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Abstract

The pharmaceutical industry and its global regulators have routinely 
used frequentist statistical methods, such as null hypothesis 
significance testing and p values, for evaluation and approval of new 
treatments. The clinical drug development process, however, with its 
accumulation of data over time, can be well suited for the use of Bayesian 
statistical approaches that explicitly incorporate existing data into 
clinical trial design, analysis and decision-making. Such approaches, 
if used appropriately, have the potential to substantially reduce the 
time and cost of bringing innovative medicines to patients, as well as 
to reduce the exposure of patients in clinical trials to ineffective or 
unsafe treatment regimens. Nevertheless, despite advances in Bayesian 
methodology, the availability of the necessary computational power and 
growing amounts of relevant existing data that could be used, Bayesian 
methods remain underused in the clinical development and regulatory 
review of new therapies. Here, we highlight the value of Bayesian 
methods in drug development, discuss barriers to their application 
and recommend approaches to address them. Our aim is to engage 
stakeholders in the process of considering when the use of existing data 
is appropriate and how Bayesian methods can be implemented more 
routinely as an effective tool for doing so.
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available. Bayesian methods (Box 2) provide an intuitive yet sound 
quantitative and methodologically rigorous approach to incorpora-
tion of data from various sources into the design of new clinical trials, 
while appropriately reflecting and examining the inherent assump-
tions and uncertainties. This might allow the overall number of trial 
participants to be reduced, while maintaining the overall strength of 
evidence to demonstrate efficacy and safety of a new treatment. Use 
of such external information will not be appropriate in all contexts; 
for example, where the quality or relevance of external data cannot 
be established or where sensitivity analyses would not corroborate 
assumptions or reduce uncertainties on the integration of external 
data. There will be other circumstances, however, for which the use of 
high-quality external information is appropriate and has the ability to 
improve drug development.

Sixteen years ago, Berry3 provided an overview of Bayesian 
approaches in clinical trials with a plea for their expanded use and a 
prediction of accelerated adoption in drug development and approval 
by regulatory agencies. Our observation is that such progress has been 
minimal in mainstream development of new drugs and biologics, 
although many advances have been made in the review and approval of 
medical devices by the FDA4. This lack of progress has its roots in a range 
of factors, but, as we discuss later in this article, key factors include a 
lack of familiarity with these approaches and the related uncertainty 
about acceptance of evidence generated by using them.

Our aims with this article are thus to raise awareness of the value 
of Bayesian methods in drug development and for it to act as a call to 

Introduction
The regulatory requirement for substantial evidence of safety and effi-
cacy to support approval by the FDA was codified into US law in 1962, 
with substantial evidence defined as “evidence consisting of adequate 
and well-controlled investigations, including clinical investigations, by 
experts qualified by scientific training and experience”1, 2. Similar con-
cepts are encoded in laws, regulations or guidelines in other countries. 
Over time, this and other regulations have generally been interpreted 
as requiring independent replication in two trials in the same or highly 
related medical conditions or patient populations, with design and 
analysis based on frequentist statistical methods (Box 1). Importantly, 
the use of frequentist methods, such as null hypothesis significance 
testing and reliance on p values, especially the 0.05 level of significance, 
has stemmed from convention and is not an explicit component of the 
law or any derivative regulation and guidance.

These regulatory standards are based on sound principles and 
have stood for decades. Nevertheless, public health needs and drug 
development targets have evolved, with increased focus on rare dis-
eases and on stratified, targeted subsets of more common diseases 
based on improved understanding of pathophysiology of disease and 
developments in pharmacology, such as gene therapies and therapies 
targeted towards specific tumour biology. The ethical mandate to 
expose the fewest patients to ineffective or unsafe experimental treat-
ments and to suboptimal control arm regimens remains. At the same 
time, a wealth of placebo-controlled clinical trial data has amassed, and 
health-care records data are both improved in quality and more readily 

Box 1

Frequentist statistics and clinical trials
Frequentist statistics is a branch of statistical inference that  
covers a broad range of analysis approaches that are underpinned 
by the frequency of events occurring as a basis for probability. 
For example, for a fair, six-sided die, the frequency or probability  
or likelihood that one will roll any individual number with such a  
die is 1 in 6.

In the context of this article, we focus primarily on null 
hypothesis statistical testing, in which the null hypothesis is 
assumed to be true (that is, a new treatment does not work) until 
the data from an experiment or clinical trial are deemed sufficiently 
incompatible with the null hypothesis that it is reasonable to  
‘reject’ that hypothesis. The ‘sufficient data’ are often captured  
by computing a test statistic, which is an overall measure of  
the treatment effect, and its corresponding p value. The more 
deviant that test statistic is from what is expected under the null 
hypothesis, the less belief we have in the null hypothesis of no 
treatment effect. This is often referred to as ‘proof by contradiction’. 
Hypothetically, if one were to execute the same clinical trial many,  
many times, the p value can be interpreted as the frequency (that is, 
probability) with which one would observe such an extreme test 
statistic if indeed the null hypothesis were true. Thus, when a 
researcher rejects the null hypothesis with a p value of <0.05, they 
are tacitly stating that if they had done their experiment repeatedly 
(analogous to the repeated roll of a die), they would expect to get 

their results, as encapsulated by the test statistic value, 5% of the 
time or less if the null hypothesis were true.

In the context of drug research and development, the frequentist 
approach has served regulators reasonably well in limiting the 
approval of ineffective drugs (avoidance of the so-called type 1 error) 
but is not the only way to meet the substantial evidence requirement 
for approval. In fact, there is another statement in the FDA’s Code 
of Federal Regulation: “FDA is required to exercise its scientific 
judgment to determine the kind and quantity of data and information 
an applicant is required to provide for a particular drug to meet 
the statutory standards.”56 To meet this standard, regulators have 
sometimes relied on a single well-conducted trial with compelling 
results that include, but are not necessarily limited to, large effect 
sizes, internal consistency of primary and secondary end points, and 
evidence of adequate control of sources of potential bias57. Examples 
of this include trials for rare diseases, trials used to establish drug 
effects for disease states with considerable mortality or serious 
morbidity, or large, long-term outcome trials such as those used 
for cardiovascular disease. In these circumstances, other sources 
of evidence external to the trial under regulatory consideration are 
implicitly brought to bear on decisions made by regulators, such 
as the strength of the biological or pharmacological rationale for 
beneficial drug effects, and data external to the trial programme that 
are relevant to the research questions of interest.
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involve stakeholders in the process to consider when the use of external 
data is appropriate and how Bayesian methods can be an effective tool 
for doing so. With these aims in mind, we first overview the principles 
of Bayesian inference and decision-making and their contrasts with 
the frequentist approach, and discuss various examples of the use of 
Bayesian approaches in clinical research. We then explore the barriers 
to their wider use and present a framework for deciding when Bayes-
ian approaches may be more valuable than frequentist approaches. 
Finally, we provide recommendations for the incorporation of Bayesian 
methods in clinical drug development and regulatory decision-making.

Principles of Bayesian inference and decision-
making
There are two fundamental distinctions between frequentist and 
Bayesian approaches. The first is shown in Fig. 1: the frequentist 
approach makes inferences within a single experiment, whereas the 
Bayesian approach synthesizes information across experiments or 
other sources of information to make probability statements about 
whether a hypothesis is likely to be true or not. Second, and more subtly, 
Bayesian statistics differ from frequentist statistics in the way that they 
provide evidence to answer research questions. Generally, frequentist 
approaches make inferences concerning the probability (P) of observ-
ing a test statistic with a value that exceeds a certain threshold based on 
the data (D), assuming some specified hypothesis (H) is true, annotated 
as P(D | H). This probability is called the p value. Frequentist hypothesis 
testing can only provide indirect answers, as one assumes that the null 
hypothesis is true until data that refute the hypothesis are observed in 
an adequate scientific experiment or clinical trial. By contrast, Bayesian 
statistics can be used to answer research questions directly by deter-
mining how likely the specified hypothesis is to be true given prior evi-
dence (D0) about the hypothesis combined with the accumulated data 
(DN) from the current experiment, annotated as P(H | D0,DN). This pro-
vides direct evidence to answer the research question. This subtle shift 
in mathematical notation has enormous consequences logically and 

for statistical inference, as the two statistical approaches answer fun-
damentally different questions. Many interpret the p value — P(D | H) —  
as the probability that the null hypothesis is true, which it is not. To be 
clear, as with all conditional probabilities, P(H | D) ≠ 1 – P(D | H).

It is worth noting that the Bayesian approach is a way of synthesiz-
ing information into a holistic analysis to evaluate the veracity of the 
null or alternative hypothesis as part of the inference for the current 
clinical trial. In that sense, it is akin to a meta-analysis. When assessing 
the totality of evidence using frequentist approaches, viewing each 
clinical trial result separately allows for an assessment of independent 
replication of results — an important element of the scientific process — 
but may also involve subjective interpretations. There are frequentist 
meta-analytical methods for synthesizing data across trials to make an 
overall inference about a hypothesis, but such analyses and resulting 
statistical inference are carried out separately from the current clinical 
trial. The same issues are present for both the Bayesian analysis and 
the frequentist meta-analysis, such as which historical trials should be 
incorporated into the analysis and what weight they should be given, 
but the Bayesian approach has two epistemological advantages. First, 
the Bayesian approach forces the discipline of stating the prior belief 
before the current clinical trial is done and thus is not biased by the 
observed results of the current trial. This prespecification can be sub-
jective but is a key element for generating credible statistical inference. 
By contrast, formal frequentist meta-analyses are generally carried out 
after the data from the current clinical trial are known, and thus may 
be influenced by what has been observed in the current trial. Second, 
Bayesian approaches can allow for more general sources of information 
and subjective input (for example, based on the mechanism of action 
of the treatment, the idiosyncratic nature of the disease or patient 
population under study) for creating a prior distribution.

For readers interested in learning more, Kruschke and Liddell5 
offer an introductory review to Bayes, and Ruberg6 provides a con-
ceptual framework for comparing and contrasting frequentist and 
Bayesian approaches. In the remainder of this section, we overview two  

Box 2

Thomas Bayes
The Reverend Thomas Bayes lived in the early eighteenth century 
and, although having very few publications in science, mathematics 
or probability, was known and respected well enough to be elected a 
member of the Royal Society. His profound contribution to probability 
was published posthumously in the Philosophical Transactions of the 
Royal Society of London in 1763: ‘An essay towards solving a problem 
in the doctrine of chances’58, in reference to Abraham de Moivre’s 
previous seminal work Doctrine of Chances first published in 1711.  
At the time, mathematicians were developing notions of probability 
of the occurrence of an event given some assumed probability model.

Today, we talk about the frequentist approach in which we 
calculate the probability of an event given some hypothesized 
model. Most notably for this article, hypothesis testing is a bedrock 
of frequentist statistical inference with p values calculated as 
the probability that a test statistic exceeds a critical threshold (c) 
assuming the null hypothesis is true. In symbolic language P(T > c | H0), 

which is sometimes stated colloquially as the probability of observing 
the data given the null hypothesis or P(D | H0). Bayes solved the 
inverse probability problem; that is, what is the probability of the null 
hypothesis being true given the observed data, written as P(H0 | D). 
This is argued to be more relevant to understanding the true state of 
nature. That is, it represents the philosophical perspective that we 
can only observe data (natural phenomena) and from that we must 
infer what is likely to be true (the underlying model or state of nature). 
Despite solving this fundamental problem in probability — a problem 
that Bayes’s contemporaries and subsequent mathematicians 
grappled with — it is worth noting that Bayes’s paper and solution 
did not gain notoriety or prominence for many years and was left 
unrecognized and underused for centuries. Excellent historical 
perspectives are given in The Theory That Would Not Die59 with a 
deeper philosophical preference for the Bayesian approach argued  
in Bernoulli’s Fallacy60.
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key aspects of Bayesian analysis — the prior and posterior distributions —  
and use published examples to highlight the differences between 
frequentist and Bayesian approaches.

Prior distributions
The first step in a Bayesian analysis plan is the definition of a prior 
probability distribution of the parameter for which we wish to make 
an inference based on the observed data, such as a treatment effect 
size — henceforth called the prior. This requires careful considera-
tion of extant sources of information, such as previous clinical trials 
of the experimental treatment of interest, preclinical data comparing 
the experimental treatment with other treatments, clinical trials of 
other treatments in the same mechanistic class and disease state, and 
observational outcomes data in the patient population and disease 
state. There are many dimensions for deciding which prior data are 
used in a Bayesian analysis to make a fair or unbiased assessment of 
a treatment effect: the source and quality of the data (for example, 
controlled clinical trial or electronic medical record), how contempo-
raneous they are with the new experiment, the clinical setting in which 
the data were collected (for example, geography or community or 
research hospital), as well as many other features related to the patient 
populations involved and the administration of the treatment under 
consideration. Alternatively, one can define a family of prior distribu-
tions that represent a reasonable range of treatment effect possibilities, 
as in an example discussed below and shown in Fig. 2a.

Prior distributions can be symmetrical or skewed, mounded, 
bimodal or flat, depending on the available data or other information 
about the possible values of the parameter, and there are many ways 
to define them. For example, a treatment effect can be expressed as 
a difference in mean responses, difference in proportion of patients 
responding or some measure of relative effect such as a risk ratio (RR), 
relative risk, odds ratio or hazard ratio. Priors can be described in col-
loquial terms such as non-informative, diffuse, vague or informative, 
but ultimately must be defined in mathematical terms. In reality, priors 
exist on a continuum of information that they convey. Every prior 

distribution contains some information; it is only a matter of degree. 
For example, a uniform distribution with a wide range of possible val-
ues or a normal distribution with a very large variance relative to the 
treatment effect parameter of interest might be described informally as 
non-informative prior probability distributions, but indeed such priors 
convey some information about the location and range of possible 
values for the parameter of interest. As such, they are also known more 
appropriately as weakly informative priors (Fig. 2b). They are generally 
centred at the no-effect value of the parameter (for example, mean 
difference of 0 or RR of 1). So-called diffuse or vague prior probability 
distributions generally refer to distributions that have a wide spread of 
possible values but not as wide as weakly informative priors. Strongly 
informative priors generally are centred at a treatment parameter value 
that demonstrates a treatment benefit or a treatment disadvantage. 
When there is a considerable amount of relevant data external to the 
current clinical trial, such a prior distribution may be warranted or at 
least considered in any sensitivity analysis.

Once a prior distribution is defined, another necessary component 
of the subsequent Bayesian analysis is the weight given to that prior. If 
data used to create the prior distribution are minimal, inconsistent or 
only indirectly connected to the current study (for example, a different 
patient population, disease severity or dosing regimen), then the prior 
distribution may be given less weight relative to the observed data from 
the current clinical trial. By contrast, if the data used for creating the 
prior distribution are very closely related to the current clinical trial (for 
example, using another phase II or phase III trial of the same treatment 
in the same population with the same dose for the same disease state), 
then the prior may be given greater weight in the final analysis of the 
current clinical trial. The weight assigned to the prior distribution is 
often described as ‘borrowing’, reflecting the amount of information 
borrowed from previous data for the analysis of the current data.

Posterior distributions
A posterior probability distribution describes a range of likely treat-
ment effect values as a result of the current experiment and is derived 
mathematically by combining information from the prior probability 
distribution and the newly collected data. Conceptually, it is a weighted 
average of what is known before the current experiment and what is 
observed in the current experiment, where the weights depend on the 
prior distribution (how informative it is) and the sample size and vari-
ability in the current experiment (small sample size and more variability 
carry less weight). The peak of the posterior distribution lies between 
the peaks of the prior distribution and the estimated distribution of the 
observed data. This is known as shrinkage and can be seen as a formal 
mechanism for guarding against the possibility of an observed random 
high or random low treatment effect that can occur in any individual 
clinical trial (Fig. 3a). Conversely, a mis-specified or biased prior can pull 
the observed data away from what the true treatment effect might be.

There is a wide variety of Bayesian methods for combining the 
prior and the observed data, and some adapt the use of the prior distri-
bution according to how consistent it is with the current experiment. 
What prior data or information to borrow and how much weight to give 
to the borrowed data that are external to the planned clinical trial are 
topics that require significant and careful consideration in conjunction 
with regulatory agencies. This is discussed in more detail subsequently.

Once the posterior distribution is defined, probability statements 
can be made directly relating to the treatment effect (parameter of 
interest) using the area under the posterior distribution curve (Fig. 3b). 
Most notably, a credible interval is a range of parameter values within 

Prior knowledge

Frequentist

Prior probability
about hypothesis
P0(H | D0)

New evidence (for 
example, p value) 
P(DN | H)

Posterior probability
about hypothesis
P1(H | D0,DN)

New experiment Updated belief+

Bayesian

Fig. 1 | Comparison between Bayesian and frequentist approaches. The 
frequentist approach evaluates evidence from a single new experiment, most 
often using a p value as a measure for deciding whether a hypothesis is true 
or false. The Bayesian approach formally and statistically quantifies prior 
knowledge (D0) about a hypothesis (H) in the form of a prior probability (P0), 
which is then combined with the evidence from a new experiment (DN) to 
compute a posterior probability (P1) about the veracity of that hypothesis. The 
posterior probability can be recycled as input to form the prior for a subsequent 
experiment, thereby creating a virtuous cycle of synthesizing scientific 
knowledge about a hypothesis.
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which the unknown parameter value falls with a specified probability. 
For instance, if we constructed a 95% credible interval, we would say 
that there is a 95% probability that the value of the unknown parameter 
falls in this credible interval. This is distinct from a confidence interval 
in the frequentist paradigm. A 95% confidence interval does not mean 
that there is a 95% probability that the unknown parameter is contained 
in that interval. Instead, it must be explained in a hypothetical manner. 
If we were to repeat the same experiment (clinical trial) many times and 
to calculate the 95% confidence interval for each repeated experiment, 
the expected frequency with which those 95% confidence intervals 
contain the true unknown parameter value (treatment effect) is 95%. 
Unfortunately, confidence intervals are often mistakenly interpreted 
as credible intervals, just as p values are frequently misconstrued as 
the probability that the null hypothesis is true.

Unlike p values, the posterior probabilities calculated from the 
posterior distribution of the treatment effect can be interpreted 
directly as probabilities related to the treatment effect. As in Fig. 3b, 
the area under the curve to the left of 1 represents the probability that 
there is a beneficial treatment effect (that is, the null hypothesis is 
false). Furthermore, suppose one were to define a clinically meaningful 
treatment effect to be a RR of <0.85, or, for making business decisions, 
that a RR of <0.70 was necessary to be competitive with other available 
treatments. Then, the area under the distribution curve can be easily 
calculated and a direct probability statement can be made regarding 
the likelihood of these assertions about the treatment effect parameter.

Examples of application
Therapeutic hypothermia. Multiple clinical trials had demonstrated 
the benefit of therapeutic hypothermia in newborns with hypoxic–
ischaemic encephalopathy (HIE) when initiated within 6 h of birth, 
but there can be practical difficulties with such a rapid intervention. 
Thus, there was interest in assessing the effect of initiating therapeu-
tic hypothermia at time points up to 24 h after birth. Because this is a 
rare condition, enrolment was a concern and traditional frequentist 
approaches to designing a randomized controlled trial (RCT) based 
on power and resulting sample size seemed infeasible.

A Bayesian approach was therefore specified in which information  
would be borrowed from historical data to create three prior pro
bability distributions for the treatment effect sizes: a sceptical prior, 
an enthusiastic prior and a neutral prior7 (Fig. 2a). The enthusiastic 
prior had mean RR = 0.72 based on historical data, the neutral prior had 
mean RR = 1.0 and the sceptical prior had mean RR = 1.10, allowing for 
the fact that therapeutic hypothermia may produce worse outcomes if 
initiated too late (Fig. 2a). For each prior, the spread of the distribution 
was such that 95% of the probability of the RR distribution lay in the 
interval 0.5–2.0. These represented plausible values for the expected 
outcome of the trial — 0.5 being a very positive benefit and 2.0 being a 
substantial detriment of therapeutic hypothermia if initiated too late 
after birth. The primary outcome was death or disability (predefined 
by specific developmental criteria) at 18–22 months of age. Newborns 
who met inclusion criteria were randomized to receive therapeutic 
hypothermia (n = 83) or non-cooling standard of care (n = 85) and  
rigorously followed through the planned completion of the trial.

The primary results of the trial were expressed as an estimated 
RR and a probability that therapeutic hypothermia initiated 6–24 h 
after birth resulted in better outcomes at 18–22 months than the non-
cooling standard of care. That is, among newborns with HIE, the results 
indicated that there was a RR = 0.86 (95% credible interval: 0.58–1.29) 
and a 76% chance that therapeutic hypothermia reduced mortality 

and disability relative to the non-cooling standard of care when using 
a neutral prior (Fig. 2b). Furthermore, because a Bayesian analysis 
produces a posterior distribution of possible treatment effect sizes,  

a

b
Weakly informative priors

Risk ratio

Sceptical prior

0.5 1 2

No e�ect
–a–∞ a ∞

Neutral prior

Enthusiastic prior

Di
use priors

No e�ect
–b b

Strongly informative priors

No e�ect
–c d

Fig. 2 | Prior distributions in Bayesian clinical trials. a, When using a risk ratio 
(RR), or any other ratio such as hazard ratio or relative risk, a value of 1 represents 
no difference in treatment outcomes. A neutral prior distribution (blue) reflects 
this and has equal probability above and below 1 (that is, the median is located at 1), 
conferring no preference for whether a new treatment is more effective (RR < 1) 
or less effective (RR > 1) than the control treatment. An enthusiastic prior (red 
probability distribution) is shifted to RR values <1, indicating a prior belief that  
the treatment effect is positive, while allowing for the possibility that the RR could 
be >1 (as represented by the area under the distribution curve that is above 1).  
A sceptical prior (gold probability distribution) is the reverse: it is shifted 
to the right and has greater probability of a detrimental effect (RR > 1) while 
allowing for the possibility that the RR is <1, as represented by the area under 
the probability curve for RR < 1. b, Examples of prior probability distributions 
for use in a Bayesian analysis. Each curve represents a distinct example of a prior 
distribution. The ‘no-effect’ point represents no difference in outcome between a 
treatment and a control. This can be a difference in treatment responses (means 
or proportions) that is zero or a ratio (relative risk, hazard ratio) that is 1.
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other clinically meaningful questions could be answered. In this case, 
the authors noted that a 2% reduction in mortality or moderate–
severe disability was clinically meaningful, and the Bayesian analysis 
inferred that there was a 64% probability that therapeutic hypothermia  
met that goal.

Interestingly, the authors reported the results of the frequentist 
analysis, which affords us the opportunity to compare the two infer-
ential paradigms. The frequentist analysis yielded a RR of 0.81 with a 
95% CI of 0.44–1.51, and although it was unreported, p ≈ 0.42 based 
on the width of this confidence interval, which includes RR = 1. Two 
comments are noteworthy here. First, the frequentist estimate of RR is 
smaller than the Bayesian estimate, suggesting a larger beneficial effect 
of therapeutic hypothermia. There is often a concern that Bayesian 
methods provide a shortcut or impose a lower standard of evidence for 

assessing a treatment effect, and this example shows that using data 
external to the current trial does not necessarily imply that a statistical 
result will be more favourable to an experimental treatment. In fact, for 
any single clinical trial, the observed results can vary considerably from 
what the true treatment effect might be. Thus, there are situations in 
which a neutral or conservative prior distribution shrinks a potentially 
random high estimate of the treatment effect from the current clini-
cal trial to a smaller effect estimate. Furthermore, the application of a 
Bayesian approach that properly recognizes uncertainty in the treat-
ment effect, as represented by a prior probability distribution, might 
lead to a larger sample size to generate compelling evidence than a 
frequentist experiment that does not reflect that same uncertainty in 
the design. Second, the credible interval can be interpreted directly 
as having a 95% probability of containing the true RR value. Although 
it is empirically smaller than the frequentist confidence interval, the 
credible interval and confidence interval are derived in fundamentally 
different ways and comparison of their widths is not appropriate. 
Nonetheless, another potential benefit of the Bayesian approach is that 
it incorporates additional information into the inference, although a 
smaller credible interval is not always guaranteed.

The choice of a prior is perhaps one of the most controversial 
and troubling aspects of Bayesian analysis for those steeped in the 
frequentist paradigm. This is why the authors of the HIE research pre-
specified three possible prior distributions at the start of their study. 
Although some view having a range of priors as a drawback of the Bayes-
ian approach, others view it as an advantage, as different individuals 
or institutions can make decisions based on what is relevant to their 
circumstances or perspective. Of course, in regulated clinical develop-
ment of a new treatment, the sponsor would be required to prespecify 
the prior, with regulatory agreement, for the primary analysis and 
interpretation of the clinical trial, with a range of prior distributions 
that includes sceptical and enthusiastic for sensitivity analyses.

Vaccines for COVID-19. In early 2020, severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) infection became a global 
pandemic, and the resulting coronavirus disease 2019 (COVID-19) 
subsequently affected many millions of people. There was an urgent 
need for a safe and effective vaccine. The worldwide community of 
health officials and regulators discussed and debated what would 
constitute an effective vaccine, and the FDA issued a guidance in June  
2020 that stated, “the primary efficacy endpoint point estimate  
for a placebo-controlled efficacy trial should be at least 50%, and  
the statistical success criterion should be that the lower bound of the 
appropriately alpha-adjusted confidence interval around the primary 
efficacy endpoint point estimate is >30%.”8 That is, a sponsor could 
demonstrate a highly statistically significant vaccine effect with a very 
large trial, say p < 0.001, but that effect may not be meaningful from a 
public health perspective for containing the spread of the virus. Thus, 
there was a need to quantify the level of confidence that the true vaccine 
effect is sufficiently large.

Pfizer and BioNTech sponsored a trial of their BNT162b2 mRNA vac-
cine for prevention of COVID-19. For the phase III portion of their clinical 
programme, the primary efficacy analysis was based on the Bayesian 
posterior probability that vaccine efficacy was >30%. The success 
criterion was explicitly defined as P(vaccine efficacy > 30%) >98.6%. 
That is, regardless of any p value calculation, the study success criterion 
was a 98.6% probability that the true vaccine efficacy (VE) was greater 
than the public health minimum requirement of 30% (Box 3). This 
illustrates that a Bayesian analysis requires a probability statement 
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Risk ratio

Neutral prior

0.5 1 2

Observed data

Posterior

b

Risk ratio

95% credible interval

0.5 1 2

Posterior
distribution

Beat competitor

Clinically meaningful

Treatment benefit

Fig. 3 | Posterior distributions in Bayesian clinical trials. a, The posterior 
distribution of the treatment effect parameter is a description of the uncertainty 
of the treatment effect. It is derived statistically from the prior distribution of 
the treatment effect and the estimated probability distribution of the observed 
data. b, The posterior distribution of the treatment effect parameter (risk ratio 
in this depiction) captures the updated description of the uncertainty of the 
treatment effect. The 95% credible interval has upper and lower bounds such 
that there is a 95% probability that the true risk ratio lies between those bounds. 
The posterior distribution can be used to calculate direct probability statements 
about the risk ratio based on the area under the posterior distribution curve, as 
depicted by the different vertical lines. In this case, a risk ratio of <1 is indicative of 
a treatment benefit (dark grey line) and various other risk ratio values can be used 
to discern the probability of a clinically meaningful treatment effect (blue line) or 
a treatment effect that is superior to a competitor (red line).
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for decision-making that is directly related to the magnitude of the 
treatment effect, unlike the arbitrary, yet conventional, p value < 0.05. 
The prior distribution for VE was centred at 30%, which was considered 
pessimistic given other data and/or information on the vaccine from 
earlier phases, and encompassed a very broad range of possible VE 
values, including the potential for an increase in infection rates from 
the vaccine. Thus, the prespecified statistical analysis plan for the 
phase III trial described the prior as “minimally informative”.

There were more than 43,000 patients randomized and 36,523 
evaluable for efficacy at the time the first results were published9. 

The results from the study that were used for an emergency use authori-
zation application to the FDA noted that the Bayesian posterior pro
bability for the true VE exceeding the predefined lower limit of 30% was  
>99.99%, far exceeding the 98.6% success criterion. In this situation, 
the dataset is very large and the observed vaccine effect so dramatic 
that the prior distribution had minimal impact on the decision about 
vaccine efficacy. That is, almost any reasonable prior distribution 
would have led to the same conclusion. It is worth noting that with these 
very compelling data, the frequentist analysis of the data would also 
have come to the same conclusion. Of course, the vaccine was rapidly 

Box 3

Decision-making based on Bayesian approaches
When using Bayesian inference to make decisions, probability 
statements are often constructed to express the likelihood of 
achieving some clinically meaningful effect size (CM). If T is the 
desired minimum probability, or threshold, of that effect size, then 
a decision rule can be expressed as P(true effect > CM) > T, where 
the probability P is derived from the Bayesian posterior probability 
distribution. The choice of CM and T depend on the disease state, 
the degree of unmet medical need, the patient population and so on. 
One can define a low value for CM but a high probability threshold 
T in order to be highly confident that a new treatment is minimally 
effective. Conversely, one can define a high CM value but allow for 
a lower T value about such a large effect. Any combination of CM 
and T can be chosen so long as they create desirable operating 
characteristics in the context of the decision to be made.

One desirable operating characteristic in drug development is to 
maintain a low probability of a false positive finding, known as a type 1 
error. In a frequentist drug development programme, phase III trials 
are designed with a significance level of 0.05 or less to control the 
type 1 error. The success of the phase III trial and the effectiveness of 
the new treatment culminate by observing a p value lower than the 
planned significance level in at least one trial, and most often in two. 
If two phase III trials with a planned significance level of 0.05 produce 
what appear to be conflicting results, say p = 0.02 and p = 0.09, 
the frequentist decision is generally that the drug development 
programme failed to replicate results, and the demonstration of a 
treatment effect is insufficient.

By contrast, for a Bayesian drug development programme, 
information is continually updated as the posterior distribution of 
treatment effect from one phase or trial is used as partial input for 
the subsequent trials. The output from the final phase III trial is then a 
single posterior probability of a positive treatment effect derived from 
all trials. An important question is: what is the posterior probability 
threshold T for deciding whether that development programme 
demonstrated substantial evidence? This is a topic beyond the scope 
of this article, but we give it brief consideration here.

Suppose a larger value for the treatment effect represents a 
treatment benefit. Regulatory authorities generally work from the 
assumption that the treatment effect is zero, consistent with the 
frequentist perspective, and want to evaluate a Bayesian decision rule 
of the form: P(true effect > 0) > T. However, the Bayesian perspective 

allows for some non-zero probability that the null hypothesis is 
false. This conflict is ‘resolved’ by the selection of an appropriate 
posterior probability threshold T in the decision rule. That is, 
mathematical calculations or simulations are done assuming that the 
null hypothesis is true and then calibrating the posterior probability 
T from the Bayesian analysis such that the decision rule P(true 
effect > 0) > T is achieved with an acceptably low probability, say 0.05. 
Although this combination of perspectives may be philosophically 
at odds with each other, perhaps it represents a bridge between 
frequentist and Bayesian thinking and a step forwards in the use of 
more Bayesian analysis.

Under this construct for statistical decision-making, the value of  
T is generally quite large, indicating a high level of confidence that the 
true treatment effect exceeds zero. This single posterior probability 
may give more insight into the treatment effect and resolve the 
apparent discrepancy noted above when two p values are on 
opposite sides of 0.05 (ref. 13).

The Bayesian approach is quite common inside pharmaceutical 
companies when making go/no-go decisions about advancing a new 
treatment. Furthermore, such decision criteria are quite commonly 
used in interim analysis of large or long-term clinical trials to make 
decisions about whether to continue a trial or to invoke a prespecified 
change in an adaptive trial.

In the Pfizer–BioNTech phase III COVID-19 vaccine study, a stop-
ping rule was defined for the theoretical possibility that the vaccine 
efficacy (VE) would be small relative to the placebo9. At any of four 
interim analyses, if the probability of meeting the success criteria 
at the end of the trial was <5%, then the trial was to be stopped for 
futility. Conversely, the statistical analysis plan stated a decision rule 
that if P(VE > 30%) > 99.5% at any of the four interim analyses, then the 
study could be stopped and declared a success. Just as the frequen-
tist approach requires adjusted significance levels to be <0.05 to 
declare a positive treatment effect at an interim analysis, the Bayesian 
approach generally uses a higher threshold probability at the interim 
analyses (99.5%) than at the final analysis (98.6%) as a success cri-
terion. Although a full Bayesian analysis does not require an adjust-
ment to the interim posterior probability threshold as the frequentist 
approach requires adjusted significance levels, this is usually done to 
meet regulatory needs. A discussion of the related mathematical and 
philosophical concepts is beyond the scope of this article.
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authorized by regulators, and the Bayesian approach was in no way 
seen as a shortcut or a lowering of the evidentiary bar for approval. In 
fact, one of the advantages of the Bayesian approach is that it provided 
an easily communicated way to quantify the level of certainty that the 
vaccine would be a considerable public health benefit. Further ben-
efits to using a Bayesian approach are elucidated in other examples 
discussed below.

Examples of how Bayesian methods are being 
used effectively
The goal of discussing selected examples in this section is to demys-
tify and normalize the use of Bayesian methods in various scenarios 
and demonstrate that the risk of using these approaches may not be 
as high as perceived by some stakeholders, and the advantages may 
be relevant for efficient drug development. Additional examples of 
the use of Bayesian approaches in the regulatory setting have been 
described elsewhere10, 11.

Generating substantial evidence
In many cases, having multiple studies to demonstrate drug efficacy 
and safety is required by regulators because of the scientific value of 
replication. There are several ways to undertake a multiple-study drug 
development programme, including conducting studies in parallel or 
in sequence. When carrying out clinical studies in sequence, which is 
natural and most common in drug development, Bayesian methods 
could provide a beneficial approach for generating substantial evi-
dence of the treatment effect at reduced cost and time of development 
without sacrificing scientific credibility.

In the case of phase II studies that are carried out as a precursor 
to phase III, valuable data on the dose, the patient population and 
the posterior distribution of the treatment effect size on a primary 
response variable of interest can be used as a prior for phase III plan-
ning. Compared with phase II data, the phase III data will be generated 
on the same treatment, with a highly similar patient population, by 
the same sponsor, in a nearly contemporaneous time frame, often 
involving some of the same investigative sites. Thus, the phase II data 
can often be highly relevant for creating a prior for phase III, even if 
aspects such as the inclusion and exclusion (I/E) criteria change, or the 
treatment formulations change slightly. Such refinements in phase III 
can be easily handled by using discounting factors (that is, less weight 
or less borrowing of prior information) in the Bayesian analysis that are 
mutually agreeable to sponsor and regulator. In general, the degree 
to which the sample size of phase III studies can be reduced while 
maintaining suitably high power is directly related to the quantity and 
quality of the phase II data12 as well as the amount of borrowing of that 
information, which can be mathematically defined in the Bayesian 
analysis. Marked changes from phase II to phase III in any of the clinical 
trial design factors would result in larger discounting of the phase II 
data. Ruberg et al.13 present an example of this approach with further 
details and considerations.

When phase III studies are carried out sequentially — either two 
identical phase III studies carried out in sequence to defer cost and 
risk of development or phase III studies carried out in different disease 
states or patient populations (for example, sacubitril–valsartan in 
heart failure for reduced ejection fraction and subsequently in heart 
failure for preserved ejection fraction) — borrowing data and or infor-
mation from initial phase III studies to form priors can also reduce the 
sample size, cost and time for subsequent clinical trials using a Bayes-
ian approach, without reducing the quality of the inference about a 

beneficial treatment effect on the primary outcome. This potential 
reduction in sample size has further implications, especially in the 
evaluation of safety.

First, it is worth noting that even with the use of prior informa-
tion and Bayesian approaches, some situations may still require large 
sample sizes — although smaller than without the use of prior informa-
tion — in phase III for demonstration of a beneficial treatment effect, 
thereby creating a sufficient safety database to assess the benefit–
risk trade-off of the new treatment. However, in other situations, the 
Bayesian approach, although still providing credible evidence of a 
treatment effect, can result in fewer patients being exposed in clinical 
trials and thus less overall evidence about the efficacy and safety of an 
investigational product. From an efficacy perspective, there may be 
less opportunity to assess the treatment on secondary end points or  
in subgroups of patients that may be of interest. Having fewer patients in  
phase III RCTs is particularly important in the context of safety assess-
ments of a new treatment. Even in some traditional drug development 
programmes, an evaluation of efficacy requires smaller sample sizes, 
but phase III RCTs are designed with very large sample sizes and over-
powered to create a large enough safety database. Whether it be a 
traditional frequentist drug development programme or one using  
a Bayesian paradigm, when fewer patients are needed to demonstrate a 
beneficial treatment effect, a sound alternative is to collect additional 
safety data outside the context of such complex and expensive efficacy 
trials. For example, simpler trials could be designed with fewer visits, 
fewer efficacy and quality of life procedures, less restrictive I/E criteria 
and so on to build the safety database. These simpler trials might also 
be more reflective of clinical practice and provide better insight into 
the safety issues with a new treatment under more normal conditions 
of use. Thus, a Bayesian approach could confirm the benefits of the 
new treatment in smaller — but more complex and expensive — trials 
while the entire clinical development programme can be used in more 
efficient ways to build better evidence regarding the safety of the new 
treatment.

Second, a Bayesian approach may also be helpful in synthesiz-
ing information across a drug development programme, which is 
often not powered to test statistical hypotheses about specific adverse 
events. Small numbers of unexpected adverse events are occasionally 
reported in a trial, and determination of whether such events are a true 
treatment effect or a spurious finding is difficult. Although evaluating 
unexpected adverse events is inevitably post hoc, most often sponsors 
and regulators make intuitive judgements regarding their prior belief of 
a causal link between the treatment and the unexpected safety finding. 
Although defining a prior in a post hoc way may seem contradictory,  
a Bayesian approach may help to formalize understanding of different  
perspectives and quantify the level of posterior belief for the treat-
ment effect on such adverse events. Thus, a Bayesian analysis could 
be a more informative way of describing the potential risks of a new 
treatment based on the accumulation of safety data across a drug 
development programme. Such quantification is generally not suited 
for a frequentist null hypothesis significance testing approach, and  
p values are often not relevant in such situations.

Furthermore, the use of Bayesian methods has the potential to 
result in a more appropriate use of evidence generated in clinical trials. 
In particular, evidence from a trial for which a conventional frequentist 
hypothesis test fails to reach statistical significance still contributes 
towards a calculation that a treatment effect of particular magnitude has 
(or has not) been established rather than the trial simply being viewed  
as ‘failed’, as is often done in both a regulatory and an academic context. 
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Certainly, some phase III trial and academic study ‘failures’ represent 
false negative findings, and Bayesian approaches can create a scientific 
basis to consider how evidentiary standards for ‘success’ are framed, 
giving an opportunity to tailor those requirements to each therapeutic 
setting. A recent re-analysis of a failed trial in the treatment of paedi-
atric cardiac arrest with therapeutic hypothermia (p = 0.14) used a 
Bayesian approach to calculate a posterior probability of therapeutic 
benefit of 94%14. The authors argue that the results presented this way 
are in stark contrast to the original study conclusion that stated that 
therapeutic hypothermia did not confer a significant benefit15.

Lastly, for treatments given conditional or accelerated approval, 
subsequent phase III commitments for confirmatory trials could use the 
trial that is the basis for accelerated or conditional approval to form an 
appropriate prior for the confirmatory trial. Such post-approval com-
mitments for additional trials tend to be more difficult to complete in 
the presence of the already marketed product, and a Bayesian approach 
could, under appropriate circumstances, be a low-risk regulatory  
approach to avoid large, expensive and potentially wasteful trials.

Supplementing data with an external control group
Bayesian augmented control designs allow researchers to reduce the 
number of participants required for a trial by incorporating, or bor-
rowing, information on control groups from historical studies or, in 
rare diseases, well-designed natural history studies, without sacrific-
ing power to detect an effect. The method used to borrow historical 
controls can vary across study types, and rigorous assessment of the  
external source is required to reduce bias16. For instance, bias can 
occur if the historical control sample is dissimilar to the current trial’s  
control arm or if the standard of care in medical practice has evolved 
over time. Thus, an important part of any study design is to be comfort-
able that the chosen design and the incorporation of historical data 
into the statistical analysis can result in reasonably unbiased estimates 
of treatment effect.

Bayesian augmented control designs have been employed effec-
tively in early-stage oncology trials. In these studies, data on members 
of the control group are borrowed from other trials with similar demo-
graphics and disease characteristics. Ultimately, this method allowed for  
a new trial to use 15–20% fewer participants than would be required 
for a standalone clinical trial with a full, concurrent control group17. 
This same approach could be used in phase III trials to create an even  
larger impact on the efficiency of clinical drug development18, including  
borrowing control data from studies in other therapeutic areas.

Acceptance of this method has grown. The FDA has accepted trials 
using Bayesian augmented control designs into the Complex Innova-
tive Design Program (see Related links). It would be beneficial to write 
a publication to describe innovative trial designs and share lessons on 
important points to consider in advance of trial results coming out. 
Publishing these studies would allow others to learn more about the 
implementation of innovative designs, expanding the field’s knowledge 
and experience. Additionally, it would help to develop best practices 
for investigations, to clarify assumptions related to the relevance of 
data from one source to another and to open discussion surrounding 
methods of adjustment to address deviations between data from the 
current trial and previously collected data.

Bayesian hierarchical models
Both Bayesian and frequentist hierarchical models are helpful because 
they allow us to assess different sources of variation in the data and 
account for variables at multiple levels of analysis19, 20 (Box 4). For 

instance, we can examine how a person’s symptoms change throughout 
a trial as well as differences that may occur at a group level. These meth-
ods also allow for borrowing of external data, under certain assump-
tions. This can be particularly helpful when investigating treatment 
effects across subgroups.

Using a Bayesian hierarchical modelling approach involves creat-
ing submodels that use both prior information and the available data to 
estimate the parameters of the posterior distribution. The hierarchical 
model is created by combining these submodels, and the overall model 
accounts for uncertainty present at all levels. Further, in the process of 
creating a Bayesian hierarchical model, the researcher quantifies their 
assumptions and priors and makes them explicit in the model. This 
increases transparency compared with models focused on a single level 
of analysis, where such assumptions may be used implicitly to inter-
pret statistical results. Bayesian hierarchical models have been used 
in a wide variety of drug development contexts, such as investigating  
subgroup findings and establishing drug safety.

Investigating subgroup findings. The safety or efficacy of a drug 
may differ for subgroups of participants. This is a vexing problem in 
clinical development as the analysis of multiple subgroups can lead to  
spurious or false positive findings21, which are sometimes referred  
to as ‘random highs’ or ‘random lows’ in response (see the FDA’s Impact 
Story on using innovative statistical approaches in Related links). That is,  
when clinical trial data are partitioned in many ways, to create many 
subgroups, there are more likely to be larger or smaller treatment 
effects within individual subgroups than the expected true effect in 
such a subgroup. Bayesian hierarchical models offer one approach to 
examining findings in a subgroup of people with similar demographic 
or clinical traits by using prior information or biological mechanisms 
to produce more reliable conclusions.

These subgroup investigations can take two forms: purely descrip-
tive (for example, age, gender, ethnicity) where there is a basis to postu-
late that these do not modify effects; or investigations of whether drug 
effects are truly heterogeneous across subgroups as a step towards 
personalized medicine. Bayesian hierarchical models account for indi-
vidual differences in the subgroup of interest at one level and borrow 
strength from the full model, which can decrease spurious findings 
and lead to more accurate treatment effect estimates19. However, for 
appropriate use, the assumptions must be plausible, and research-
ers must be careful in making assumptions about consistency across 
subgroups based on insufficient information.

Bayesian hierarchical models have been effectively used to investi-
gate treatment effects in subgroups of patients with non-small-cell lung 
cancer (NSCLC). For instance, the Biomarker-integrated Approaches 
of Targeted Therapy for Lung Cancer Elimination (BATTLE) project —  
which was “the first completed prospective, biopsy-mandated, bio-
marker-based, adaptively randomized study in pretreated lung cancer 
patients” — used a Bayesian hierarchical model to examine the effective-
ness of several targeted therapies for patients with NSCLC according  
to their biomarker status22. Patients were initially randomized equally to  
four treatments. As clinical outcome data accumulated over the  
course of the trial, a Bayesian hierarchical model was used to assess 
subgroups of patients with specific biomarker signatures to identify the 
treatment that was most likely to be beneficial for biomarker-specific 
patients based on a Bayesian posterior probability of the treatment 
effect. Randomization probabilities were adapted accordingly so 
that subsequent patients were more likely to get the most effective 
treatment according to their biomarker signature.
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The Bayesian hierarchical model approach identified subgroups 
in which the treatments would be effective better than independ-
ent analyses conducted in each subgroup23. Further, in combination 
with other approaches, such as adaptive design, Bayesian hierarchical 
models can reduce sample size and allow faster completion of clinical 
trials24. The success criterion for the trial was prespecified as a Bayes-
ian posterior probability of >80% that a study treatment achieved a 
30% disease control rate (DCR) at 8 weeks after randomization, and 
the overall DCR at this point was 48.6%. The study was considered a 
success in “establishing a new paradigm for personalizing therapy for 
patients with NSCLC.”22

Drug and vaccine safety. Bayesian hierarchical models have also 
been used to examine the safety of an experimental intervention. For 
instance, results from a measles–mumps–rubella–varicella (MMRV) 
vaccine trial were re-analysed using this approach25. This Bayesian 
hierarchical model accounted for adverse events at three separate 
levels, including type of adverse event, the body system affected and 
all of the body systems together, which allowed information across 
different subgroups, or body systems, to be borrowed, to increase 
power. However, it also demonstrated that assignment to subgroups, 
in this case body systems, could alter outcomes, suggesting that sub-
groups should be identified on the basis of expert knowledge, not just 

Box 4

Bayesian hierarchical models
Bayesian hierarchical models allow us to examine sources of variation 
at various levels of analysis. At the top of the hierarchy is the overall 
treatment effect in the population of patients defined by the inclusion 
and exclusion criteria for a clinical trial. That overall treatment effect 
may be built upon subdivisions of the data that are nested in a way 
to make a hierarchical schema (see figure). The groupings at each 
level share some common attributes, and the relationship within and 
between groupings can be used to make more precise inference 
about a treatment effect that may differ between groups. In the 
schema shown in the figure, level 2 may include further subdivision  
of patients into refined subgroups.

Hierarchies can be quite general and represent many different 
scenarios of clinical interest. For example, level 1 in the schema may 
represent different subgroups of patients defined by phenotypic, 
genotypic or genomic factors. The hierarchical model allows for an 
overall treatment effect estimate but also a distinct treatment effect 
estimate in each subgroup. In practice, the subgroup treatment 
effect estimates will differ from the overall treatment effect 
estimate, and the fundamental question is whether such differences 
represent true heterogeneity of the treatment effect or merely 
random fluctuations due to sampling variability and the variability 
of the clinical outcome of interest. As described in the therapeutic 
hypothermia for hypoxic–ischaemic encephalopathy example in the 
main text, the Bayesian approach ‘shrinks’ the observed subgroup 
treatment effect estimates towards the overall treatment effect 
estimate, depending on the prior and how much weight is given 

to that prior. The FDA’s Impact Story on using innovative statistical 
approaches has some practical examples from actual clinical trials  
to describe this in more detail (see Related links).

Other hierarchical models may include different studies at level 1 
with the same or different treatments at level 2. This approach was 
taken in the early 2000s for what is arguably the first FDA approval of 
a new treatment — a combination of pravastatin plus aspirin — using a  
Bayesian approach to estimate the treatment effect as the primary 
efficacy analysis61. Various models were examined to account for 
differences between studies, and prior distributions for all parameters 
in the model were defined explicitly. The result was that pravastatin–
aspirin combination was superior to placebo, and in fact, the effects 
were synergistic (the effect of the combination exceeds the additive 
effect of pravastatin plus the effect of aspirin) based on a posterior 
probability of 0.9999 of the synergistic effect.

As another illustration of a Bayesian hierarchical model, we may 
be interested in the effect of a treatment on a certain outcome for 
which we have a model that describes the probability of a patient 
having that outcome (overall treatment effect). But the effect of the 
treatment depends on a patient’s compliance with the treatment 
regimen, for which we may have a different model describing the 
probability or extent to which the patient adheres to the treatment 
regimen (level 1 of the hierarchy). Such a model can be used to 
estimate the posterior distribution of each model parameter — the 
probability of treatment adherence and, subsequently, probability 
statements about the treatment effect.

Level 2 
of the hierarchy

Level 2A.1 
treatment 
e�ect

Level 2A.2 
treatment 
e�ect

Level 2B.1 
treatment 
e�ect

Level 2B.2 
treatment 
e�ect

Level 2D.1 
treatment 
e�ect

Level 2D.2 
treatment 
e�ect

Level 2D.3 
treatment 
e�ect

Overall treatment e�ect

Level 1 
of the hierarchy

Level 1A 
treatment e�ect

Level 1B 
treatment e�ect

Level 1C 
treatment e�ect

Level 1D 
treatment e�ect
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by relying on statistical correlation. Furthermore, assessing the safety 
of a treatment can be a vexing multiple inference problem owing to the 
many types of adverse event that occur in clinical trials. Using hierar-
chical models to account for multiplicity issues related to drug safety 
assessments has also been proposed26.

Extrapolation
Extrapolation refers to an approach whereby information obtained 
from one or more subgroups of the patient population is applied to 
make inferences for another population or subgroup. This can reduce 
the number of patients in the latter group that need to be exposed to 
generate conclusions of the same scientific rigour. When there are 
data from prior trials and it is determined to be relevant, Bayesian 
methods could be applied to allow prior knowledge to be included 
in future studies.

Extrapolation has been successfully achieved in various contexts, 
including extrapolation across species of infectious bacteria, across 
body systems and across age groups. Extrapolation can be relevant 
when one wants to apply information from a well-studied population 
or body site to one that is less studied. For example, data from studies 
with ambulatory boys with Duchenne muscular dystrophy could be 
extrapolated to inform design and analysis of studies in those who 
are non-ambulatory. Although extrapolation techniques exist in both 
Bayesian and frequentist frameworks, Bayesian methods can be used to 
extrapolate from a source population to a target population by directly 
using data from the source population to inform the prior distribution. 
Quantifying the extent to which treatment effects in the source popu
lation apply to a target population is complex. A Bayesian approach has  
the possibility to address uncertainties related to the use of data from a 
source population by building an appropriate prior in which the treat-
ment effect distribution reflects that uncertainty. Bayesian methods 
can explicitly quantify the uncertainty of extrapolation and also allow 
for source information to be down-weighted, thereby allowing the data 
from the target population to be weighted more heavily in the creation 
of the posterior distribution27.

Extrapolation from adult to paediatric populations is often of 
interest, and regulatory guidances exist28, 29, including an FDA guid-
ance for medical devices that explicitly describes the use of Bayesian 
hierarchical models29. Although no such FDA guidance exists for thera-
peutic treatments, Bayesian methods have been used to successfully 
extrapolate from adult populations to paediatric populations. For 
example, Gamalo-Siebers et al.30 used several types of Bayesian model 
to extrapolate from information learned about the efficacy of the  
Crohn’s disease therapy rituximab in adults to provide insight into  
the efficacy of the drug in paediatric populations. They found that  
borrowing data from adults led to more precise drug efficacy estimates 
for children and advised that confidence in the Bayesian estimates of the 
treatment effect can be increased with proper planning — clearly stated 
assumptions, evaluating model fit, justification of priors, compat-
ibility of the target (paediatric) and reference (adult) populations and 
more. The resulting reduction in sample size, which directly affects the  
cost and duration of a trial, can lead to greater efficiency in development  
and approval of medications for paediatric populations.

Decision-making for an ongoing clinical trial
Bayesian methods can be used in several ways to facilitate the workings 
of an ongoing clinical trial, including interim clinical trial monitoring 
and decision-making, utility analysis and sample size re-estimation.  
A Bayesian approach to monitoring trial progression can be helpful to 

assess accumulating data and make modifications, such as modifying or  
stopping the trial for safety or efficacy reasons, altering sample sizes  
or altering randomization procedures to favour certain arms of the 
study31 (Box 3). An emerging and promising use of Bayesian methods for 
ongoing clinical trials is in the design and analysis of master protocols, 
which include basket, umbrella and platform trials32. Such protocols 
often involve adaptive features and Bayesian decision rules for futility or 
advancing an experimental treatment for confirmatory clinical trials33. 
Because the Bayesian approach offers such flexibility, it is important 
to discuss these options with regulators and other involved parties to 
ensure satisfactory evidence is collected.

The Bayesian adaptive approach was used successfully to com-
pare the efficacy and safety of dulaglutide and sitagliptin for treating 
type 2 diabetes mellitus34. In the first part of this study (phase II), the 
researchers aimed to determine whether dulaglutide was effective and, 
if so, the optimal dosage of dulaglutide. In this trial, randomization 
probabilities were adapted based on biweekly interim analyses using 
Bayesian decision rules regarding the probability that dulaglutide was 
superior to placebo and non-inferior to sitagliptin. Patient data were 
analysed every 2 weeks to adjust the randomization probabilities to 
the seven dulaglutide dose levels that were studied. Bayesian pro
babilities were also used to assess whether the phase II portion of the  
trial should be terminated for futility. The Bayesian interim analyses 
ultimately helped to select the optimal doses of dulaglutide to pursue 
in the second part of this study (phase III), which was highly success-
ful. The Bayesian approach allowed for seamless integration of data 
across the phases of the study for making statistical inference about 
the treatment effect.

Another emerging trial design and analysis paradigm that may 
have great potential for rare diseases is the small sample, sequential, 
multiple assignment, randomized trial (snSMART). In such designs, 
patients who do not benefit sufficiently from their initial randomized 
study treatment are re-randomized (that is, crossed over) to other 
treatments in the study, which can be different treatments or dif-
ferent doses of the same treatment. Data from both randomization 
stages of the design are combined to estimate the treatment effect of 
all treatments involved. An example of such a design is a randomized 
multicentre study for isolated skin vasculitis (ARAMIS) comparing 
the efficacy of three drugs: azathioprine, colchicine and dapsone35. 
Newly developed methods using Bayesian joint stage models of such 
designs36, 37 have demonstrated the possibility of reducing sample 
sizes by 15–60% while maintaining the validity of the inference about 
a treatment effect.

Barriers to widespread adoption of Bayesian 
analyses
Bayesian methods to incorporate external data require acceptance 
from various stakeholders, including sponsors, regulators, statisticians 
and clinicians. Although some of the barriers to gaining acceptance 
are technical, others are social, stemming from a lack of confidence or 
comfort with these approaches and insufficient Bayesian education. 
Furthermore, we acknowledge that some obstacles are present across 
various stakeholders, whereas others lead to unique challenges for 
specific groups. Below, we highlight some existing barriers and discuss 
ways to reduce them.

Historically, Bayesian methods have been underused in drug devel-
opment because these methods were computationally intensive, and 
computers did not have enough power to run the necessary calcula-
tions. However, this issue has largely been resolved with advances in 
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statistical theory and computational technology, thereby eliminating 
at least one barrier to implementation of Bayesian methods.

Drug development is a complex, costly and time-consuming enter-
prise, and so it is prudent to avoid approaches that are perceived as 
risky because inappropriate risk can jeopardize the years of work that 
precede clinical trials. Consequently, two key (and related) barriers to 
the use of Bayesian methods in clinical trials are the lack of acceptance 
and familiarity with these methods among regulators and industry 
sponsors, and the lack of experience and guidance about how to use 
them, especially in confirmatory phase III trials. At present, there 
appears to be a vicious cycle in which regulators may be reluctant to 
accept new methods that are not well established, which may lead 
industry sponsors to be hesitant about trying new methods owing 
to uncertainty surrounding regulatory acceptance. Disrupting this 
cycle presents a challenge, but we can examine comparable instances 
in clinical trial history to inform a solution.

The use of adaptive designs for clinical trials is a prime example of 
sponsors creating comfort with new methods and building confidence 
among regulators and other stakeholders. Although adaptive designs 
were increasingly discussed in the biostatistics literature during the 
1960s, they were rarely used in practice because sponsors and regula-
tors had little knowledge and experience with the methods or their 
application. Adaptive designs are now more widely accepted as an 
alternative to traditional fixed clinical trial designs38, 39 (although some 
may argue that adaptive designs are still underused). However, it took 
many years of discussions and negotiations to create the confidence 
and comfort necessary for adaptive designs to become normalized, 
including the issuance of regulatory guidances40, 41.

Therefore, one motivation for this article is to facilitate discussions 
about the use of Bayesian approaches, and especially conversations to 
discuss the interpretation of outputs of both frequentist and Bayesian 
analyses. Decades of experience with frequentist hypothesis testing 
and the use of the conventional level of p < 0.05 for declaring statistical 
significance have created a common understanding among research-
ers and a level of comfort with using p values to make decisions. By 
contrast, Bayesian analyses do not enjoy a long, collective history and 
understanding among the same scientists, and there is no established 
convention for what constitutes substantial evidence of a treatment 
effect based on Bayesian posterior probabilities or distributions. As 
this format is unfamiliar to most, understanding such outputs and the 
differences with p values will be necessary for the more widespread 
adoption of Bayesian methods.

Although a guidance for the use of Bayesian statistics in medical 
device clinical trials was published by the FDA in 2010 (ref. 4) and 2016 
(ref. 29), there is no comparable guidance for drugs and biologics. 
Increasing familiarity and confidence in Bayesian methods may also 
help to address this lack of regulatory guidance. When sponsors pro-
pose the use of Bayesian methods, more upfront planning is required, 
including discussion of the use of prior knowledge and external data, 
selection of a prior distribution and definition of a posterior probability 
threshold for concluding whether a treatment is effective. Without 
established precedents or guidances, these additional discussions 
between sponsors and regulators are more time-consuming and may 
strain the already limited resources within regulatory agencies, cre-
ating a structural barrier to the use of Bayesian approaches that is 
unrelated to scientific utility or appropriateness. These negotiations 
could become less time-consuming and resource-intensive as stake-
holders become more familiar and practised with Bayesian methods. 
Similar to adaptive designs, we expect that increases in familiarity will 

enable the successful use of Bayesian methods in ways that require less 
upfront work and could facilitate the development of guidance from 
regulatory agencies.

Training biases within academia and insufficient experiences 
present another challenge to the more widespread use of Bayesian 
methods. Many statisticians are taught frequentist methods more 
thoroughly than Bayesian or other biostatistical methods, leading 
frequentist methods to become more normalized and acceptable. Non-
statistician academics are even less familiar with Bayesian approaches 
and are prone to rely on frequentist methods. These training biases 
also extend to clinicians. Even though clinicians typically rely on prior 
knowledge when examining a single patient, they are often taught to 
interpret population-level trials through a frequentist lens. This bar-
rier can be reduced by creating comfort and building confidence with 
Bayesian approaches in this group.

Similar barriers are present in the industry. The Drug Information 
Association Bayesian Scientific Working Group surveyed organizations 
and found that insufficient practical knowledge was a hurdle to adopt-
ing Bayesian approaches42. This issue is not unique to large or small 
companies. Although Bayesian methods are more commonly used for 
internal decision-making purposes, they may be viewed sceptically by 
regulatory affairs professionals within companies running clinical tri-
als, who may be reluctant to take on the regulatory risk of using these 
approaches instead of commonly used frequentist ones. This sense 
that Bayesian methods have a low level of acceptance may prevent their 
consideration within sponsor organizations even before discussions 
with regulators might occur.

Although lack of familiarity is a key barrier to the adoption of 
Bayesian approaches, there are many knowledgeable statisticians and 
researchers who understand the Bayesian approach mathematically 
and philosophically yet prefer the frequentist inferential approach. 
Their perspective is that the perceived weaknesses of the Bayesian 
approach — such as the subjectivity of the prior and the potential for 
over-optimism, the difficulty of defining a posterior probability thresh-
old for decision-making, assumptions and modelling approaches —  
outweigh the benefits. This article is not meant to ‘convert’ such 
thoughtful statisticians and scientists, but instead to create an open-
ing for Bayesian inference in our scientific quest to uncover the truth 
about the cause-and-effect relationship between a new treatment and 
a clinical outcome, or at least to quantify the probability that such a 
cause-and-effect relationship exists.

Finally, the role of payers cannot be ignored. Payers create eco-
nomic models that examine the costs of specific events and the pro
bability that these events occur. In reality, these questions align well  
with Bayesian approaches. The probability of a treatment benefit or a 
treatment harm can be coupled with the savings achieved by the ben-
efits and the additional costs caused by the harms to build a realistic 
economic model for evaluation by payers43. However, given the limited 
use of Bayesian methods for approvals, payers’ unfamiliarity may drive 
concerns that products approved using Bayesian methods are not as 
well-studied or as validated as those using other methods. This lack of 
familiarity, coupled with other pressures faced by payers, may lead to 
additional scrutiny about the validity of trial data, even if the FDA and 
other international regulators approved it.

Overall, although each group of stakeholders has varying motiva-
tions and concerns, the lack of familiarity with Bayesian approaches 
is a common underlying theme that must be addressed for a large 
contingent of stakeholders before these methods are used more  
often.
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Framework for deciding when Bayesian 
approaches may work
When approaching clinical development, there is no right or wrong 
answer about whether to use frequentist or Bayesian methodology. 
These two approaches actually coexist (explicitly or implicitly) as shown 
in Fig. 1. All statistical methods — frequentist and Bayesian — require 
assumptions and models, the veracity of which we can never fully know. 
Thus, there is undoubtedly some level of subjectivity, and subsequently 
bias, in all of our analyses. Information external to the current experi-
ment can be combined with data from the current experiment to make 
decisions in both the Bayesian and frequentist frameworks. However, 
the incorporation of prior knowledge is inherent to a Bayesian approach 
and results in a probability format or statement that is very useful and 
natural for decision-making.

Here, we present a framework to help decide whether to use Bayes-
ian or frequentist methods (Fig. 4). This decision should not be the first 
step; instead, we argue that the researcher should first consider the 
research question of interest and the totality of evidence needed for  
the decision-makers about that question. Second, the researcher should  
determine whether external information relevant to the research 
question exists. For instance, when planning a phase III confirmatory 
study, high-quality, relevant information could be external data from 
a previously run well-controlled phase II study with a population that is  
similar to that of the planned phase III study. This is not to say that 
the phase III prior should be taken directly from the phase II posterior 
probability distribution of the treatment effect. One must consider 
not only the similarity or differences in the populations being stud-
ied, but also different geographical locations of the study, changes 
in formulation or dose that can occur between phases, changes in 
the primary efficacy outcome, generally longer durations of phase III  
trials and more. Furthermore, sponsors pick the winners from phase II  
studies for further study in phase III. Thus, there is a natural bias or 
tendency for compounds that progress into phase III to be the result, 
in part, of the random high bias44, 45. Each of these factors need careful, 
objective consideration, and the degree of difference between phase II  
and phase III studies should be captured in the down-weighting of 
the phase II data for use as a phase III prior13. Conversely, there may be  
limited data on the efficacy response to a new treatment as it may 
have been studied in relatively few patients in phases I and II, and thus, 
minimal information to borrow about the new treatment effect. This 
should not deter the researcher from exploring what might be a wealth 
of placebo or other active control data across many trials in the same 
or similar disease settings or with a treatment having a similar mecha-
nism of action, as noted above. There are other forms of high-quality, 
relevant prior knowledge that may exist from other drugs in the same 
mechanistic class or in the same disease state. Observational data 
from electronic medical records, medical claims databases or other 
such real-world settings can be helpful but must be used cautiously 
owing to their uncontrolled nature and potential for considerable bias.  

Additionally, expert opinion, albeit subjective, can be used to synthe-
size disparate sources and types of preclinical and clinical data to assist 
in the formation of a prior distribution.

Next, the researcher should evaluate whether the external data 
can be explicitly included in ways that result in the best summary of 
the totality of evidence and reasonably unbiased estimates of treat-
ment effects (Fig. 4). If external data are appropriate, researchers 
should determine which method, Bayesian or frequentist, is most 
suitable for the circumstance, including additional sensitivity analyses 
to ‘stress test’ the impact of assumptions on conclusions. If there is 
not sufficient prior knowledge, then frequentist methods, or weakly 
informative priors, will most likely be appropriate14. Although the 
results of analyses based on frequentist approaches and Bayesian 
approaches with weakly informative priors may result in very similar 
conclusions, we advocate for the use of the Bayesian approach as its 
posterior probabilities make direct statements about the hypothesis of 
interest. Furthermore, Bayesian approaches are generally more suited 
for adaptive and other complex innovative designs, handling missing 
data, complex modelling and more.

Recommendations for action
Bayesian methodology is an important and underused tool to com-
bine and interpret the totality of evidence needed to demonstrate the  
safety and efficacy of a drug while making full and quantitative use of 
prior knowledge. When there is a sound scientific basis to do so, there 
are benefits to public health where medicines can be brought forward 
more expeditiously, providing early access to patients and requiring 
fewer subjects to participate in clinical trials, without compromising 
decision-making rigour. For this to be successful, we recommend the 
following actions.

Increase communication and knowledge exchange
Industry groups and regulators should publish their findings using 
Bayesian approaches and generally communicate them more regularly 
to the broader audience involved in drug development. This will allow 
for research teams, as well as others, to gain experience and familiar-
ity with Bayesian methods. Initially, a Bayesian analysis may be a sup-
plemental description of the trial results, as in the case of a phase II 
trial for the potential Alzheimer disease therapy donanemab46. In the 
assessment of cognitive and functional decline among patients with 
Alzheimer disease, researchers reported a p value of 0.04 for reject-
ing the null hypothesis of no treatment effect and supplemented  
the finding by noting a Bayesian posterior probability of 76% that the  
slowing of cognitive and functional decline estimated in the trial met 
a prespecified clinically meaningfully threshold. A similar phase II 
Alzheimer disease study of lecanemab used a Bayesian analysis as the 
primary analysis, reporting a 64% probability that the treatment effect 
achieved a clinically meaningful threshold47. The successful phase III 
trial of lecanemab reverted to a frequentist paradigm to demonstrate a 

Consider totality 
of evidence 
needed to support 
decision-making

Consider the 
extent to which 
relevant external 
information exists

Consider 
information 
integration for 
unbiased inference

Decide on frequentist 
or Bayesian statistical 
approach with 
sensitivity analyses 

Fig. 4 | Recommended stepwise process for deciding whether a frequentist or 
Bayesian approach is most applicable for design, analysis and interpretation 
for the test of an experimental hypothesis. Information may consist of 

quantitative data, qualitative knowledge such as theories about a biological 
mechanism, or other subjective inputs such as expert opinion.
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beneficial treatment effect — quoting a p value of <0.001 for the primary 
efficacy outcome48 — perhaps illustrating the reluctance to implement 
the Bayesian paradigm across the full drug development programme.

Create transparency
Designing studies with Bayesian approaches can be intensive and can 
require advanced methods, including simulations. Transparency in 
design and analysis is necessary for more widespread adoption of 
Bayesian methods. Guidance from the International Council for Harmo-
nisation of Technical Requirements for Pharmaceuticals for Human Use 
(ICH)-E9 Statistical Principles for Clinical Trials states that “The extent  
to which the procedures in the protocol are followed and the primary 
analysis is planned a priori will contribute to the degree of confidence 
in the final results and conclusions of the trial.”49 In the Bayesian frame-
work, the entire decision-making framework is prespecified by the 
explicit incorporation of the prior and therefore may be considered a 
more holistic approach. In the frequentist paradigm, inferences from 
the current study are interpreted subjectively in the context of external 
data and/or information, which can allow for post hoc, hidden biases to 
seep into decision-making. Following these guidelines when creating, 
conducting and publishing work would increase confidence in both 
the research and Bayesian methods more generally.

Publicly sharing computational algorithms could increase under-
standing of how to implement Bayesian approaches. Further, sharing 
code reduces the possibility of Bayesian approaches being viewed as 
a ‘black box’, as it allows others to become familiar with the processes 
and calculations involved. Regulators should provide support for such 
activities, and sponsors should demonstrate that they are prudently 
using Bayesian methods by being more open about their use.

Create institutional structures that build confidence
With increasing use of Bayesian methods, concerns about deviating 
from tradition will be less of a barrier. To reduce such concerns further, 
public conversations on the use of Bayesian methods should occur more 
often. An FDA advisory committee could be created, which advises and 
ultimately leads to development of specific guidance on how to deter-
mine relevant prior distributions and use Bayesian methods in drug 
development trials. International health authorities have developed 
guidance for sponsors on defining relevant non-inferiority margins50, 51  
that rely on the Bayesian framework for evaluating historical data, and 
the same should occur for the use of Bayesian frameworks in other 
clinical trial settings. In medical device development, for which each 
generation of a device is often very similar to the previous generation, 
Bayesian methods for the next-generation device clinical trials have 
used data from clinical trials on the previous generation of the device 
to make approval decisions with established guidance from the FDA4, 29. 
The sequential nature of device development has given the device indus-
try a head start on the use of Bayesian methods for design and analysis 
of clinical trials, but undoubtedly there are lessons to be learned from 
such sequential development that can be applied to the development of 
new treatments. A similar guidance for the use of Bayesian methods in 
drug development would provide much-needed clarity to industry and 
FDA staff. Lastly, principles and standards for reporting Bayesian design 
and analysis approaches have emerged and can be a basis to establish 
further common ground upon which confidence and clarity is built52.

Build and maintain capabilities
Education of regulators and clinical staff on Bayesian approaches is also 
crucial for more widespread acceptance. Provision of more training and 

mentoring opportunities for these stakeholders to learn about Bayes-
ian methods would increase familiarity and lead to greater adoption 
of Bayesian methods, when appropriate. For example, postdoctoral 
fellowships at the FDA and industry courses explicitly designed for 
the use of Bayesian methods in clinical drug development could help 
to accomplish these goals.

Foster open-mindedness
Researchers and the pharmaceutical industry should look for oppor-
tunities to include external data and to use Bayesian methods in drug 
development, developing sound proposals that avoid the introduction 
of significant biases and examine assumptions explicitly and compre-
hensively. For instance, researchers could include Bayesian analyses 
more often as supplemental analyses in their publications, as in recent 
cardiovascular53 and Alzheimer disease46 studies. Regulators will need 
to keep an open mind about this approach, so that trials using Bayesian 
approaches become normalized and accepted.

Conclusion
A central tenet of our work is that public health needs and drug develop-
ment targets have evolved to the extent that the frequentist mindset 
towards drug development is not optimal in all circumstances. Spe-
cifically, in cases where relevant knowledge, scientific understanding 
and data have already been amassed or are hard to ignore, the need 
to undertake two prospective fully powered trials for a frequentist 
hypothesis test might represent an excessive burden for patients and 
sponsors, and perhaps overkill for regulatory decision-making.

More broadly, we argue that researchers could benefit from con-
sidering Bayesian thinking when proposing and designing any new 
study, be it a laboratory experiment or a clinical trial. There must be 
some prior knowledge that justifies the expense and effort of conduct-
ing a study and some level of belief that the study may be successful in 
meeting its objectives. Researchers do not pull experiments or clinical 
trials out of thin air, but instead use the accumulated knowledge of the 
scientific community to create a hypothesis and inform subsequent 
study design. Wacholder et al.54 state: “Investigators already informally 
use prior probability to decide whether to launch a study, which genes 
to study and how to interpret the results. We believe that formally 
developing prior probabilities before seeing study results can, in itself, 
lead to a substantial improvement in interpreting study findings over 
the current scientific practice.” Additionally, in difficult experimental 
situations, such as clinical research on rare diseases and paediatric 
diseases, a mindset to quantitatively and explicitly use all available 
evidence has the potential to offer a sounder basis for decision-making. 
Although the focus in this article is on clinical drug development, the 
body of Bayesian work across all phases of drug development, includ-
ing health economics, is growing as well as the number of examples of 
its successful use55.

As demonstrated above, drug development using Bayesian meth-
ods already occurs, with Bayesian methods being used in key analy-
ses and in the interpretation of trial results, including one of the most 
consequential clinical trials of our times for establishing the efficacy 
of a COVID-19 vaccine9. There are no regulatory requirements to use 
frequentist methods, although they are mainly considered the default 
approach for pivotal studies and, as such, are the dominant approach 
in current regulatory review and approval. Bayesian methods could be 
the basis of the primary analyses and conclusions for a clinical trial, with 
frequentist approaches being considered as sensitivity analysis to the 
primary Bayesian approach, as with the therapeutic hypothermia trial 
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for HIE7 and the Pfizer–BioNTech COVID-19 vaccine trial9. Such a reversal 
in thinking is constrained only by our conventions and traditions.

Although not a panacea, Bayesian methods have epistemological 
and interpretational advantages over frequentist methods because 
they directly address the probability of the veracity of the research 
hypothesis of interest, instead of providing indirect evidence through a 
p value. Bayesian approaches bring a level of rigour beyond frequentist 
approaches in that they require prespecification of data and analysis 
methods for the entire decision-making process, in contrast to fre-
quentist results derived from a single experiment that may be inte-
grated with previous scientific data in a post hoc fashion. To harness 
the full power of Bayesian approaches, there must be stakeholder 
agreement on when and how it is appropriate to include prior knowl-
edge in analyses and on the totality of evidence needed to support 
marketing authorization by a regulatory agency. By educating a wide 
variety of stakeholders and informing them of the potential benefits 
of using Bayesian methods, we hope to promote discussions on what 
is considered “substantial evidence of safety and efficacy” to sup-
port approval in different settings, as well as how data sources and 
methods could be used to meet the totality of evidence required. Put 
simply, evolutions in science, drug development, pharmacology, data 
accessibility and data analysis methodology should be matched by a 
similar evolution and advances in inferential methods, most notably 
by careful and explicit use of existing knowledge and data. We believe 
that the widespread adoption of Bayesian approaches has the potential 
to be the single most impactful tool for accelerating the development 
of new medicines, reducing exposure of clinical trial participants to 
suboptimal control arms and providing earlier access to high-quality 
treatments for patients.

Published online: 15 February 2023
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