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Abstract

Age-related Macular Degeneration (AMD) is a major cause of irreversible vision loss in indi-

viduals over 55 years old in the United States. One of the late-stage manifestations of AMD,

and a major cause of vision loss, is the development of exudative macular neovasculariza-

tion (MNV). Optical Coherence Tomography (OCT) is the gold standard to identify fluid at

different levels within the retina. The presence of fluid is considered the hallmark to define

the presence of disease activity. Anti-vascular growth factor (anti-VEGF) injections can be

used to treat exudative MNV. However, given the limitations of anti-VEGF treatment, as bur-

densome need for frequent visits and repeated injections to sustain efficacy, limited durabil-

ity of the treatment, poor or no response, there is a great interest in detecting early

biomarkers associated with a higher risk for AMD progression to exudative forms in order to

optimize the design of early intervention clinical trials. The annotation of structural biomark-

ers on optical coherence tomography (OCT) B-scans is a laborious, complex and time-con-

suming process, and discrepancies between human graders can introduce variability into

this assessment. To address this issue, a deep-learning model (SLIVER-net) was proposed,

which could identify AMD biomarkers on structural OCT volumes with high precision and

without human supervision. However, the validation was performed on a small dataset, and

the true predictive power of these detected biomarkers in the context of a large cohort has

not been evaluated. In this retrospective cohort study, we perform the largest-scale valida-

tion of these biomarkers to date. We also assess how these features combined with other

EHR data (demographics, comorbidities, etc) affect and/or improve the prediction perfor-

mance relative to known factors. Our hypothesis is that these biomarkers can be identified

by a machine learning algorithm without human supervision, in a way that they preserve

their predictive nature. The way we test this hypothesis is by building several machine learn-

ing models utilizing these machine-read biomarkers and assessing their added predictive
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power. We found that not only can we show that the machine-read OCT B-scan biomarkers

are predictive of AMD progression, we also observe that our proposed combined OCT and

EHR data-based algorithm outperforms the state-of-the-art solution in clinically relevant

metrics and provides actionable information which has the potential to improve patient care.

In addition, it provides a framework for automated large-scale processing of OCT volumes,

making it possible to analyze vast archives without human supervision.

Author summary

Neovascular exudative Age-related Macular Degeneration (wet AMD) is a late stage of an

irreversible eye-disease and a major cause of permanent vision-loss in the United States.

Anti-VEGF injections are available to treat this disease, however its efficacy highly

depends on early identification of the condition. It is characterized by the presence of

fluid inside the retina which can be determined by assessing the presence of specific bio-

markers in volumes obtained by Optical Coherence Tomography (OCT) scans performed

on the eye. The annotation of structural biomarkers on these volumes is a laborious, com-

plex and time-consuming process, and discrepancies between human graders can intro-

duce variability into this assessment. A previous algorithm called SLIVER-net was shown

to accurately identify these biomarkers automatically based on OCT volumes. In this

paper we demonstrate on a large dataset that the automatically identified biomarkers can

be utilized to predict disease progression in the following 2 years from a baseline visit,

enabling early risk assessment and potentially enhancing treatment efficacy, ultimately

resulting in an increased quality of life for patients with wet AMD.

Introduction

Age-related Macular Degeneration (AMD) represents the leading cause of irreversible blind-

ness in subjects older than 55 years of age in developed countries [1]. As the population ages

and life expectancy increases, the incidence of the disease is projected to rise [2]. The late stage

of the disease is characterized by the presence of geographic atrophy (GA), macular atrophy

(MA) or macular neovascularization (MNV) [3–5].

In contrast to atrophic AMD, anti-vascular endothelial growth factor (anti-VEGF) therapy

has proven to be effective at reducing vision loss and even improving vision in eyes with neo-

vascular or wet AMD. However, even with consistent treatment, vision loss and progression to

atrophy may occur even in eyes with MNV [6,7]. Studies have shown that best visual outcomes

are achieved by detecting the neovascular disease activity early and treating before significant

visual loss has occurred [8–10].

As a result of this desire to detect disease progression early on, there has been significant

effort to identify biomarkers which may predict the development of advanced AMD. Identifi-

cation of biomarkers has been facilitated by the broad availability of optical coherence tomog-

raphy (OCT), which has become the dominant imaging technology in ophthalmic clinical

practice. Studies evaluating OCT have identified a number of features including high central

drusen volume (hcDV), subretinal drusenoid deposits (SDD) and, or reticular pseudodrusen

(RPD), intraretinal hyperreflective foci (IHRF), and hyporeflective drusen cores (hDC), which

have been shown to be associated with a higher risk for progression to advanced AMD [11–

13]. However, identification of these biomarkers requires extensive training and careful
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examination of the individual B-scans in the OCT volume–this may be challenging in the con-

text of a busy clinical practice and may be susceptible to variability in interpretation among cli-

nicians. Therefore, machine learning algorithms have been developed to automatically detect

structural OCT B-scan biomarkers predictive for progression to advanced AMD [14]. By auto-

mating the interpretation of OCT volumes, this approach enables low-cost, large-scale studies

and analyses of AMD progression while anchoring inferences and conclusions to clinically-rel-

evant biomarkers. However, machine learning approaches in detecting early biomarkers of

disease have been only tested in small cohorts, not accounting for heterogeneity in the predic-

tion of the outcome between different environments, settings and populations [15,16].

In the present study, we offer the largest machine learning validation to date of these struc-

tural OCT B-scan biomarkers predictive for AMD progression. Our hypothesis is that these

biomarkers can be inferred by a machine learning algorithm without human supervision, in a

way that they preserve their predictive nature. The way we test this hypothesis is by building

machine learning models upon these machine-read biomarkers, and assess their predictive

power. Consequently, we also validate the high accuracy with which SLIVER-net automatically

detects structural OCT B-scan biomarkers in a large cohort. Our model is not only capable of

successfully detecting these structural OCT biomarkers, but also able to predict future AMD

progression and prognosis, which may impact clinical decision making. First, we explore the

ability of the automated approach to predict future conversion to exudative AMD within 2

years from the baseline OCT. Then, we apply our approach to diagnosis, showing that

machine-read OCT features are also informative for determining the current disease status.

Our approach is able to significantly improve predictive models which consider only the cur-

rently available risk factors, and are developed using data from smaller cohorts with less popu-

lation heterogeneity.

Results

Machine-read OCT features were evaluated for their clinical utility relative to currently known

risk factors contained within the electronic health record using a predictive modeling frame-

work. These features were evaluated in their ability to predict conversion to exudative AMD as

well as diagnosis of current exudative AMD.

Predicting future conversion to Exudative AMD

Using machine-read OCT B-scans features and EHR-derived risk factors together in logistic

regression models (combined), we were able to successfully predict exudative AMD conversion

within two years with an area under the ROC curve (AUROC) of 0.82 (95% confidence interval

(CI): 0.78, 0.85) and area under the Precision Recall Curve (AUPRC) of 0.49 (95% CI:0.41, 0.57).

Relative to the EHR-derived features of age, sex, race, smoking status, and comorbidities,

the addition of machine-read OCT B-scans features resulted in significantly improved predic-

tive performance in terms of AUROC and AUPRC (see Fig 1). The trivial model (current
AMD status) utilizing only the presence of dry AMD at the time of examination and the time

to the next examination, yielded an AUROC of 0.57 (95% CI: 0.54, 0.60) and AUPRC of 0.21

(95% CI: 0.18, 0.24). With added EHR-derived features and comorbidities (EHR baseline), the

performance increased to AUROC of 0.72 (95% CI: 0.69, 0.74) and AUPRC of 0.25 (95% CI:

0.22, 0.28). The machine-read OCT B-scan features (biomarkers) were also by themselves

highly predictive of exudative AMD conversion (Figs 1 and 2; biomarkers) yielding AUROC

of 0.80 (0.78, 0.82) and AUPRC of 0.46 (0.41, 0.50).

Patients could have converted to exudative AMD at any point during the two-year window

evaluated. To observe predictive performance over time, the above analysis was repeated at
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3-month intervals. When additional models were trained for their ability to predict exudative

AMD conversion within 3, 6, 9, 12, 15, 18, 21, and 24 months, up to within two years, we

observed the general trend that AUROC was more stable across time periods with a 0.1

decrease in mean (0.9 (0.78, 0.99) @ week 13 -> 0.8 (0.78, 0.82) @ week 104), while there was a

general decrease in AUPRC (0.81 (0.63, 0.96) @ week 13 -> 0.55 (0.34, 0.71) @ week 104) with

a 0.26 decrease in mean, for the combined model (S5 Fig). To assess whether it is beneficial to

train different models for different time frames, the 2-year model was separately evaluated on

different time frames (Fig 2). No significant drop in performance was observed. The presence

of the biomarkers appeared to be more indicative of imminent exudative AMD conversion.

Table 1 reports a detailed view of all performance metrics for the full model at different

operating thresholds for 26 and 104 weeks.

Analysis of the predictive utility of individual biomarkers

In order to assess whether some of the biomarkers are more predictive than others, a compara-

tive analysis was conducted in the following way. Feature sets were recombined to yield 8 addi-

tional feature sets: the feature sets current AMD status and EHR baseline were expanded with

each feature individually (biomarker-SDD: current AMD status + [SDD], ehr-SDD: EHR base-

line features + [SDD], etc). We conclude that no biomarker was significantly more predictive

than the rest, based on our dataset (Table 2). Additionally, although the added predictive utility

of EHR baseline features was not significant either, their addition affected AUPRC more than

AUROC.

Fig 1. Exudative AMD prediction performance. Left: Areas Under the Receiver Operating Characteristic (ROC) curve. Right: Areas Under the Precision-

Recall (PR) curve. Each bar represents the performance utilizing a different set of features (see legend). Error lines represent the 95% confidence intervals,

computed using bootstrapping.

https://doi.org/10.1371/journal.pdig.0000106.g001
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Analysis of model weights

After fitting the logistic regression models, the calculated coefficients were saved to analyze

how different features relate to model outcome (Table 3). Fig 3 indicates that the most infor-

mative predictors were age, the biomarkers, and the time to a next visit (timedelta). Observing

this for age and timedelta are expected; even the name reflects that the disease is age-related,

and timedelta serves as the time component for progression prediction. The valuable observa-

tion we made here is the large weights of the biomarkers which shows that their presence is

associated with disease progression. S1 Fig shows model weights for the biomarkers in the bio-

markers prediction model. S2 Fig features a heatmap indicating pairwise feature correlations.

Large scale validation of machine-read OCT features for diagnosis

Although these structural OCT B-scan biomarkers are expected to be predictors of AMD pro-

gression, and not biomarkers upon which to base a diagnosis, based on the association

Fig 2. Prediction of exudative AMD Conversion by the 2-year model, evaluated at different time frames. Left. Area under the ROC curve (AUROC) as a

function of prediction time frame. Right. Area under the Precision-Recall curve (AUPRC) as a function of prediction time frame. 95% Confidence intervals

were computed using bootstrapping.

https://doi.org/10.1371/journal.pdig.0000106.g002

Table 1. Performance metrics of the combined prediction model for a timeframe of 26 and 104 weeks. Results using a threshold selected for high sensitivity (>80%), a

threshold for high specificity (>90%), and one for a balanced case are presented.

Metric 26 weeks 104 weeks

Threshold Balanced High sensitivity High specificity Balanced High sensitivity High specificity

False Negative Rate 0.26 (0.17, 0.35) 0.14 (0.07, 0.24) 0.43 (0.32, 0.54) 0.29 (0.25, 0.35) 0.14 (0.1, 0.19) 0.46 (0.39, 0.54)

False Positive Rate 0.18 (0.15, 0.22) 0.35 (0.28, 0.44) 0.08 (0.06, 0.1) 0.23 (0.2, 0.25) 0.44 (0.35, 0.52) 0.01 (0.09, 0.10)

Negative Predictive Value 0.95 (0.93, 0.96) 0.97 (0.94, 0.98) 0.93 (0.91, 0.94) 0.95 (0.94, 0.96) 0.97 (0.96, 0.98) 0.94 (0.93, 0.95)

Positive Predictive Value 0.40 (0.33, 0.48) 0.29 (0.23, 0.36) 0.55 (0.46, 0.65) 0.29 (0.25, 0.33) 0.20 (0.17, 0.25) 0.43 (0.36, 0.47)

Sensitivity 0.74 (0.65, 0.83) 0.86 (0.76, 0.93) 0.57 (0.46, 0.68) 0.71 (0.65, 0.76) 0.86 (0.81, 0.90) 0.55 (0.46, 0.61)

Specificity 0.82 (0.78, 0.85) 0.65 (0.56, 0.72) 0.92 (0.9, 0.94) 0.77 (0.75, 0.80) 0.56 (0.48, 0.66) 0.91 (0.90, 0.92)

https://doi.org/10.1371/journal.pdig.0000106.t001
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between these biomarkers and disease severity described by [11], as a validation experiment,

we applied the same logistic regression framework -using the same features- in order to diag-

nose the current eye with exudative AMD. EHR and machine-read OCT B-scan features were

used as input features to diagnose exudative AMD. We observed that relative to the EHR-

derived features of age, sex, race, smoking status, and comorbidities, which achieved diagnos-

tic performance of AUROC 0.82 (95% CI: 0.81, 0.83) and AUPRC 0.34 (95% CI: 0.32, 0.37),

the addition of machine-read OCT B-scan features resulted in significantly improved

Table 2. Performance metric comparison of models built upon the trivial feature set and a single biomarker (Without EHR), and the EHR baseline feature set and a

single biomarker (With EHR).

Without EHR With EHR

Biomarker AUROC AUPRC AUROC AUPRC

hDC 0.78 (0.68, 0.88) 0.34 (0.23, 0.48) 0.78 (0.70, 0.86) 0.38 (0.31, 0.45)

SDD 0.81 (0.71, 0.90) 0.44 (0.24, 0.66) 0.81 (0.75, 0.89) 0.49 (0.35, 0.66)

HighDrusenVol 0.81 (0.72, 0.91) 0.49 (0.30, 0.70) 0.82 (0.77, 0.90) 0.52 (0.40, 0.68)

RPD 0.80 (0.70, 0.89) 0.43 (0.29, 0.59) 0.79 (0.72, 0.87) 0.46 (0.39, 0.58)

HRF 0.81 (0.73, 0.90) 0.48 (0.26, 0.69) 0.82 (0.78, 0.91) 0.52 (0.38, 0.68)

https://doi.org/10.1371/journal.pdig.0000106.t002

Table 3. 95% confidence intervals and standard deviation of values obtained by fitting the model to bootstrapped subsets of the cohort. Feature weights of the com-

bined model.

mean 2.50% 97.50% std

hDC -0.43 -1.081 0.221 0.32

SDD 0.718 0.067 1.481 0.364

HighDrusenVol 1.622 1.09 2.179 0.278

RPD 0.996 0.321 1.754 0.355

HRF 1.918 1.184 2.597 0.353

PatientAge 2.164 1.394 2.983 0.417

Never Smoker -0.298 -0.628 0.062 0.178

Current Smoker 0.207 -0.847 1.094 0.492

Latinx -0.042 -0.711 0.615 0.328

Asian -0.119 -0.68 0.416 0.279

Black -0.733 -1.439 -0.112 0.352

White 0.24 -0.128 0.696 0.217

IsFemale -0.001 -0.353 0.341 0.174

Cardiac Arrythmias 0.317 -0.137 0.781 0.231

Chronic Pulmonary Disease -0.006 -0.542 0.532 0.279

Congestive Heart Failure 0.155 -0.54 0.806 0.337

Diabetes Uncomplicated -0.314 -0.723 0.083 0.21

Hypertension -0.147 -0.532 0.215 0.193

Liver Disease 0.162 -0.414 0.673 0.275

Metastatic Cancer -0.62 -1.267 0.087 0.332

Obesity 0.5 -0.061 0.977 0.256

Renal Failure 0.214 -0.235 0.659 0.231

Rheumatoid Arthritis -0.593 -1.354 0.124 0.391

Valvular Disease 0.372 -0.445 1.14 0.389

dryAMD -0.483 -0.896 -0.076 0.206

timedelta 1.114 0.53 1.726 0.295

timedelta_inv -0.061 -0.409 0.44 0.23

https://doi.org/10.1371/journal.pdig.0000106.t003
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diagnostic performance in terms of both AUROC [0.91 (95% CI: 0.90, 0.92)] and AUPRC

[0.53 (95% CI: 0.50, 0.56)] (Fig 4). This improvement, based on the addition of machine-read

OCT B-scan features, was consistent with a clinically validated scoring system [11], in which

the presence of SDD, IHRF, and hcDV were associated with higher disease severity and

progression.

Fig 3. Model weights for all features in the fitted combined model. Black error bars indicate standard deviation of values obtained by fitting the model to

bootstrapped subsets of the cohort.

https://doi.org/10.1371/journal.pdig.0000106.g003

Fig 4. Automated diagnosis of exudative AMD. Curves correspond to models trained on different feature sets (see legend). Left.
Receiver Operating Characteristics (ROC). Right. Precision-Recall curve (PRC). 95% Confidence intervals were computed using

bootstrapping. Baseline model utilizes EHR-derived features and risk factors, the biomarker model includes machine-read OCT

biomarkers too.

https://doi.org/10.1371/journal.pdig.0000106.g004
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Considering AMD status of fellow eye as a feature

The added predictive and diagnostic utility of the AMD status of the fellow eye was assessed.

In the prediction task, adding this feature did not improve predictive power for any of the

feature groups (the largest observed increase being 5.1% in the mean AUPRC value for the cur-

rent AMD status model, with largely overlapping confidence intervals) (S3 Fig).

In the diagnosis task we observed a significant increase in AUROC values between the EHR

baseline diagnostic model and its counterpart with fellow eye status: AUROC increased from

0.82 (0.81, 0.83) to 0.87 (0.86, 0.88). The increase for the biomarkers model was present, but

significant. However, a significant increase in AUPRC was observed for both models: for the

EHR baseline, AUPRC increased from 0.34 (0.32, 0.37) to 0.46 (0.44, 0.49), and for the bio-

markers model it increased from 0.53 (0.50, 0.56) to 0.61 (0.58, 0.63) (S4 Fig).

Discussion

In this study we provide the first large-scale validation of machine-read structural OCT B-scan

biomarkers for AMD progression. We do so by utilizing a deep learning method, SLIVER-net,

which was trained to identify these biomarkers from OCT volumes. We show that regression

models using these biomarkers do indeed predict AMD progression, thus validating not only

the accuracy of SLIVER-net, but also the generalizability of these previously proposed struc-

tural OCT B-scan biomarkers, and the fact that they can be accurately inferred by a machine

learning algorithm without human supervision. The prediction was implemented using a

cross validation approach across 15000 OCT volumes collected from nearly 4200 patients.

To validate the utility of machine-read OCT B-scan biomarkers, we automatically predicted

conversion to exudative AMD from nonexudative AMD. The automated assessment of con-

version to exudative AMD was based on EHR data and OCT B scans volume data from sub-

jects evaluated at ophthalmology clinics affiliated with a large academic hospital during 2018.

The outcome (conversion to exudative AMD) was explored using several models and consid-

ering the following covariates: current AMD status, EHR-derived risk factors and comorbidi-

ties, and structural OCT B-scan biomarkers for progression of AMD. The ability of logistic

regression models, trained to predict future conversion to exudative AMD, improved when

adding AMD progression biomarkers to comorbidity features and demographic risk factors.

Within a minimum of 3 months to a maximum of 2 years, logistic regression models trained

with machine-read biomarkers performed with an AUROC of 0.82 (95% CI: 0.78, 0.85) and

AUPRC of 0.49 (95% CI:0.41,0.57). This validation approach not only proved to be successful,

but provided us with a clinically useful approach, which offers an early warning for the subset

of patients identified as having a higher risk of AMD progression. Particularly, our study was

performed on 4182 patients, while the largest study to date validating these biomarkers [13]

included only 501 patients. De Fauw et al published about the ability of a deep learning algo-

rithm to identify referral-warranted retinal diseases using structural OCT volumes from real-

world practices, with a performance similar to human experts [17]. Although in this study the

authors used [17] a dataset larger (N = 7,621) than ours, an important distinction is that our

dataset included clinically more relevant annotations, using the AMD-related high risk bio-

markers. We observed that diagnosis based on these biomarkers outperforms previously

reported performance by deep learning approaches.

For a human grader to assess presence of these biomarkers, each B-scan or section in the

OCT volume would need to be individually scrutinized which can lead to measurement biases,

inter-grader variability, and could take several minutes which is a challenge in a busy clinical

practice. For these reasons, in real-world ophthalmic practice, the assessment of these bio-

markers on OCT volumes is not yet part of the usual routine in clinical practice. Therefore, the
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validation of automated OCT annotations using machine learning algorithms is beneficial

with the purpose to validate structural OCT features associated with a high-risk for progres-

sion to advanced AMD.

Exudation in eyes with macular neovascularization secondary to AMD appears in eyes with

the late stage of the disease. The detection of fluid (exudation) at different levels within the ret-

ina (intraretinal, subretinal, sub-retinal pigment epithelium) defines the presence of disease

activity. The advances in retinal imaging and the introduction of OCT technology have been

transformative in the diagnosis, management and follow-up of eyes with exudative AMD,

allowing the detection of fluid with high resolution and high precision. Of note, the exudative

form of AMD can be successfully treated with anti-VEGF therapy, [4] and it has been estab-

lished that earlier treatment is associated with better visual outcomes [18]. Therefore, there has

been increasing interest in intervening at earlier stages of the disease. A number of studies

have identified several high-risk biomarkers on structural OCT B-scan, such as intraretinal

hyperreflective foci, subretinal drusenoid deposits, drusen with hyporeflective cores and high

central drusen volume, which appear to be associated with a higher risk of progression from

intermediate to late AMD [11–13,19–20]. Our group has previously investigated the utility of

SLIVER-net in automated detection of these high-risk biomarkers in a small annotated OCT

dataset with good performance, sometimes better than retina specialists [14]. In this study, we

used these AMD progression biomarkers to predict the conversion to exudative AMD.

Recent work has also applied deep learning to raw OCT volumes to predict 6-month wet

AMD conversion in the fellow eye when a patient already had wet AMD in one eye [21]. In the

fellow eye of patients who already had exudative AMD, we performed a post-hoc analysis on

model performance. The model described by [21] was selected for comparison due to pursuing

the same goal—predicting progression to wet AMD. The populations are comparable, with

only a difference in the inclusion criteria by [21]. Namely, they included (eyes of) patients with

a positive diagnosis for wet AMD in the fellow eye. Being an important distinction, for the pur-

poses of comparison we used a subset of our cohort, having applied the same inclusion criteria

regarding the AMD status of the fellow eye. The presented results in the comparison table

(Table 4) were obtained on this filtered subset. For the scenario of predicting deterioration in 6

months [21], reported an AUROC of 0.745 and an AUPRC of 0.123 on their test set. Our

model reached a mean AUROC of 0.847 (0.716, 0.98) and mean AUPRC of 0.745 (0.539,

0.951) using the same cohort inclusion and exclusion criteria on our dataset. When binarizing

their predictions to optimize for a high specificity around 90%, their model reportedly

achieved 34% sensitivity and 9.6% false positive rate. Our model, which utilizes machine-read

OCT B-scan biomarkers, yielded a 63% (36.7%, 87.5%) sensitivity and a13.5% (7.8%, 19.8%)

false positive rate along the same optimization approach. They did not report positive predic-

tive value (PPV) for the model, but in their paper, they included PPV metrics for three retinal

specialists and three optometrists. Our model performed on par with them—every clinician’s

performance (lowest reported: 18%; highest reported: 36.5% [21]) was within or below our

model’s confidence intervals (Table 1, ‘26 weeks’). Our proposed model significantly

Table 4. Performance metric comparison of our combined model and reported performance metrics of the model proposed by [21] using the same selection crite-

ria. �Question marks indicate values not clearly reported.

Threshold False Positive Rate Sensitivity Specificity

Yim et al.[21] High sensitivity 0.434 > = 0.8?� 0.55

High specificity 0.096 0.34 > = 0.9?�

Combined Model High sensitivity 0.203 (0.129, 0.3) 0.704 (0.444, 0.948) 0.797 (0.7, 0.871)

High specificity 0.135 (0.078, 0.198) 0.63 (0.367, 0.875) 0.865 (0.802, 0.922)

https://doi.org/10.1371/journal.pdig.0000106.t004
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outperformed the previous algorithm using similar data inclusion criteria (Table 4) in means

of FPR, sensitivity (with fixed specificity), and specificity (with fixed sensitivity).

We found that the machine-driven annotation was able to accurately predict the onset of

exudative AMD within two years from the “baseline visit” at which the OCT was acquired.

The importance of predicting the conversion to exudative AMD within 2 years is that it can

impact the development of follow-up and monitoring schedules for a patient and for poten-

tially selecting a higher-risk group of patients who may benefit from more expensive home-

monitoring strategies [22–24]. A personalized monitoring approach could potentially allow

earlier detection of these patients, thereby leading to earlier therapeutic intervention and better

visual outcomes.

Lei et al. showed that the presence of these biomarkers were associated with higher AMD

disease severity and progression [11]. We attempted to verify that finding by attempting to

“impute” the diagnosis or no-diagnosis of wet AMD. We showed that the use of the SLIVER-

net OCT biomarkers significantly increased diagnostic accuracy, which is consistent with the

findings of [11].

We note that our study has its limitations. Specifically, patients represented in our dataset

visited ophthalmic clinics due to a scheduled check-up or an existing complaint or condition,

and thus the selection of the patients may affect the generalizability of these results to the gen-

eral population. However, since our work concentrates on the validation of established bio-

markers that have been shown to be predictive of AMD progression in similar datasets [11,13],

we do not expect this limitation to be particularly problematic, however we note that addi-

tional replication studies would be useful to further validate the biomarkers in the future.

Two additional limitations are the lack of data regarding any external diagnosis the patients

might have received, and the right-censored nature of the dataset—observations are limited to a

specific time window. To address these issues without reframing the study as survival analysis, we

implemented the following design. Data points for the prediction task are technically not the indi-

vidual exams, rather pairs of exams. For a given time window t, the class label of “Progression hap-

pened in t time.” for a quadruple (exam_date1, wetAMD1, exam_date2, wetAMD2) is 1 if

wetAMD2 is 1 and the time difference between exam_date1 and exam_date2 are less than t (note

that wetAMD1 in this set is always 0, it was mentioned explicitly for clarity). Therefore, it could

have not happened that a patient received a positive diagnosis elsewhere, and was considered as a

negative case by the algorithm (assuming no false negative diagnoses made by the clinicians).

Our study also has a few strengths. First, the machine learning algorithms have been trained

and tested on a large cohort. We have performed a large-scale automatic validation of these pre-

viously established biomarkers, validating not only the biomarkers, but their automatic identifi-

cation as well. Furthermore, we have provided evidence that automatic detection of structural

OCT B-scan biomarkers using machine learning can be of value in predicting exudative AMD.

The algorithm has the ability to provide automated annotation of these biomarkers on OCT vol-

umes with high precision and feasibility, avoiding the laborious manual inspection or annota-

tion of all the OCT B-scans. Also, considering the challenges associated with implementing and

deploying separate models for different time horizons, the 2-year model was separately evalu-

ated on different time frames. Since no significant drop in performance was observed, it is rea-

sonable to assume that the model can successfully utilize the provided timedelta feature. Thus,

we determined that it is sufficient to deploy a single model across different time frames.

In conclusion, we demonstrate on a large dataset that a machine learning algorithm can

automatically annotate OCT volumes with high-risk structural OCT B-scan biomarkers of

AMD progression with high accuracy. These annotations can be used to predict conversion to

exudative AMD in eyes with nonexudative AMD with good performance, providing an

impactful example of how machine learning has the ability to enhance patient care.
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Methods

Study design and dataset

The study was conducted in compliance with the Declaration of Helsinki and approved by the

UCLA Institutional Review Board (IRB, Ocular Imaging Study; Doheny–UCLA Eye Centers).

The dataset consisted of 14,615 OCT volumes collected from 4,182 patients at affiliated

Ophthalmology clinics during 2018 and corresponding electronic health record data for these

visits including demographics, AMD status, and comorbidities (see Table 5). OCT volumes

were obtained by the Spectralis OCT device (19 B-scans, 20x20 degree centered on the fovea).

A single volume for each (exam date, patient, eye) triplet was included in the study. Volumes

collected during the same encounter and corresponding to the same eye were aggregated,

selecting the maximum measured value for each biomarker on that date. It should be noted

that since the dataset in this study was selected from a specific time frame, progression-wise

the data is right-censored. Examination in a survival analysis framework is in the scope of

future work.

EHR-derived features and outcomes

AMD status, demographics, and comorbidities were extracted from the electronic health

records.

For each eye and visit, the presence of exudative (wet) AMD was defined using the ICD-10

code H35.32XX. The demographic factors extracted were age, sex, race, ethnicity, smoking sta-

tus [25]. Comorbidities were defined using the CMS [26]: cardiac arrhythmias, chronic pulmo-

nary disease, congestive heart failure, diabetes (uncomplicated), hypertension, liver disease,

metastatic cancer, obesity, renal failure, rheumatoid arthritis, valvular disease. All these clinical

and demographic data were treated as dichotomous variables (presence/absence).

Automated quantification of AMD-related biomarkers

SLIVER-net [14] was used to automatically annotate OCT B-scan volumes for the following

machine-read structural OCT AMD risk-progression biomarkers: high central drusen volume

Table 5. Descriptive statistics of the dataset.

Patients Eyes OCT volumes

Total 4,182 8,075 14,615

Prediction dataset 1807 2615 4915

Current Wet AMD (%) 462 (11.0%) 636 (7.9%) 1,486 (10.2%)

No Wet AMD w/n 2 years 3,478 7,134 12,523

New Wet AMD w/n 6mo 161 203 350

New Wet AMD w/n 12 mo 203 250 456

New Wet AMD w/n 18 mo 225 281 535

New Wet AMD w/n 24 mo 242 302 606

Age (SD) 66.45 (16.81) 79.10 (8.43) 81.57 (10.25)

Female 53.8% 58.7% 57.9%

Never Smoker 65.0% 71.9% 54.1%

Current Smoker 2.8% 1.8% 4.6%

Latinx 8.9% 8.6% 6.7%

Asian 11.2% 16.7% 9.0%

Black 4.7% 1.8% 1.6%

White 66.4% 67.9% 72.9%

https://doi.org/10.1371/journal.pdig.0000106.t005
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(hcDV), subretinal drusenoid deposits (SDD) and, or reticular pseudodrusen (RPD), intraret-

inal hyperreflective foci (IHRF), and hyporeflective drusen cores (hDC). The likelihood of

each biomarker being present was represented as a score between 0 and 1. OCT B-scan vol-

umes which we could not link to the EHR were not included in this analysis. Since not all OCT

B-scan volumes consisted of the same number of slices, only volumes with at least 19 slices

were utilized. Volumes with more than 19 slices were downsampled uniformly.

SLIVER-net was developed using the dataset described in [27] of 4,686 patients, and the

Amish Eye Study dataset [28] of 1,007 subjects whose imaging data was manually annotated

by clinician experts. The model’s performance was compared to these human expert graders

[14], and it was found that SLIVER-net overperformed all clinician experts in identifying sub-

retinal drusenoid deposits (SDD), and it overperformed 2 out of 3 clinicians in identifying

intraretinal hyperreflective foci (HRF). Human graders identified hyporeflective drusen cores

(hDC) with higher accuracy, however, SLIVER-net predicted high central drusen volume

(HighDrusenVol) and reticular pseudodrusen (RPD), something human experts would have

needed additional imaging modalities or software analytical tools in order to do.

Time to a next visit

The time between two visits in the dataset was named timedelta. It was determined by selecting

a baseline visit for each patient’s eye during which their eye’s condition had not progressed to

wet AMD, and pairing it up with all following visits as candidate future visits. Then, if the

patient’s eye status progressed to wet AMD, the earliest visit with the positive diagnosis was

selected as the future visit. If the patient’s eye condition did not progress in the study period, a

future visit was selected randomly. The feature timedelta was computed as the time difference

between the baseline visit and the future visit.

The appropriate time until the next visit is considered by the clinician on a case-by-case

basis. This time can be as short as 3 months, or as infrequent as 12 months. It is important to

note however, that the timdelta feature in our dataset is not the same as the follow-up time

determined by the physician—the exam-pairs in our prediction dataset were selected as

described above. In our dataset, the mean timedelta was 408.9 days (SD 266.6). Since these

times are on the several months-scale, it could be argued that time availability for a follow-up

visit is not a relevant parameter, as on this scale these follow-ups are scheduled well ahead of

time and are rescheduled in a timely manner should circumstances warrant.

An additional feature timedelta_inv = 1/timedelta was also added.

Analyses

We used an 8-fold out-of-sample prediction framework in order to evaluate the predictive util-

ity of the machine-read OCT biomarkers relative to EHR-derived features and risk factors for

two tasks: 1) predicting conversion to future exudative AMD, and 2) diagnosis of current exu-

dative AMD. We constructed several candidate feature sets, consisting of machine-read OCT

and EHR-derived features and compared prediction performance for models trained using the

different feature sets. All analyses were performed using Python, particularly the Scikit-learn

[29] and Statsmodels [30] packages.

Predicting future conversion to Exudative AMD

Logistic regression models were trained on different feature sets in order to predict future con-

version to exudative AMD. This analysis was limited to OCT volumes of eyes which did not

already exhibit exudative AMD (2615 eyes, 1807 patients). For patients who developed
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exudative AMD, the earliest appearance of the corresponding ICD-10 code was recorded as

the conversion date.

We applied logistic regression analyzes to predict future conversion to exudative wet AMD

based on our extracted features. EHR and machine-read OCT B-scan features were used as

input features to predict a future diagnosis of exudative Wet AMD. We compared four differ-

ent combinations of feature groups: 1) the current AMD status model used only the current

AMD status and time to a next visit (described above); 2) the EHR baseline model used the

EHR demographic and comorbid risk factors as well as the time to the next visit; 3) the bio-
markers model used only the machine-read OCT B-scan biomarkers, and 4) the combined
model incorporated all the features available. This analysis was repeated for time horizons

ranging from three to 24 months.

Following the threshold optimization procedures outlined in [21], two operating thresholds

were determined such that the model was expected to achieve 80% sensitivity and 90% speci-

ficity, respectively. Additionally, to assess how the model performs when they are optimized

together instead of independently, we included a threshold for a balance of sensitivity and

specificity by finding a threshold which maximizes true positive rate while minimizes false pos-

itive rate, i.e. finding a point on the ROC curve close to the top left corner.

We acquired performance metrics in the following manner: in one round of cross-valida-

tion we split the data set to train- and validation sets with a ratio of 7:1 in a way that the two

sets were disjoint on the patient-level. The logistic regression model was trained on the train

set, after which it was used to generate predictions on the same train set. Based on the perfor-

mance metrics of this prediction, 3 operating thresholds (balanced, high sensitivity, high speci-

ficity) were determined. Then the trained model generated predictions between 0 and 1 for the

validation set, and predictions were binarized according to the thresholds. From the binarized

predictions the rest of the performance metrics could be calculated. Validations were per-

formed for eight rounds (i.e. 8-fold cross validation). To describe the cross-validation method-

ology in detail:

1. Data gets split to 8 disjoint groups on the patient level

2. 8-fold cross-validation:

a. Model gets trained on 7 folds

b. Threshold is determined on the same 7 folds

c. Predictions generated for the 8th fold

d. AUROC and AUPRC values are calculated for the 8th fold

e. 8th fold predictions, thresholds, AUROC and AUPRC values are saved:

>i. Results:

>1. predictions: [predi, 1, predi, 2, . . ., predi,|slice8|],

>2. thresholds: [thr_opti, thr_opt_sensi, thr_opt_speci],

>3. auroc: AUROCi,

>4. auprc: AUPRCi.

f. 8th fold predictions are binarized based on the corresponding thresholds

g. Clinical metrics (specificity, sensitivity, etc) are generated on the binarized predictions
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At this point, we have 8 sets of predictions, 8 pairs of (AUROC, AUPRC) values, 8�3 thresh-

olds, and 8�3 sets of clinical metrics.

3. We repeat steps 1. and 2. 125 times, which gives us 125 � 8 = 1000 sets of predictions, 1000

pairs of (AUROC, AUPRC) values, 1000�3 thresholds, and 1000�3 sets of clinical metrics.

We calculate the empirical 95% confidence intervals by taking the 2.5th and the 97.5th per-

centiles, i.e. the 25th and the 975th values from the sorted 1000 e.g. AUROC values as lower

and upper bounds, respectively.

Large scale validation of machine-read OCT features for diagnosis

As in the prediction task, the logistic regression framework was applied to diagnose the current

exudative AMD status of each OCT B-scan volume (14615 OCT volumes, 4182 patients). In

this analysis, two feature sets were compared: (1) EHR-derived risk factors (age, Smoking Sta-

tus, Race, Ethnicity, Sex, and Chronic comorbidities), and (2) EHR-derived risk factors and

machine-read structural OCT B-scan AMD risk factors (hcDVh, IHRF, hDC, SDD, and RPD).

Model performance was quantified in terms of area under the receiver operating characteristic

curve (AUROC) and area under the precision-recall curve (AUPRC).

Considering AMD status of fellow eye as a feature

In order to investigate the added value of the status of the fellow eye, we ran the following

experiment. For each feature group (current AMD status, EHR baseline, biomarkers, com-

bined) the predictive capabilities of the models built on them with and without the fellow eye

status were compared.

One exam can be identified uniquely by the PatientID, Laterality, and exam_date. The fea-

ture fellow_eye was added to each exam entry by finding the wetAMD value (binary) in the

entry with the same PatientID, same exam_date, but opposite Laterality. If no such an entry

was found, non-presence of wetAMD was imputed—since in case of even suspected disease

progression, an examination would have been performed, which would have been reflected as

an entry.

The added utility of the feature was quantified by means of differences in AUROC and

AUPRC compared to the corresponding models without fellow eye AMD status.

Ethics statement

The retrospective imaging data analysis was approved by the UCLA Institutional Review

Board (IRB) #15–000083 –Ocular Imaging studies. As the data collection was retrospective, a

waiver of informed consent was granted. The research was conducted in accordance with the

tenets set forth in the Declaration of Helsinki. All imaging data were transferred to the Doheny

Image Reading Research Laboratory (DIRRL) in a de-identified fashion and the imaging anal-

ysis was performed.

Supporting information

S1 Fig. Model weights for biomarkers in the fitted biomarkers model. Black error bars indi-

cate standard deviation of values obtained by fitting the model to bootstrapped subsets of the

cohort.

(TIF)

S2 Fig. Heatmap representing correlations between features.

(TIF)
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S3 Fig. Bar plot depicting performances of 2-year predicting models with and without fel-

low eye status as a predictor.

(TIF)

S4 Fig. Performance of models built for diagnosis of wet AMD expanded with the AMD

status of the fellow eye.

(TIF)

S5 Fig. Prediction of exudative AMD Conversion. For every week on the x-axis a separate

model was trained and evaluated on for the corresponding time frame. Left. Area under the

ROC curve (AUROC) as a function of prediction time frame. Right. Area under the Precision-

Recall curve (AUPRC) as a function of prediction time frame. 95% Confidence intervals were

computed using bootstrapping.

(TIF)
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