Table 1. Performance metrics of the combined prediction model for a timeframe of 26 and 104 weeks.
Metric | 26 weeks | 104 weeks | ||||
---|---|---|---|---|---|---|
Threshold | Balanced | High sensitivity | High specificity | Balanced | High sensitivity | High specificity |
False Negative Rate | 0.26 (0.17, 0.35) | 0.14 (0.07, 0.24) | 0.43 (0.32, 0.54) | 0.29 (0.25, 0.35) | 0.14 (0.1, 0.19) | 0.46 (0.39, 0.54) |
False Positive Rate | 0.18 (0.15, 0.22) | 0.35 (0.28, 0.44) | 0.08 (0.06, 0.1) | 0.23 (0.2, 0.25) | 0.44 (0.35, 0.52) | 0.01 (0.09, 0.10) |
Negative Predictive Value | 0.95 (0.93, 0.96) | 0.97 (0.94, 0.98) | 0.93 (0.91, 0.94) | 0.95 (0.94, 0.96) | 0.97 (0.96, 0.98) | 0.94 (0.93, 0.95) |
Positive Predictive Value | 0.40 (0.33, 0.48) | 0.29 (0.23, 0.36) | 0.55 (0.46, 0.65) | 0.29 (0.25, 0.33) | 0.20 (0.17, 0.25) | 0.43 (0.36, 0.47) |
Sensitivity | 0.74 (0.65, 0.83) | 0.86 (0.76, 0.93) | 0.57 (0.46, 0.68) | 0.71 (0.65, 0.76) | 0.86 (0.81, 0.90) | 0.55 (0.46, 0.61) |
Specificity | 0.82 (0.78, 0.85) | 0.65 (0.56, 0.72) | 0.92 (0.9, 0.94) | 0.77 (0.75, 0.80) | 0.56 (0.48, 0.66) | 0.91 (0.90, 0.92) |