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Abstract

Anterior chamber depth (ACD) is a major risk factor of angle closure disease, and has been

used in angle closure screening in various populations. However, ACD is measured from ocular

biometer or anterior segment optical coherence tomography (AS-OCT), which are costly and

may not be readily available in primary care and community settings. Thus, this proof-of-concept

study aims to predict ACD from low-cost anterior segment photographs (ASPs) using deep-

learning (DL). We included 2,311 pairs of ASPs and ACD measurements for algorithm develop-

ment and validation, and 380 pairs for algorithm testing. We captured ASPs with a digital cam-

era mounted on a slit-lamp biomicroscope. Anterior chamber depth was measured with ocular

biometer (IOLMaster700 or Lenstar LS9000) in data used for algorithm development and valida-

tion, and with AS-OCT (Visante) in data used for testing. The DL algorithm was modified from

the ResNet-50 architecture, and assessed using mean absolute error (MAE), coefficient-of-

determination (R2), Bland-Altman plot and intraclass correlation coefficients (ICC). In validation,

our algorithm predicted ACD with a MAE (standard deviation) of 0.18 (0.14) mm; R2 = 0.63. The

MAE of predicted ACD was 0.18 (0.14) mm in eyes with open angles and 0.19 (0.14) mm in

eyes with angle closure. The ICC between actual and predicted ACD measurements was

0.81 (95% CI 0.77, 0.84). In testing, our algorithm predicted ACD with a MAE of 0.23 (0.18) mm;

R2 = 0.37. Saliency maps highlighted the pupil and its margin as the main structures used in

ACD prediction. This study demonstrates the possibility of predicting ACD from ASPs via DL.

This algorithm mimics an ocular biometer in making its prediction, and provides a foundation to

predict other quantitative measurements that are relevant to angle closure screening.

PLOS DIGITAL HEALTH

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000193 February 1, 2023 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Soh ZD, Jiang Y, S/O Ganesan SS, Zhou

M, Nongiur M, Majithia S, et al. (2023) From 2

dimensions to 3rd dimension: Quantitative

prediction of anterior chamber depth from anterior

segment photographs via deep-learning. PLOS

Digit Health 2(2): e0000193. https://doi.org/

10.1371/journal.pdig.0000193

Editor: Danilo Pani, University of Cagliari:

Universita degli Studi Di Cagliari, ITALY

Received: April 29, 2022

Accepted: January 6, 2023

Published: February 1, 2023

Copyright: © 2023 Soh et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The anterior segment

photographs and clinical data of participants

included in this study are not publicly available due

to patient privacy and the data are meant for

research purposes only. On reasonable request,

de-identified data used in this study may be made

available for academic purpose by the Singapore

Eye Research Institute (SERI), subjected to

approval by the local institutional review board.

Data request can be sent to the Data Access

Committee at SERI via seri@seri.com.sg. Any data

https://orcid.org/0000-0002-1182-3489
https://orcid.org/0000-0002-7606-3222
https://orcid.org/0000-0003-0655-885X
https://doi.org/10.1371/journal.pdig.0000193
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pdig.0000193&domain=pdf&date_stamp=2023-02-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pdig.0000193&domain=pdf&date_stamp=2023-02-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pdig.0000193&domain=pdf&date_stamp=2023-02-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pdig.0000193&domain=pdf&date_stamp=2023-02-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pdig.0000193&domain=pdf&date_stamp=2023-02-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pdig.0000193&domain=pdf&date_stamp=2023-02-01
https://doi.org/10.1371/journal.pdig.0000193
https://doi.org/10.1371/journal.pdig.0000193
http://creativecommons.org/licenses/by/4.0/
mailto:seri@seri.com.sg


Author summary

This proof-of-concept study aimed to predict anterior chamber depth (ACD) quantita-

tively from anterior segment photographs (ASPs) using deep-learning. Anterior chamber

depth is a major and consistent risk factor of primary angle closure disease (PACD),

which is a major cause of glaucoma-induced blindness at the later stages. Our study is

motivated by the lack of an appropriate screening tool for PACD, where clinical tests lack

repeatability and imaging devices are too costly to adopt in primary care and community

settings for screening. In this study, we included 2,311 pairs of ASPs and ACD measure-

ments in algorithm development, and 380 pairs for algorithm testing. We modified the

ResNet-50 convolutional neural network (CNN) in developing our algorithm. Our algo-

rithm was able to predict ACD with a mean absolute error of 0.18mm in algorithm valida-

tion, and 0.23mm in algorithm testing. We obtained an intraclass correlation coefficient

(ICC) of 0.81 in validation, indicating good agreement between actual and predicted ACD

measurements. Importantly, our algorithm highlighted the pupil and its margins in pre-

dicting ACD, which is similar to how actual measurements were obtained from imaging

devices. Our study shows that depth (i.e., ACD) may be predicted from 2-dimension pho-

tographs using deep-learning. This algorithm provides a foundation for predicting other

relevant parameters of PACD, which may be further combined into a screening algorithm

for the disease at a later stage.

Introduction

Primary angle closure disease (PACD) is a spectrum of disease that is characterized in com-

mon by an obstruction to aqueous humor outflow (e.g., irido-trabecular contact) and may cul-

minate in the development of glaucomatous optic neuropathy. [1] Primary angle closure

glaucoma (PACG) is the more visually debilitating form of glaucoma with high undetected

rates across diverse communities in Asia. [2] A problem with PACG detection lies in its often

asymptomatic nature, especially in the early stages. [3] Thus, to mitigate against vision loss in

PACG, there is a need to detect angle closure in the community for regular monitoring and

timely interventions. This is particularly important in Asia where PACD is more prominent

and PACG is a major form of glaucoma. [4,5]

The lack of an appropriate screening tool to detect angle closure at the community level

remains a problem. [2] Gonioscopy, the current gold standard for anterior chamber angle

assessment, is a clinically demanding and time-consuming test that requires technical exper-

tise, access to slit-lamp bio-microscope, and the application of local anaesthesia to perform. [6]

Furthermore, gonioscopy assessment is subjective and known to have wide inter-assessor vari-

ability. [7,8] However, there is a lack of viable alternatives. Anterior segment optical coherence

tomography (AS-OCT) can provide cross-sectional photo documentation for angle assessment

but are bulky, expensive, and impractical for community screening. [9] In contrast, methods

such as the Van Herick or the oblique flashlight test, are quick and relatively easy to perform

but are associated with sub-optimal performances in detecting PACD. [10–12]

Nonetheless, the advents of artificial intelligence and deep learning (DL) in recent years

have provided us with multiple opportunities for value innovation. In ophthalmology, DL is

often utilized in image analysis for disease screening, [13,14] and regulatory approval has been

obtained for its use in diabetic retinopathy screening in some countries. [15,16] Although, rel-

atively fewer DL algorithms have been developed for anterior segment eye diseases, available
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studies shows that DL is able to effectively detect pterygium from anterior segment photo-

graphs, [17] and angle closure from AS-OCT scans, [18] thereby highlighting the potential use

of DL with different anterior eye imaging modalities.

Anterior chamber depth (ACD) is a major risk factor of angle closure that has been sug-

gested for use as a quick screening parameter for PACD. [19] Studies reported ACD to be a

strong determinant of angle width measurements obtained from AS-OCT [20] and correlates

well with peripheral anterior synechiae (PAS) formation. [21] Moreover, ACD has been

shown to be able to detect 81–90% of angle closure cases in different settings, including rural

Taiwan [22] and Mongolia, [23] with sensitivity ranging from 76.4–83.0% and specificity rang-

ing from 67.2–88.9% (S1 Table). Importantly, ACD is quick to administer in large scale

screenings and it is also intuitively easier to comprehend and interpret as a screening parame-

ter. [23,24] However, ocular biometer used for ACD measurements may not be readily avail-

able in primary care or community settings, which preclude its potential use for screening.

Hence, the present study aims to develop a proof-of-concept DL algorithm to predict ACD

quantitatively from anterior segment photographs. The ability to demonstrate utility of this

algorithm may further act as an important foundation for predicting other quantitative mea-

surements that are relevant in screening for PACD.

Methods

Study population

This cross-sectional study was conducted at the Singapore Eye Research Institute (SERI)

according to the Declaration of Helsinki after ethics approval was obtained from SingHealth

Centralized Institutional Review Board. Written informed consent was obtained from all par-

ticipants in the respective studies.

First, we included a sub-set of data from the Singapore Malay Eye Study (SiMES) in algorithm

training and validation. The detailed methodology of SiMES has been described previously. [25]

Briefly, age-stratified random sampling was used to select Malay adults aged 40 years and above

from the south-west region of Singapore. Baseline examination was conducted from 2004–2006

(response rate 78.7%) with follow-up examinations conducted first in 2011–2013 and again in

2017–2019. We included data from the 2nd follow-up examination (2017–2019) in this study.

Second, we included data from the Iris Surface Features (ISF) study, which is a cross-sec-

tional clinical imaging study on PACD, in algorithm training and validation. [26,27] This

study recruited participants aged�40 years who were diagnosed with PACD clinically and

had a patent laser peripheral iridotomy in the affected eye, and further included a small num-

ber of participants with open angles as control. Participants with previous ocular surgery (e.g.,

cataract or glaucoma filtering surgery), history of penetrating injury, and excessive corneal

opacity or extensive pterygium (defined as covering�50% of iris area) were excluded.

Next, we further included a sub-set of data from the Singapore Chinese Eye Study (SCES)

and the Singapore Indian Eye Study (SINDI) for algorithm testing. These studies, along with

SiMES, are part of the Singapore Epidemiology of Eye Diseases (SEED) study. [25] For SCES,

baseline examination was conducted from 2009–2011 (response rate 72.8%) with follow-up

examination conducted between 2015–2017. For SINDI, baseline examination was conducted

from 2007–2009 (response rate 75.6%). We included data from the 1st follow-up examination

in both SCES and SINDI as the 2nd follow-up examination is currently ongoing.

Anterior segment photography

Anterior segment photographs were obtained according to a standardized protocol in SEED

and the ISF study (S1 Fig). All assessors, who were trained optometrists, had to be validated by
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a co-investigator (SM) prior to data capture. A digital camera (DC3; Topcon Corporation,

Tokyo, Japan) was mounted on a slit-lamp bio-microscope (Topcon Corporation, Tokyo,

Japan) to obtain color photographs of the anterior eye at 16x magnification in a dark room

(�20 lux). We utilized diffuse illumination; slit beam at full width (20mm) and height

(14mm); at 30% of maximum brightness without flash; tilted at approximately 45 degrees tem-

porally. Participants were asked to look straight ahead and any decentration in gaze were man-

ually mitigated by directing their line-of-sight. Images were captured with both the upper and

lower eyelids retracted to expose the full cornea circumference and if possible, its surrounding

bulbar conjunctiva. To mitigate against variation in the above specifications, physical markings

were placed on the slit-lamp bio-microscope to guide assessors. After image capture, quality

checks were performed on a 1366x768/60-Hz resolution screen by the author (ZDS).

Anterior chamber depth measurement

We measured ACD using non-contact partial coherence laser interferometry in SiMES (IOL-

Master 700, Carl Zeiss Meditec AG, Jena, Germany), and optical low-coherence reflectometry

in the ISF study (Lenstar LS900, Haag-Streit, Koeniz, Switzerland). The ACD values acquired

from the IOLMaster included the central corneal thickness (CCT), while the ACD measure-

ment from the Lenstar biometer automatically excluded CCT (aka “Aqueous depth”). To be

consistent, in the present study we defined ACD as the distance along the visual axis from the

corneal endothelium to the anterior crystalline lens surface. Therefore, we calculated the

“true” ACD values in SiMES by subtracting CCT from ACD values obtained from IOLMaster.

[28] In both studies, participants were asked to blink normally just before measurements to

mitigate against dry-eye related errors in measurements. We took 3 measurements manually

with the Lenstar biometer, whereas the IOLMaster automatically produced five simultaneous

measurements each time. We utilized the inbuilt quality assessment function in both

biometers to appraise the quality of measurements taken. The mean ACD value was recorded

for use if all measurements had good quality checks or were otherwise repeated (up to 2 further

attempts).

In SCES and SINDI, ACD measurements were obtained from anterior segment optical

coherence tomography (Visante AS-OCT, Carl Zeiss Meditec AG, Jena, Germany). The first

author (ZDS) manually annotated the scleral spurs (SS) with the Zhongshan Angle Assessment

Program (ZAAP) after good inter-assessor agreement (intraclass correlation coefficients: 0.999

[x-axis]; 0.956 [y-axis]) was obtained with a senior author (MN). The definition of SS used has

been described previously. [29] We took the exact ACD values obtained from ZAAP as it does

not include CCT values after appraisal of structure segmentation.

Angle closure assessment

In all included studies, gonioscopy was performed according to a standardized protocol by

ophthalmology-trained research fellows using a Goldmann two-mirror contact lens (Ocular

Instruments Inc., Bellevue, USA) under standard dark illumination. The detailed methodology

of gonioscopy has been described previously. [30] Angle closure was diagnosed in eyes where

the posterior trabecular meshwork (PTM) was not observed in 2 or more quadrants (i.e.,�180

degrees) on gonioscopy.

Algorithm development and testing

We included participants who were phakic and had both anterior segment photographs and

ACD measurements. We excluded anterior segment photographs with dim illumination,
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eyelids blockage, decentered gaze, motion artifacts and poor focus covering more than one-

third of the iris. We further excluded ACD measurements with poor quality or fixation error.

We adopted and modified the Residual Network 50 (ResNet50) architecture, which was

originally trained on the ImageNet dataset that comprised of 1.28 million images over 1000

object classes, in this study. [31] The ResNet-50 architecture is a widely used convolutional

neural network that comes with a well fine-tuned training setting, [32] and is more efficient in

terms of computation and accuracy trade-off as compared to the ResNet-34. [31] In addition,

the ResNet-50 was similarly adopted in previous studies that predicted quantitative measure-

ments from fundus photographs. [33,34] Modifications were made to the original architecture

prior to ACD prediction (S2 Fig). First, we replaced the fully connected layer of ResNet-50,

which was developed for classification task, with a linear layer to derive at a single continuous

output (i.e., ACD measurement). The activation function (ReLu) was removed after the linear

layer. Second, the weights of the first convolutional layer were reinitialized using He initializa-

tion. By including HE initialization in the first layer, the algorithm may be able to learn low-

level features that are specific to our dataset with higher efficiency. [35]

We utilized Open-Source Computer Vision Library (OpenCV v4.5, Intel Corporation, Cali-

fornia, USA) for image pre-processing. Images were first resized to (224, 224, 3), and image

brightness was increased by 20%. Histogram equalization was then used for contrast enhance-

ment, followed by an image normalization that scales the pixel values to zero mean and unit

variance. After that, the processed images were used as inputs to the neural network was of

size (224, 224, 3). In addition, data augmentation was performed during the training stage to

mitigate against overfitting. Specifically, random rotation from -35 to 35 degrees, random hor-

izontal flip with a probability of 0.5, and random vertical flip with a probability of 0.1 were

used.

We paired each anterior segment photograph with its corresponding ACD measurement.

Then, the overall dataset was randomly split 4:1 into a training and validation dataset. The

batch size used was 32. We ensured both eyes of a participant were either in the training or val-

idation dataset by randomly splitting image pairs at the participant level, which mitigates

against biased evaluation of our algorithm. Random shuffling was used for algorithm training.

PyTorch (Facebook’s AI Research lab, California, USA), an open-source software library for

DL, was used in algorithm training and evaluation. [36] Specifically, the algorithm was trained

using a RTX3090 GPU with PyTorch v1.9.0, CUDA 11.1 and cuDNN v8.1.0 installed. Transfer

learning was adopted and pre-trained weights from ResNet-50 were used. The two modifica-

tions described earlier were applied after loading the pre-trained weights. Adam optimizer

with a learning rate of 4e-4 was used to train the model for 200 epochs. The mean absolute

error (MAE) was used as the loss function, and the evaluation metrics include MAE and coeffi-

cient of determination (R2).

To enhance the interpretability of our algorithm, the Gradient-weighted Activation Map-

ping (Grad-CAM) algorithm was used to generate saliency maps for the neural network. [37]

Specifically, the last layer inside layer block 4 in ResNet-50 was used as the target layer. These

maps highlighted important regions for the final prediction based on gradients. To get an

aggregated visualization, saliency maps for individual images are normalized to [0,1] and aver-

aged across images to get the averaged saliency map.

Statistical analysis

The intraclass correlation coefficients (ICC) and Bland-Altman plot were used to evaluate the

agreement between predicted and actual ACD measurements. The ICC is a reliability index

that ranges from 0 to 1 and reflects both the degree of correlation and agreement between
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measurements. [38] We measured ICC using a single rater, two-way mixed-effects, absolute

agreement model, and defined values<0�5 as poor, 0.5 to 0.75 as moderate, 0.75 to 0.90 as

good, and >0.90 as excellent agreement. [39] In the Bland-Altman plot, the difference between

two measurements was plotted against the average of the two measurements. [40] We evalu-

ated systematic (fixed) bias by testing if the mean difference between the two measurements

was significantly different from zero using a one-sample t-test. Then, proportional bias was

evaluated by testing whether the slope of the least squares regression line in the Bland-Altman

plot was significantly different from zero. This was tested with the Pearson’s correlation coeffi-

cient. [41,42] We further assessed the accuracy of predicted values with the mean absolute

error (MAE) and R2. All statistics were performed using STATA version 17 (STATA Corp,

Texas, USA) and SciPy package.

Results

We included 1,738 eyes of 943 participants from SiMES, and 575 eyes of 343 participants from

the ISF study in developing our DL algorithm (S2 Table). In SiMES, 6.3% of eyes included

were diagnosed with angle closure, and had a mean (standard deviation) ACD of 2.56 (0.33)

mm. In the ISF study, 92.7% of eyes included were diagnosed with angle closure, and had a

mean ACD of 2.08 (0.32) mm. The range of ACD measurements was between 1.47 to 3.91 mm

in SiMES and 1.50 to 3.59 mm in the ISF study. The training dataset comprised of 1,029 partic-

ipants from SiMES and the ISF study (Table 1). This comprised of 1,849 eyes with a mean

ACD of 2.44 (0.39) mm, of which 27.4% had angle closure. The range of ACD values included

in the training dataset was normally distributed between 1.47 to 3.91mm (S3 Fig), of which

13.5% (n = 250 eyes) had ACD <2mm; 42.1% (n = 778 eyes) had ACD between 2 to<2.5mm;

36.7% (n = 678 eyes) between 2.5 to<3mm; 7.7% (n = 143 eyes) had ACD>3mm. The valida-

tion dataset included 462 eyes of 257 participants with a mean ACD of 2.43 (0.37) mm (range

1.57–3.85mm), of which 29.2% had angle closure.

Fig 1 shows the correlation between actual and DL-predicted ACD values in algorithm vali-

dation. Our DL algorithm predicted a mean ACD of 2.43 (0.39) mm with a MAE of 0.18 (0.14)

mm and R2 of 0.63. The MAE of predicted ACD was 0.18 (0.14) mm in eyes with open angles

and 0.19 (0.14) mm in eyes with angle closure. When stratified by ACD measurement, we

achieved a MAE of 0.20 (0.15) mm for eyes with ACD<2mm (n = 59 eyes); MAE 0.18 (0�13)

mm for ACD between 2 to<2.5mm (n = 205 eyes); MAE 0.15 (0.13) mm for ACD�2.5 to

�3mm (n = 166 eyes); MAE 0.31 (0�18) mm for ACD>3mm (n = 32 eyes).

Table 1. Demographic and ocular characteristics of participants included in this study.

Training data Validation data Testing data

Participants (N) 1029 257 380

Age (years) 65.1 (7.9) 65.2 (8.3) 60.9 (7.2)

Gender (Male, %) 463 (45.0) 113 (44.0) 189 (49.7)

Ethnicity (Chinese, %) 252 (24.5) 64 (24.9) 229 (60.3)

Eyes (N) 1849 462 380

Angle status (%)

• Open 1342 (72.6) 327 (70.8) 271 (71.3)

• Closed� 507 (27.4) 135 (29.2) 109 (28.7)

Anterior chamber depth (mm) 2.44 (0.39) 2.43 (0.37) 2.58 (0.36)

Data presented are mean (standard deviation) for continuous variables; frequency (percentage) for categorical variables

Footnote: �Angle closure was diagnosed in cases where�180˚ posterior trabecular meshwork was not observed with gonioscopy

https://doi.org/10.1371/journal.pdig.0000193.t001
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The Bland-Altman plot showed a mean difference of 0.01mm (Limits-of-agreement [LOA]

-0.44, 0.46) between predicted and actual ACD measurements in algorithm validation (Fig 2).

Although agreement between predicted and actual ACD measurements was good (ICC 0.81, 95%

CI 0.77, 0.84), there were 23 observations that were outside the 95% LOA, representing 5% of

observations in the test dataset (n = 462 eyes). Systematic bias in DL prediction was insignificant (t-

statistics 0.608; P = 0.544) but a weak negative proportional bias was observed (r = -0.17; P<0.01).

In general, our algorithm relied on the pupil and its margins to make its ACD prediction

(Fig 3). This was similarly observed in eyes with different angle status (S4 Fig), different actual

ACD measurements (S5 Fig), and amongst the outlier images in our Bland-Altman plot (S6

Fig). However, a wider spread, especially in the central red zone, was observed in eyes with

ACD>3mm (D, S5 Fig) and in the outlier images (S6 Fig).

The testing dataset comprised of 257 participants (257 eyes) from SCES and 163 partici-

pants (163 eyes) from SINDI (S2 Table). Overall, these380 participants (380 eyes) had a mean

ACD of 2.58 (0.36) mm, and 28.7% had angle closure (Table 1). Our algorithm predicted

ACD with a MAE of 0.23 (0.18) mm and R2 of 0.37 (S7 Fig). The Bland Altman plot showed a

mean difference of 0.09mm (LOA -0.47, 0.65) between predicted and actual ACD values (S8

Fig) with moderate agreement (ICC 0.57, 95% CI 0.47, 0.66). Likewise, systematic bias (t-sta-

tistics 0.597, P = 0.001) and proportional bias was observed (r = -0.39; P<0.01).

Fig 1. Correlation between actual anterior chamber depth (ACD) measurements and deep learning predicted

ACD values in algorithm validation.

https://doi.org/10.1371/journal.pdig.0000193.g001
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Discussion

In this study, we developed a proof-of-concept DL algorithm that was able to estimate ACD

between 0.18 to 0.23mm of actual measurements on average, from anterior segment photo-

graphs taken with diffuse illumination. This algorithm mainly utilized the pupil and its margin

Fig 2. Bland-Altman plot illustrating the agreement between actual and predicted anterior chamber depth (ACD)

measurements in algorithm validation.

https://doi.org/10.1371/journal.pdig.0000193.g002

Fig 3. Saliency map illustrating the structural features used by the deep learning algorithm to predict anterior

chamber depth in algorithm validation.

https://doi.org/10.1371/journal.pdig.0000193.g003
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to make its prediction, which is consistent with ACD measurements derived from ocular

biometers. Our study shows that it may be possible for DL to predict depth from 2-dimen-

sional anterior segment photographs, which can be easily acquired without much technical

expertise.

In ophthalmology, DL is often applied to posterior segment photographs or OCT scans to

detect ocular diseases. [43,44] In contrast, fewer studies have utilized anterior segment photo-

graphs to detect anterior eye diseases, including prediction of ACD. [45] Chen et al mounted a

smartphone onto a portable slit-lamp device, and utilized a cross-sectional slit-beam to capture

anterior segment photographs. [46] Through machine learning, predicted ACD were mostly

within 0.20mm of actual measurements, [46] which was similar to our results. Qian et al fur-

ther developed a DL algorithm to predict shallow ACD (defined as<2.4mm) from Pentacam

images and reported an AUC of 0.86 and balanced accuracy of 0.80. [47] Interestingly, Foo

et al utilized cycle GAN to predict shallow ACD (defined as�2.8mm) from fundus photo-

graphs and achieved an AUC of 0.90. [48] Nevertheless, the differences in shallow ACD defini-

tion may preclude the generalizability of these algorithms, especially as there is a lack of

population-based normative values to guide the categorization of ACD. [28]

Anterior chamber depth may be assessed clinically via slit-lamp bio-microscopy to gain a

qualitative (i.e., deep or shallow) or semi-quantitative (e.g., <25%, etc.) appraisal of the risk for

angle closure development. However, ACD is a dynamic measurement that changes gradually

with age and lens status. [28,49] Thus, the lack of quantitative ACD measurement in settings

where ocular biometer or AS-OCT are not readily available may preclude a more nuanced

appreciation of its changes over time. For example, ACD has been shown to be inversely corre-

lated with age and increased lens vault. [28,50] This may result in a more “crowded” anterior

chamber where structures, such as the iris and lens, are at increased risk of apposition. Impor-

tantly, quantitative ACD measurements may further provide investigators with the flexibility

of adopting a more granular cut-off for defining “shallow anterior chamber” in the local popu-

lation. Although the Smith’s technique, first described in 1979, may be used to measure ACD

quantitatively over the slit-lamp, [51] the time and expertise required along with the need for

manual calculation via a correction factor, may limit its use in community screenings.

Nonetheless, angle closure is a clinically heterogenous disease that requires more than a sin-

gle anterior chamber parameter for optimal detection. [3] This heterogeneity may explain why

there is no single parameter, including ACD, that is optimal to be used in-silos for screening

angle closure (S3 Table). However, studies showed that a combination of six AS-OCT mea-

surements could identify 95% of angle closure cases with a specificity of 80%, [52] and explain

over 80% of variation in quantitative angle width. [53] These quantitative measurements may

also predict eyes at higher risk of angle closure development. [54] Thus, future studies should

investigate the ability of DL to predict other quantitative measurements that are relevant in the

detection and monitoring of angle closure disease from anterior segment photographs, and

our proof-of-concept algorithm may serve as a foundation for transfer-learning. In addition,

future studies are needed to define the cut-off values that may be used for referral based on

these quantitative measurements.

The performance of DL algorithms is influenced by the number of labelled data used in its

development. [55] This may be more so when the outcome-of-interest is a continuous variable

as opposed to binary or ordinal classification where the number of labels is much fewer.

[56,57] In our study, 78.8% of ACD measurements used in training our algorithm were

between 2 to 3 mm. Correspondingly, our algorithm was more accurate in predicting ACD

values between 2 to 3mm, which highlights the importance of having more data for training,

especially those of ACD<2 and>3mm. Although, our algorithm managed to predict ACD

within 0.18 to 0.23mm of actual measurements on average by using a relatively small training
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dataset of only 1,849 images, additional training data are needed to improve the accuracy of

prediction given the poorer performances observed in algorithm testing.

Our proof-of-concept study is notable for several results. The use of a quantitative parame-

ter provides us with a more objective reference standard for developing our algorithm. and

mitigates against human errors such as image misclassification. [34] Next, saliency maps show

that our algorithm mimic an ocular biometer in making its prediction, rather than due to

unexplainable or systematic errors. Also, all anterior segment photographs were taken accord-

ing to the same protocol in both included studies, which reduces variation in data capture.

Furthermore, we utilized a diffuse illumination in capturing anterior segment photographs,

which is quick to set-up, easier to use, and can be readily replicated.

However, our study is not without its limitations. The performance and generalizability of

our algorithm may be improved with larger and more diverse data (e.g., different devices)

respectively. Although diffuse illumination was used, our slit beam was tilted at approximately

45 degrees to capture anterior segment images. This causes the light bulb of the slit beam to be

reflected at either side of the pupil margin (S1 Fig), which may inadvertently create an “illu-

sion of depth”. Thus, future studies may evaluate the use of a straight beam (e.g., through a

mobile device) to determine the effect of having the slit beam tilted at an angle. Next, the lack

of a fixed fixation target for slit-lamp photography meant that getting good centration was a

challenge. Although we excluded images with visibly poor centration, some degree of decen-

tration was inevitable and may influence the accuracy of our algorithm. Also, a weak negative

proportional bias was observed where predicted ACD was larger than actual measurements in

shallower ACD. This may potentially under-estimate the risk of angle closure.

In conclusion, we developed a proof-of-concept DL algorithm that could predict ACD val-

ues from anterior segment photographs. This algorithm mimics an ocular biometer in making

its prediction and may serve as a foundation for future work in this area. In addition, it may

provide resource scarce settings with a novel tool for monitoring angle closure disease, upon

further validation.

Supporting information

S1 Fig. Examples of anterior segment photographs included in this study. Acronym:

SiMES, Singapore Malay Eye Study; ISF, Iris Surface Features study; SCES, Singapore Chinese

Eye Study.

(TIF)

S2 Fig. Schematic diagram of neural network architecture.

(TIF)

S3 Fig. Distribution of anterior chamber depth in the training dataset.

(TIF)

S4 Fig. Saliency map illustrating the structural features used by the deep learning algo-

rithm in algorithm validation to predict anterior chamber depth in eyes with different

angle status. Footnote: Saliency maps presented above were generated by averaging all

saliency maps of eyes with open angles (A; n = 327) and angle closure (B; n = 135).

(TIF)

S5 Fig. Saliency maps illustrating the structural features used by the deep learning algo-

rithm in algorithm validation to predict anterior chamber depth in eyes with different cat-

egories of actual anterior chamber depth (ACD) measurements. Footnote: Saliency maps

presented above were generated by averaging all saliency maps of eyes with actual anterior
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chamber depth less than <2mm (A; n = 59), 2 to<2.5mm (B; n = 205),�2.5 to�3mm (C;

n = 166); >3mm (D; n = 32).

(TIF)

S6 Fig. Saliency maps of predicted ACD values that were outside of the limit-of-agreement

in Bland-Altman plot in algorithm validation. Footnote: Saliency maps presented above

were generated by averaging all saliency maps of 23 observations that were outside the Limits-

of-Agreement in Bland-Altman plot (test dataset). There were 4 observations with actual ACD

measurements <2mm, 13 with actual ACD measurements between 2 to 3mm, and 6 with

actual ACD measurements >3mm.

(TIF)

S7 Fig. Correlation between actual anterior chamber depth (ACD) measurements and pre-

dicted ACD values in algorithm testing.

(TIF)

S8 Fig. Bland-Altman plot illustrating the agreement between actual and predicted ante-

rior chamber depth (ACD) measurements in algorithm testing.

(TIF)

S1 Table. Current literature on the performance of anterior chamber depth (ACD) in dis-

criminating eyes with angle closure from open angles. � ACD measurement includes central

corneal thickness. † Narrow angle diagnosed in eyes with 1) 1 ‘closed’ quadrant (i.e., trabecular

meshwork not observed even with indentation gonioscopy) and�1 ‘narrow’ quadrants (i.e.,

trabecular meshwork only observed with indentation gonioscopy) or 2)�2 ‘narrow’ quad-

rants. ‡ Angle closure diagnosed in eyes where the posterior trabecular meshwork (PTM) was

not observed in�3 quadrants with gonioscopy. § Angle closure diagnosed in eyes where the

posterior trabecular meshwork (PTM) was not observed in�2 quadrants with gonioscopy.

Acronym: ACD, Anterior Chamber Depth; AUC, Area-under-the-curve; PPV, Positive Pre-

dictive Value; NPV, Negative Predictive Value; UBM, Ultrasound biomicroscopy

(DOCX)

S2 Table. Demographic and ocular characteristics of participants in SEED and the ISF

study. �Angle closure was diagnosed in cases where�180˚ posterior trabecular meshwork was

not observed with gonioscopy. Acronym: SEED, Singapore Epidemiology of Eye Diseases

study; SiMES, Singapore Malay Eye Study; SCES, Singapore Chinese Eye Study; SINDI, Singa-

pore Indian Eye Study; ISF, Iris Surface Features study

(DOCX)

S3 Table. Current literature on the performance of different anterior segment optical

coherence tomography (AS-OCT) parameters in discriminating eyes with angle closure

from open angles.

(DOCX)
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