4 1.578022

14.34829 2 2 1 1 1.168824

12.38194 1 2 1 1 0.869979

10.69941 2 1 1 2 0.668719

-10.6981 1 2 2 4 0.615463

9.958467 1 3 3 1 0.541475

https://doi.org/10.1371/journal.pone.0281594.t003
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Abs (yl4m; l4 ¼ 2) values of lipids (Fig 7A) and glucose metabolism-related molecules (Fig 7A)

were larger, and those of amino acids were smaller (Fig 7A). This result indicates that glucose

metabolism-related molecules, amino acids and lipids have specific individual, time, and

experimental condition dependence.

To better interpret the features of the temporal patterns of the molecules, we reconstructed

the time series using only the singular vectors (Fig 7B, see Methods). Because we focused on

the features of the temporal patterns that were similar among experimental conditions of each

molecule and the temporal patterns that were different among experimental conditions, we

Fig 6. Singular vectors obtained by tensor decomposition (‘fourth-order tensor with individual mode, time mode,

experimental condition mode, and molecule mode’). A Individual-related singular vectors (ul1 i; l1 ¼ 1). B Time-

related singular vectors (Magenta line: vl2 j; l2 ¼ 1 Orange liene : vl2 j; l2 ¼ 2). C Experimental condition-related

singular vectors (wl3k; l3 ¼ 1). D Experimental condition-related singular vectors (wl3k; l3 ¼ 2). Each experimental

condition is denoted by the initial letters of the amount and duration of ingestion: 25B for 25 g bolus ingestion, 75˚C

for 75 g-2 h continuous ingestion.

https://doi.org/10.1371/journal.pone.0281594.g006
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Fig 7. The individual-related singular vectors and decomposed time series by the dominant singular vectors

(‘fourth-order tensor with individuals mode, time mode, experimental condition mode and molecule mode’). A The

molecule-related singular vectors (yl4m; l4 ¼ 1; 2). The dashed lines show the values of yl4m; l4 ¼ 1 divided into three,

and yl4m; l4 ¼ 2 divided into two, based on the shape of the distribution. B Decomposed time series by the dominant

singular vectors of a representative molecule and the original time series. Decomposed time series by other than the

dominant singular vectors (wl3k; l3 > 2) are omitted. The black lines in “conditions similar” indicate the time point of

the peak. The black boxes and the black lines in “conditions different” indicate the time points of high variability

among conditions. The color of each line indicates each condition. Solid lines indicate bolus ingestion, and dahed lines

indicate 2 h continuous ingestion. Circles, triangles, and lower triangles indicate the three doses, 25, 50, and 75 g,

respectively. Abbreviations for the representative molecules are as follows: Asp aspartic acid; Cit, citrulline; CRP, C-

reactive peptide; FFA, free fatty acid; 3-OH, 3-hydroxybutyric acid; Ketone, Total ketone body; GIP, gastric inhibitory

polypeptide (active); Glc, glucose; GLP, glucagon-like peptide-1; Glu, glutamic acid; His, histidine; Ile, isoleucine; Ins,

insulin; Leu, leucine; Tyr, tyrosine; Val, valine. The label colors correspond to the metabolic group list (inset).

https://doi.org/10.1371/journal.pone.0281594.g007
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reconstructed the original time series of the molecule using only the constant condition depen-

dence (wl3k; l3 ¼ 1) and the variable condition dependence (wl3k; l3 ¼ 2) (Fig 7B, see Meth-

ods). Here, we refer to the time series reconstructed using only (wl3k; l3 ¼ 1) as “conditions

similar pattern,” and the time series reconstructed using only (wl3k; l3 ¼ 2) as “conditions dif-

ferent pattern.” The original data of leucine, FFA, and glucose, and the “conditions similar pat-

tern” and “conditions different pattern” are shown (Fig 7B).

Both yl4m; l4 ¼ 1; 2 shared a constant individual dependence (ul1 i; l1 ¼ 1) (Table 3). This

result indicates that all molecules had a similar temporal patterns among individuals. For leu-

cine, as one of the representative molecules of the amino acid (Fig 7A), “conditions similar pat-

tern” showed a later peak from 120 to 150 min (Fig 7B). “Conditions different pattern” of

leucine showed variation from 30 to 100 min and from 160 to 210 min (Fig 7B). The earlier

peak values from 30 to 100 min changed from negative to positive from bolus (Fig 7B) to con-

tinuous (Fig 7B), whereas later peak values from 160 to 210 min changed from negative to pos-

itive from continuous (Fig 7B) to bolus (Fig 7B). Because “conditions similar pattern” peaked

at negative values, the more negative the value of the peak in the “Conditions difference pat-

tern,” the larger the peak in the original time series. Thus, the earlier peak was larger for bolus,

and the later peak was larger for continuous. Other amino acids with large abs (yl4m; l4 ¼ 1)

had constant conditional dependence (wl3k; l3 ¼ 1), with time dependence of the later peak

(vl2 j; l2 ¼ 1), whereas variable condition dependence (wl3k; l3 ¼ 2) had time dependence of

the earlier peak (vl2 j; l2 ¼ 2) (Table 3). This result suggested that the temporal patterns of

amino acids showed similar temporal patterns for the later peak and different temporal pat-

terns for the earlier peak among the experimental conditions.

For glucose, the representative molecule of glucose metabolism-related molecules, “condi-

tions similar pattern” showed an early peak from 30 to 40 min (Fig 7B). “Conditions different

pattern” showed variation from 0 to 40 min, 60 to 110 min, and 200 to 240 min, but the varia-

tion from 200 to 240 min was smaller than the other two durations (Fig 7B). During 0 to 40

min and 200 to 240 min, the peak value changed from negative to positive from continuous

(Fig 7B) to bolus (Fig 7B), whereas from 60 to 110 min, the peak value changed from negative

to positive from bolus (Fig 7B) to continuous (Fig 7B). Because “conditions similar pattern”

peaked at positive values, this result indicates that the earlier peak during 0 to 40 min was

larger for bolus and the later peak during 60 to 110 min was larger for continuous. This result

also indicates that the other peak during 200 to 240 min after glucose ingestion was larger for

bolus although the variation among experimental conditions was not as large as the others.

Glucose metabolism-related molecules such as glucose and insulin with large abs (yl4m; l4 ¼ 2)

had constant experimental condition dependence (wl3k; l3 ¼ 1) with time dependence of the

early peak (vl2 j; l2 ¼ 2) (Table 3), but variable experimental condition dependence ðwl3k; l3 ¼
2Þ with the time dependence of the late peak (vl2 j; l2 ¼ 1) (Table 3). These results suggest that

the temporal patterns of glucose metabolism-related molecules showed similar temporal pat-

terns for the earlier peak and different temporal patterns for the later peak among the experi-

mental conditions.

For FFA, as one of the representative molecules of the lipid, “conditions similar pattern”

peaked from 110 to 120 min, later than those of glucose metabolism-related molecules but ear-

lier than amino acids (Fig 7A). “Conditions different pattern” showed variation from -5 to 10

min, 40 to 60 min, and 140 to 210 min (Fig 7B). The peak values changed from negative to pos-

itive from bolus (Fig 7B) to continuous (Fig 7B) from 5 to 10 min, 40 to 60 min, and from neg-

ative to positive from continuous to bolus during 140 to 210 min. Because “conditions similar

pattern” peaked at negative values, this result indicates that the earlier peak was larger for
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bolus and the later peak was larger for continuous. Abs (yl4m; l4 ¼ 1) of lipids were also larger

than those of glucose metabolism-related molecules but smaller than those of amino acids

(Fig 7A). In addition, abs (yl4m; l4 ¼ 2) of lipids were large (Fig 7A). This result suggests that

the similar temporal patterns among experimental conditions for lipids showed a later peak

than glucose metabolism-related molecules and earlier peak than amino acids. This result also

suggests that the different temporal patterns among experimental conditions for lipids showed

an earlier peak than glucose metabolism-related molecules and later peak than amino acids.

Taken together, the similar temporal patterns among experimental conditions changed

from the earlier peak to later peak in the order of amino acids, lipids, and glucose metabolism-

related molecules (Fig 7, Table 3). “Conditions similar patterns” of leucine, FFA, and glucose

showed these time dependencies (Fig 7B). The molecule-related singular vectors of each mole-

cule also indicated that the different temporal patterns among experimental conditions

changed from the earlier peak to the late peak in the order of amino acids, lipids, and glucose

metabolism-related molecules (Fig 7, Table 3). “Conditions different pattern” for leucine, FFA,

and glucose showed large variation at different time points (Fig 7B). “Conditions different pat-

tern” also showed that the earlier peak was larger for bolus and the later peak was larger for

continuous (Fig 7B). This supports that the change in wl3k; l3 ¼ 2 from positive to negative

from 25B to 75C indicated a change from the earlier peak to the later peak. Taken together, the

temporal patterns of each molecule were characterized by experimental condition dependence

(constant or variable) and time dependence (early or late peak).

Discussion

The temporal pattern of ‘third-order tensor with individual mode, time
mode, and molecule mode’

In this study, we applied TD to ‘third-order tensor with individual mode, time mode, and mole-
cule mode’ as multimodal data, and extracted features of temporal patterns obtained by previ-

ous data-driven analysis (Figs 1–5, Tables 1, 2). In our earlier study [4], we selected target

molecules from the same dataset and characterized four features of temporal patterns of mole-

cules among individuals and molecules derived from the hypothesis-driven analysis.

The features extracted by the TD in this study reflected three of the four features of the tem-

poral pattern (Fig 4, S3, S4 Figs). This result suggests that not only the three features of the

temporal pattern capture the features of the dataset but also that a feature can only be extracted

by hypothesis-driven analysis. However, we could not exclude the possibility that the lower

core tensor components reflect such feature, and further study is necessary to address this

issue.

We also extracted 68 molecules that showed specific time and individual dependencies

through unsupervised learning by using TD (Fig 5). The extracted molecules included most of

the molecules analyzed in our earlier study, which ensured the validity of the extraction of fea-

ture by our earlier hypothesis-driven study [4]. In addition, the features extracted by TD suffi-

ciently captured the features of the temporal patterns of the molecules that were of interest in

our previous study, indicating that the results of data-driven analysis are useful in biology.

Interpretation of time patterns by reconstructing time series

To better interpret the features of the temporal patterns of molecules, we reconstructed the

time series using only the singular vectors of interest (Figs 3 and 7, see Methods). For example,

a molecule such as glucose, which has multiple time and individual dependencies (Fig 3), is

difficult to extract multiple biological features. We improved the interpretability by
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reconstructing the time series and visualizing it (Fig 3B). In the field of biology, the extraction

of waveforms by low-rank approximation in functional magnetic resonance imaging has been

studied [32]. In our earlier study, the low-rank representation of the time series facilitated bio-

logical interpretation and led to useful discussions [4].

The temporal pattern of ‘fourth-order tensor with individual mode, time
mode, experimental condition mode, and molecule mode’

We also applied TD to ’fourth-order tensor with individual mode, time mode, experimental con-
dition mode, and molecule mode’ to characterize the experimental condition-dependent tem-

poral patterns for each molecule (Fig 6). The similar and different temporal patterns among

experimental conditions changed from the earlier peak to the later peak in the order of amino

acids, lipids, and glucose metabolism-related molecules (Fig 7, Table 3).

“Conditions different pattern” of leucine, glucose, and FFA showed a large variation at dif-

ferent time points. “Conditions different pattern” of leucine, glucose, and FFA showed that the

earlier peaks were larger for bolus ingestion and the later peaks were larger for continuous

ingestion. In a previous study in which healthy subjects drank the same dose of glucose solu-

tion in either a bolus or continuous manner, the peaks by continuous ingestion were later than

those by bolus ingestion for the glucose metabolism-related molecules such as glucose, insulin,

C-peptide, and GIP [33]; branched-chain amino acids such as valine, leucine, and isoleucine;

and metabolites including FFAs and hormones [34]. The results of this study were consistent

with previous studies in which the dependence of the experimental conditions was evaluated

for each molecule [33, 34]. However, in this study, we could evaluate not only the dependence

among experimental conditions for each molecule (Fig 7B) but also the difference in depen-

dence of the experimental conditions among molecules (Fig 7A). This indicates that the analy-

sis flow using TD is valid for multimodal data and can simultaneously extract multiple

biological features by data-driven analysis. In this study, we applied TD to a time series dataset

of human blood metabolites and hormone concentrations before and after glucose ingestion.

We extracted individual-dependent temporal patterns for each molecule and experimental

condition-dependent temporal patterns for each molecule by using TD. Because previous

studies have used TD to extract features from other omics dataset such as transcriptome [12,

13, 15, 16, 18], it would be possible to extract features as temporal patterns from time series

data of other omics dataset.

Research limitations and prospects

We focused on the top four pairs as the core tensors with the largest absolute values (Tables 1,

3). However, because this selection method introduces analyst bias, selection criteria will be

needed in the future. In addition, a few molecules possibly had a specific dependence on the

core tensor that we did not focus on in this study. A decomposition method that can extract

the feature dependence of a few molecules will be necessary. TD didn’t extract the feature that

reflect the relationship among individuals over time. We attributed this to the normalization

method. In this study, we could not extract features related to the variation in absolute values

among individuals because we normalized data by time mode not individuals mode. The vari-

ous features of the responses of molecules (temporal patterns) by glucose ingestion we focused

on in this study were clarified by a combination of hypothesis-driven and data-driven analyses

[4]. However, we could not identify the mechanisms behind the feature of dataset. For this

purpose, it would be effective to formulate hypotheses based on the features revealed in this

study and to make plans for new experiments or analyze time series data using mechanistic

mathematical models. We discussed interindividual differences in the role of incretins in the
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regulation of blood glucose levels by mathematical model analysis focusing on glucose metabo-

lism-related molecules [27].

Conclusion

In this study, we first applied TD to a dataset representing changes in the concentrations of

562 molecules (7 hormones and 555 metabolites) at 14 time points in 20 healthy subjects by 75

g glucose ingestion (‘third-order tensor with individual mode, time mode, and molecule mode’).
We obtained the core tensor and individual-, time-, and molecule-related singular vectors. By

reconstructing the time series using only the singular vectors that we focused on, we could bet-

ter interpret the features of the temporal patterns of the molecules. We characterized each mol-

ecule by individual dependence (constant or variable) and time dependence (later or earlier

peaks).

The molecule-related singular vectors obtained by TD reflected three of the four features

characterized by our earlier hypothesis-driven study [4]. We also extracted 68 molecules show-

ing feature time and individual dependencies through unsupervised learning method by using

TD. The extracted molecules overlapped significantly with the analyzed molecules in our ear-

lier study [4]. Therefore, by applying TD to the dataset characterized in our earlier study, we

extracted the features of the target molecules and the revealed temporal patterns in our earlier

study [4]. This result not only confirms the validity of the results of our earlier study [4] but

also shows the usefulness of TD as a FE method.

Next, we applied the TD method to a dataset representing the concentration changes of 40

molecules in three healthy subjects at 26 time points by three different oral doses and two dif-

ferent patterns of glucose ingestion (‘fourth-order tensor with individual mode, time mode,

experimental condition mode, and molecule model’). We obtained the core tensor and individ-

ual-, time-, molecule-, and experimental condition-related singular vectors. By reconstructing

the time series using only the singular vectors we focused on, we could better interpret the fea-

tures of the temporal patterns of the molecules. We can characterize the temporal pattern of

each molecule by its experimental condition dependence (constant or variable) and time

dependence (early or late peaks). We applied TD to a time series dataset of human blood

metabolites and hormone concentrations before and after glucose ingestion with various

modes, and extracted biological features in a non-biased manner without time-consuming

process of hypothesis generation. We propose that TD can be the first choice for analysis of

omics data.

Supporting information

S1 Fig. Procedures for selecting a set of molecules with specific time- or individual-depen-

dent properties. A The definition of temporal pattern B Procedures for selecting a set of mole-

cules with specific time-dependent or individual-dependent properties C Distribution of

absolute values of the core tensor.

(TIF)

S2 Fig. The absolute value of the molecule-related singular vectors. A The distribution of

the molecule-related singular vectors (wl3k; l3 ¼ 1; 2). B The distribution of the absolute value

of the molecule-related singular vectors (wl3k; l3 ¼ 1; 2). Representative molecules are labeled.

Abbreviations for the representative molecules are as follows: Cit, citrulline; CRP, C-reactive

peptide; FFA, free fatty acid; 3-OH, 3-hydroxybutyric acid; Ketone, Total ketone body; Glc,

glucose; Ins, Glu, glutamic acid; insulin; Leu, leucine; Val, valine. The label colours correspond
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to the metabolic group list.

(TIF)

S3 Fig. Four features of the temporal pattern of molecules. In our earlier study, we used

hypothesis-driven analysis and characterized the temporal patterns among individuals and

among molecules by the hypothesis-driven analysis with four features [4]: the decomposability

into “amplitude” and “rate” components, the similarity of temporal patterns among individu-

als, the relationship among individuals’ over time, and the similarity of temporal patterns

among molecules.

(TIF)

S4 Fig. Relationships between the four features derived from the hypothesis-driven ana-

lyais and molecule components extracted from data-driven analysis.

(TIF)

S5 Fig. ‘fourth-order tensor with individuals mode, time mode, experimental condition

mode and molecule mode’. For ‘third-order tensor’, 20 susbjects orally ingested 75g glucose

in bolus ingestion. The data structure has three axes: individual × time × molecule. The data

represent the concentration changes at 26 time points 10, 20, 30, 45, 60, 75, 90, 120, 150,

180, 210, 240 min before and after ingestion as previously described [4]. For ‘fourth-order

tensor’, Three subjects orally ingested glucose with three doses 75, 50, and 25 g in two dura-

tions of bolus and 2 h continuous ingestion. The data structure has four axes:

individual × time × experimental condition × molecule. The data represent the concentra-

tion changes at 26 time points (-5, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140,

150, 160, 170, 180, 190, 200, 210, 220, 230, 240 minutes) from 5 min before fasting to 240

min after glucose ingestion for 40 molecules in three healthy subjects, in six different experi-

mental conditions.

(TIF)

S6 Fig. The distribution of absolute values of the core tensor (‘fourth-order tensor with

individuals mode, time mode, experimental condition mode and molecule mode’).

(TIF)

S1 Table. Characteristics of subjects.

(XLSX)

S2 Table. Removed molecules.

(XLSX)

S3 Table. Selected molecules.

(XLSX)

S4 Table. Molecules targeted in our earlier study and extracted molecules in this study.

(XLSX)

S5 Table. Metabolites and hormones data. Each sheet shows metabolites and hormones data

in healthy human before and after oral glucose ingestion for each condition. Column A shows

Name of molecules. Column B to CA shows values of molecules. The number indicates the

sample number of subject.

(XLSX)
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