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Abstract

Many studies have utilized physical activity for predicting mortality risk, using measures such
as participant walk tests and self-reported walking pace. The rise of passive monitors to mea-
sure participant activity without requiring specific actions opens the possibility for population
level analysis. We have developed novel technology for this predictive health monitoring, using
limited sensor inputs. In previous studies, we validated these models in clinical experiments
with carried smartphones, using only their embedded accelerometers as motion sensors.
Using smartphones as passive monitors for population measurement is critically important for
health equity, since they are already ubiquitous in high-income countries and increasingly com-
mon in low-income countries. Our current study simulates smartphone data by extracting walk-
ing window inputs from wrist worn sensors. To analyze a population at national scale, we
studied 100,000 participants in the UK Biobank who wore activity monitors with motion sensors
for 1 week. This national cohort is demographically representative of the UK population, and
this dataset represents the largest such available sensor record. We characterized participant
motion during normal activities, including daily living equivalent of timed walk tests. We then
compute walking intensity from sensor data, as input to survival analysis. Simulating passive
smartphone monitoring, we validated predictive models using only sensors and demographics.
This resulted in C-index of 0.76 for 1-year risk decreasing to 0.73 for 5-year. A minimum set of
sensor features achieves C-index of 0.72 for 5-year risk, which is similar accuracy to other stud-
ies using methods not achievable with smartphone sensors. The smallest minimum model
uses average acceleration, which has predictive value independent of demographics of age
and sex, similar to physical measures of gait speed. Our results show passive measures with
motion sensors can achieve similar accuracy to active measures of gait speed and walk pace,
which utilize physical walk tests and self-reported questionnaires.
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Author summary

Healthcare infrastructure implementation could benefit tremendously from national scale
screening with passive monitors. Large scale population data could delineate health risks
without intruding into daily living. Digital health offers potential solutions if sensor
devices of adequate accuracy for predictive models could be widely deployed. The only
such current devices are cheap phones, smartphone devices with embedded accelerome-
ters. This limits measures to motion sensor data collected when the phones are carried
during normal activities. So measuring walking intensity is possible, but the total activity
measure that is possible with 24-hour wearable devices is not. Our study simulates the use
of smartphone sensors to predict mortality risk in the largest national cohort with sensor
records, the demographically representative UK Biobank. Mortality is the most definitive
outcome, with accurate death records for five years available for the 100,000 participants
who wore sensor devices. We analyzed this dataset to extract walking sessions during
daily living, then used characteristic motions of these walking sessions to predict mortality
risk. The accuracy achieved was similar to activity monitors measuring total activity and
even similar to physical measures such as gait speed during observed walks. Our scalable
methods offer a feasible pathway towards national screening for health risk.

Introduction

The association of physical activity with mortality risk is well established. National cohort stud-
ies based on self-report have shown intensity to be correlated with survival, as persons who
engage in more moderate-to-vigorous activity and less sedentary activity have lower mortality
rates [1]. These studies focus upon amount of activity at given intensity level. These findings
have been confirmed in large meta-analyses using objective physical activity, in which body
worn sensors record total activity and statistical models predict mortality risk using accelerom-
eters [2]. Cohort meta-analyses also show sensor features improve model performance beyond
traditional risk factors [3], e.g. smoking and alcohol, independent of demographics, e.g. age
and sex.

In addition to the quantity of intensity, there are also implications for the quality of inten-
sity. Physical measurements focus upon walking as a moderate activity, intermediate between
vigorous and sedentary activity. Large cohort studies show gait speed is correlated with mortal-
ity risk [4], with timed walking over short distances such as 6 seconds for 4 meters. National
cohort studies based on self-report reveal walking pace as a unique characteristic beyond tradi-
tional demographic risk factors which mediate cardiovascular mortality risk [5]. The 6 minute
walk test [6]—where persons walk steadily in hospital corridor, a standard evaluation for car-
diopulmonary disease—has been shown in large meta-analysis studies to be a strong indepen-
dent predictor of mortality from heart failure [7].

Our current study focuses on the largest available national cohort, the UK Biobank [8],
where 103,683 participants wore wrist devices with accelerometer sensors for 1 week [9]. In
keeping with our previous accelerometer based analysis of the physical activity level of a
national cohort [10], the US Women’s Health Initiative, we use raw sensor data during labelled
walking sessions to identify characteristic motions for predictive models. This is the first popu-
lation analysis of walking intensity with mobile sensors, accepting only input types which can
be accurately gathered via personal smartphones.
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There are four primary methods for measuring physical activity, which all achieve roughly
the same accuracy for predictive models of mortality risk. Two methods require active individ-
ual participation, such as answering a questionnaire concerning health status (self-report) or
walking a fixed distance under observation (gait-speed). These have proven feasible within
limited cohort studies, but are problematic to scale for population level assessment, due to
logistic difficulty of getting large numbers of people to perform the required tasks on a routine
basis. Two measures are passive, collecting data through devices such as activity monitors
worn on the body: total amount of physical activity performed during the day and intensity of
physical activity such as walking pace over a limited period. These sensor-based methods have
the major advantage that they can measure physical activity during daily living, without requir-
ing persons to change their normal activity other than wearing the devices.

However, such digital health approaches have had limited success due to health equity
issues relating to access to wearable sensors. Results based on wearable activity monitors come
largely from recruited cohorts, such as the nationally representative sample we analyze in this
study, rather than from actual community populations. For population measurement in health
systems to be routinely available, the measurement devices must be already widely deployed
and familiar to the public [11], mandating the choice of mobile phones at present. In the
United States for example, the Pew Research Center estimates 97% of the population own cell
phones, with 83% possessing smart phones containing motion sensors [12], while only 21% of
the population wear sensors such as smart watches or fitness devices [13]. Thus scalable meth-
ods for predictive models using mobile phones would have great impact if data analytic limita-
tions can be overcome. Mobile phones are often carried while walking, so they could easily
capture walking sessions. Conversely, they are rarely carried all day, so would not be effective
at collecting the total amount of physical activity achieved during a day, unlike wearable
devices.

The smartphone penetration rate in the United Kingdom, where our dataset was gathered,
has increased every year over the past decade, reaching an overall ownership of 92% in 2021.
For older adults in the statistical survey [14], less than half of all respondents over the age of 55
owned such a device in 2016, but this total rose to 83% in 2021. Soon adequate devices will be
everywhere, with even the cheapest flip phones incorporating motion sensors. Furthermore,
inexpensive smartphones are already widespread worldwide, even in the poorest countries [15].
The global smartphone penetration rate is estimated to have reached over 78% in 2020. This is
based on 6.4 billion smartphone subscriptions in a global population of 7.8 billion. The global
smartphone penetration rate in the general population has great regional variation. In North
America and Europe, the smartphone adoption rates are roughly 82% and 78% respectively,
whereas in Sub-Saharan Africa, the same rate currently stands at 48 percent. While there is a
30% difference in adoption rates between the highest and lowest ranked regions, note that even
in low-income regions half the population already has smart phones with motion sensors.

Cheap phones could have major impact in addressing health equity if proper models can be
developed to utilize the limitations of the data provided by their sensors when they are carried.
Our study uses the sensor dataset from the largest current national cohort, the UK Biobank,
the largest sensor dataset currently available. Although this data was gathered from activity
monitors, our sensor models use only the inputs that would be feasible to gather using inex-
pensive, currently available, phones. This is possible because of our extensive clinical experi-
ments with cheap phones, developing highly accurate predictive models for health status for
cardiopulmonary patients [16]. In addition, the 100K participants included in this paper are
demographically similar to the overall 500K UK Biobank participants, who match the charac-
teristics of the national population [17], thus providing significant generality to the model
results.
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Results

We show short bursts of steady walking suffice for predictive models of mortality risk, evalu-
ated using raw sensor data for 100,000 participants in UK Biobank. Our Results evaluate the
model accuracy for mortality risk using walking intensity, defined as 12 walking windows of
30 seconds each during a consecutive session, representing daily living versions of walk tests.
Our accuracy is comparable to previous models using daily profiles of total activity. Our meth-
ods are logistically easier, with 6 minutes per day (12 windows) rather than 600 minutes (10
hours) per day of sensor records. Although the analyzed dataset uses wrist sensors, our previ-
ous work showed cheap smart phones have good enough accelerometer sensors to be accu-
rately utilized for similar analysis of walking sessions [18]. Our clinical studies have shown
predictive models using only walking intensity can accurately compute pulmonary function
for cardiopulmonary patients [16]. Thus our analysis with wearable sensors for predicting
mortality is directly applicable for clinical practice with personal smartphones, already ubiqui-
tous in the UK and the US populations, and widespread in global populations.

Max (maximum) models

To model mortality, we consider maximum follow-up time of 1/2/3/4/5 years. This means
when the maximum follow-up time is 1 year, any event after 1 year after sensor records is
ignored. So we can evaluate model accuracy in early risk years, as well as standard 5-year mor-
tality. The highly accurate UK Death Registry is used to determine which participants had died
by that time.

As detailed in the Methods section, we choose 20 traditional predictors, from self reports
and laboratory tests. These 20 questions are listed in Table 1 as the Categorical Features. The
tull encoding from UK Biobank data fields is given in S1 Table.

We also choose 76 derived predictors from motion (accelerometer) sensors. These 76 sen-
sor features are listed in Table 2 as the Continuous Features. The full encoding from UK Bio-
bank software [19] is given in S2 Table.

We fit a penalized Cox proportional hazard model with all these features, and denote this
the Max Model, which evaluates accuracy with maximum functionality. Fig 1 gives the compu-
tation flowchart for predictive models.

We computed Max Models for different groups of categorical features. All the Models
included the 3 demographic features (age/sex/race). The continuous variables are all 76 sensor
features, with only steady walking as model input. Fig 2 shows that 100,655 participants met
the inclusion criteria of 1 walking session of 6 steady minutes during the 1 week.

The Max Model plots are shown in Fig 3. The plot showing continuous variables alone is
given in Fig 3A, where continuous is a distinct improvement on demographics. The C-index is
0.76 at 1-year risk, falling to 0.73 at 5-year risk. The modifiable risk factors are similar at
1-year, where the sensors are more recent, but slightly better at 5-year risk. The advanced dis-
ease are significantly better even more at 1-year, but converge to the same as risk factor at
5-year risk.

The continuous variables always improve the accuracy of any set of features, as plots show
in Fig 3B. Continuous features with demographics only at the bottom is 0.76 at 1-year and 0.73
at 5-year. Whereas continuous with all categorical features at the top is 0.83 at 1-year and 0.78
at 5-year. In-between, continuous slightly improves the curve for risk factors and the curve for
advanced disease. The C-index evaluation numbers of all the Max Models are given in Table 3.

Continuous variables have many similarities. Sensor features extracted from signal process-
ing on raw accelerometry compute the same input with similar outcomes on predictive mod-
els. Each feature does provide additional accuracy, as shown in S3 Table, which gives marginal
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Table 1. Categorical Features from Question Answers in UK Biobank data fields.

Demographics
Age/Sex/Race

Diagnosis
Cardiovascular Disease

Myocardial Infarction,
Angina Pectoris

Stroke Cerebral Infarction,
StrokeOther

Pulmonary Disease
Cancer
Diabetes
Medical Care
Operation
Hospital Admissions
Falls
Screening
Hypertension
Cholesterol
Obesity
Medications
Habit
Alcohol (Intake Frequency)
Smoking (Current Tobacco)
Stress (Illness/Injury/Grief)
Lifestyle

Health (Overall General Health)
Education (Schooling/Training)

Income (Average Household)

Age = DateSensorWear-YearOfBirth
Sex = Male/Female, Race = Other/White

combine 8 fields, eliminate duplicate participants.

Congestive Heart Failure, Ischemic Heart Disease
Stenosis Precerebral Arteries, Cerebral Arteries

Chronic Obstructive Pulmonary Disease (COPD)
Date Diagnosed with Malignant Behavior
combine 3 fields, Type 1 + Type 2 + Other

Major Operation for Male + Female
Emergency Admission, Elective Admission
Falls in Last Year, High risk / Low risk

Essential Hypertension from Physician Panel
Total Cholesterol, Normal< = 5.9

Body Mass Index (BMI), Normal <30
Number of meds, Good<5

Daily, 3-4/Week, 1-2/Week, 1-3/Month, Special, Never
Yes (Bad), Occasional, No (Good)
Serious You (Bad), Serious Other, None (Good)

Excellent/Good/Fair/Poor
None = 1; Any value (college, professional)
0-18K, 18-31K, 31-52K, 52-100K, >100K Pounds/Year

ADC Advanced Disease Condition is 7 features (4 Diagnosis + 3 Medical Care)
MRF Modifiable Risk Factors is 10 features (4 Screening + 3 Habit + 3 Lifestyle)

https://doi.org/10.1371/journal.pdig.0000045.t001

performance of each feature by itself. The top features after Age are ENMOtrunc and MPD,
along with their variant computations ENMOabs and MAD. These are features measuring the
average acceleration of sensor signal via Euclidean Norm or Mean Deviation. ENMO is
Euclidean Norm Minus One, after adjusting acceleration for effects of gravity [20].

Lasso models can be utilized to select fewer features, by focusing on those most predictive

[21]. The additional discrimination provided by each feature flattens out quickly, so 5 features
provide the same model accuracy as all 76 features, for cross-validated C-index. This is shown
in Fig 4, which shows cumulative effort of multiple features flattening after 5 features.

A Lasso model average hierarchy is displayed in S1 Fig, with 16 selected features displayed
in red. This model uses the optimal lambda selected from cross-validation. The tree is con-

structed using the hierarchical clustering algorithm to group sensor features, so that features in

similar branches of the tree have similar contributions. At the center of the tree are the acceler-
ation magnitude sensor features—enmoTrunc and enmoAbs, plus MAD and MPD. The red
ones are stronger, so enmoTrunc and MPD sensor features, among the discriminating ones,
are the best candidates for continuous features. These measure mean and standard deviation
of average acceleration, shown to be strongly correlated with intensity of activity [22]. ENMO
uses the magnitude of the acceleration and MxD uses the signal of the accelerometer.
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Table 2. Continuous Features from Sensor Records via Participant Accelerometers.

ENMOtrunc Euclidean Norm Minus One truncated (make zero if negative)
ENMOabs Euclidean Norm Minus One absolute (make positive if negative)
Mean mean of vector magnitude (+x/y/z axis)

Sd standard deviation of vector magnitude (+x/y/z axis)

RMS Root Mean Square (quadratic mean, average power) (+x/y/z axis)
TAC Total Activity Count (total motion amount) (+x/y/z axis)

MCR Mean Crossing Rate (across signal average) (+x/y/z axis)

MMCR Average of Min-Max Crossing Rate (+x/y/z axis)

MAD / MPD Mean Amplitude Deviation / Mean Power Deviation

Min / Max Minimum / Maximum vector magnitude (+x/y/z axis) 25thp/Median/75thp
Range total range of x/y/z axis

kurt/skew kurtosis / skewness (shape of distribution)

CoV CoVariance in xy/xz/yz axis

corr Correlation in xy/xz/yz axis

autocorr autocorrelation of acceleration (time series) (+x/y/z axis)
coefvariation coefficient of variation (relative dispersion) (+x/y/z axis)
pitchg/rollg/yawg magnitude (gravity) of accelerometer rotation (3D)
sdpitch/sdroll/sdyaw standard deviation of accelerometer sensor rotation
avgpitch/avgroll/avgyaw average of accelerometer sensor rotation

76 Variables for Sensor Features: Accelerometer Derived in Time Domain
38 computed using Biobank software on field 90001

38 further derived using Biobank frequency domain

Biobank software: ENMOtrunc, Mean/Sd+x/y/z (9)

MAD/MPD, kurt/skew (4)

Min/Max, 25thp/Median/75thp, autocorr/coefvariation (7)

Range x/y/z, Cov yz/xz/xy, corr yz/xz/xy (9)

pitch/roll/yaw g/sd/avg (9)

Derived Software: ENMOQabs (1)

x/y/z for Min/Max, 25thp/Median/75thp, autocorr/coefvariation (21)
new features computed: RMS/TAC/MCR/MMCR +x/y/z (16)

https://doi.org/10.1371/journal.pdig.0000045.t002

Min (minimum) models

Feature selection implies a parsimonious model might be equally accurate and thus more
practical, since requires less input and less compute. Hence, we explore the stepwise model
strategy that utilizes small numbers of features. We denote this the Min Model, as shown in
the flowchart in Fig 1. Such models include demographics and selected continuous features,
so include sensor input only with no categorical features. Min Model values are given in
Table 4.

We rank order the top 10 features, after considering all 76 features. The top accelerometer
feature is ENMOtrunc, acceleration magnitude correlated with activity intensity, truncated to
zero for negative values [22]. With the significant demographic variables Age and Sex, the C-
index is 0.727 for Min Model, rounding to 0.73, the same as the Max Model. The remaining
top 10 had little extra effect, and may even decrease the cross-validation error. These features
include other mean and standard deviation of acceleration.
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Input: Accelerometer Data,

Clinical Features

Al Traditional Predictors
plus All Accelerometer
Derived Predictors

Demographic

Easily Modifiable Risk Factors
Selected Continuous Predictors

Max Model -~

Method : Penalized Cox PH

Min Model
Criteria : Cindex

Output : Prediction on each time point

Output : Stepwise Rank of Predictors

Fig 1. Model flowchart. Which inputs used for which models.

Accelerometer Aggregation

Average over all interval containing 6 MWT;

Method : Stepwise Cox PH

Criteria : Cindex

https://doi.org/10.1371/journal.pdig.0000045.g001

Accident : 19

Whole Population : 103683

Nonwear Exclusion:

Processed Population : 103426

)

Population Difference in
Categorical and Continuous Data
1

(censoring)

Exclusion by Wear Time :
1. 90 second 2125;
2. 6 minutes 2758;
3. 10 minutes 3295

'

Observations with not available or
infinite Value: 12

Analysis Population : 100655

257

Fig 2. Participant flowchart. Inclusion/Exclusion for Mortality Prediction.

https://doi.org/10.1371/journal.pdig.0000045.9002
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A: Feature Sets alone

or00-
1 2 3
Year

B: Feature Sets combined

i

group
Demo + ADC + NRF + Cont

Demo+ WRF

Demo + Cont

Fig 3. Max model plots with features sets and demographics. Demo is Demographics of age/sex/race. Cont is Continuous (Sensor)
Features. MRF is Modifiable Risk Factors (Categorical) Features, ADC is Advanced Disease Condition (Categorical) Features.

https://doi.org/10.1371/journal.pdig.0000045.g003

Demographic independence

For sensor features to provide clinical utility, they must provide orthogonal support, for model
accuracy independent of demographics. Following the original gait speed study [4], we gener-

ated the curves of 98% percentile survival time as functions of ENMOtrunc against Age and
Sex. Death events are about 2% of the cohort. Thus we utilize average acceleration as a surro-

gate for gait speed. These mortality curves are shown in Fig 5, demonstrating sensor features
provide independent value for the practical subset of the Min Model. Higher ENMO values
predict longer survival, independent of age and sex. For both men and women, survival
declines progressively with age, but each higher level of ENMO sensor feature improves sur-
vival rates. The other acceleration magnitude features (MPD/MAD) have similar indepen-
dence graphs. So the activity intensity predictor ENMO predicts mortality risk—higher
magnitude is lower risk.

Table 3. Max Model with C-Index Results. Feature Sets versus Risk Years.

FeatureSet / RiskYear 1 3 5
Demographics 0.720 0.708 0.709 0.710 0.713
advanced_disease 0.748 0.739 0.714 0.699 0.682
risk_factor 0.720 0.715 0.702 0.694 0.687
demo + advanced_disease 0.805 0.788 0.774 0.765 0.757
demo + risk_factor 0.769 0.761 0.754 0.753 0.750
risk_factor + advanced_disease 0.794 0.785 0.760 0.747 0.732
demo + risk_factor + advanced_disease 0.822 0.806 0.791 0.780 0.772
Continuous 0.688 0.693 0.684 0.676 0.671
demo + continuous 0.763 0.747 0.732 0.731 0.731
demo + advanced_disease + continuous 0.811 0.805 0.781 0.769 0.763
demo + risk_factor + continuous 0.790 0.782 0.763 0.758 0.756
demo + advanced_disease + risk_factor + continuous 0.828 0.816 0.797 0.785 0.776
https://doi.org/10.1371/journal.pdig.0000045.t003
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Fig 4. Feature selection for Min Model. Lasso lambda versus Features impact.

https://doi.org/10.1371/journal.pdig.0000045.9004

Geographic variation

Opver the entire cohort of 100K participants, the predictive model gives 0.73 C-index for 5-year

mortality. However, it is worth noting that different populations have different accuracies

using the same models. To evaluate this, we computed different statistical models (Lasso, Step-
wise), then computed the C-index independently for each assessment center in 22 cities across
the UK. Accuracy varies widely, as shown in S2 Fig. For example, the Lasso model averages
0.77 but ranges from 0.73 to 0.84, Lasso Continuous averages 0.73 but ranges from 0.66 to 0.77
C-index. With just Continuous, like the Min Model, Glasgow and Edinburgh have 5-year 0.77
C-index. The original mortality study without sensors had its highest reported scores at the
Scottish sites as well [23]. Their analysis with categorical features only showed Glasgow and
Edinburgh had 0.80 C-index with 13 questions while our categorical only is 0.81 and 0.80 with
17 questions. So similar accuracy with similar set of questions.

Table 4. Min Model sensor input only, with cumulative C-index results.

Name

Age
ENMOtrunc
Sex

xSd

Mean

ySd

Sd
ENMOabs

Race

O |0 | | U W N =

—
(=)

yMean

Choose top 10 most discriminating from all
76 sensor features, plus 3 demographics (age/sex/race).

Cumulative C-index for demo+continuous for 5-year risk.

https://doi.org/10.1371/journal.pdig.0000045.t004

Cumulative
0.699318
0.713577
0.727189
0.727784
0.727859
0.727928
0.728136
0.727939
0.727893
0.727674
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Demographic Independence Curves for Sensor Records

Men Women

ENMOTrunc(MiliGravity)
65566
77368

— 8oas4

tile Survival Time (year)

— 07.005
118,048

50 60 70 80

50 60 70

8
Age (year)

Fig 5. Demographic independence curves for sensor records. Acceleration magnitude (ENMOtrunc) independent
predictor against Age and Sex.

https://doi.org/10.1371/journal.pdig.0000045.9005

Intensity versus duration

As noted, physical activity is traditionally measured by total duration. Thus individuals with
lower mortality have more moderate-to-vigorous activity and less sedentary activity. That is,
the duration of activity, the total volume, is considered more important than the intensity itself
[24]. Such studies of physical activity commonly utilize wearable sensors since they are specific
measures within limited periods [2]. The participants can thus be relied upon to wear the
devices all day, so the studies assume 10 hours per day of wear time during normal activities.
For effective usage in daily living, the patients must continuously wear a medical quality sensor
device. In contrast, our methods assume a single SsMWT per day, so 6 minutes rather than 600
minutes, two orders of magnitude less sensor data. Our methods enable studies with cheap
smartphones, since often carried while walking yet having adequate accelerometers for predic-
tive models of pulmonary function [16].

With cardiopulmonary patients, intensity is more important than duration, as shown in
large meta-analysis studies [25]. Our model prediction relies upon walking intensity in short
bursts being an effective surrogate for activity intensity over whole days, same as the base
assumption for walk tests. Intuitively, walking is the unique physical activity, which ranges in
intensity from vigorous (fast) to sedentary (slow). Brisk walks are nearly as vigorous as running
and shuffling walks are nearly as sedentary as standing.

Another confirmation of walking intensity as an effective surrogate for activity duration is
shown by our Lasso model average hierarchy in S1 Fig, with the most discriminating selected
sensor features displayed in red. The center of the tree is the acceleration magnitude features
such as ENMO and MPD. In a single central branch for selected features are MCR, Mean
Crossing Rate, along with MMCR (Maximum and Minimum average Crossing Rate), the clos-
est equivalent with walking intensity to RA (Relative Amplitude) which measures activity
duration, as described below. In addition to overall average for MMCR, nearby branches
include in red, the specific yYMMCR and zMMCR due to walking motions. But the other 4 fea-
tures in red near the center are the equivalents of RA for short bursts, which we computed for
comparative purposes as special additions to Biobank features. These concern the crossing
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rate, how often the acceleration changes from above the mean to below the mean and vice
versa, which we previously utilized for predictive models of fall risk in national cohorts [10].

Comparing accuracy to concurrent study

The UK Biobank accelerometer dataset has also been analyzed by a concurrent study, per-
formed at the same time by another group separate from our group. This easier study used
processed data to analyze the activity duration [26], rather than using raw data to analyze the
walking intensity as we did. Their study took the 5 second averages from Biobank field 90004
and further averaged over 1 minute intervals. Our study used raw signals from field 90001,
which can detect characteristic motions of walking intensity, since 1 minute contains 6000
data points rather than only 1. Our Min Model achieves the same C-index accuracy of 0.72 as
their study for continuous features with demographics, although their analogue of ENMO-
trunc called Relative Amplitude (RA) requires 100 times more minutes per day. RA compares
the highest 10 hours of activity to the lowest 5 hours, so needs 600 minutes rather than 6 per
day. Since they are measuring duration (quantity) of physical activity, they average the sensor
records to 1 value per minute of accelerometer data. Since we are measuring intensity (quality)
of physical activity, we use the raw data at 100 Hz which is 6000 values per minute. So each
day, we measure 100 times less minutes with 10 times more samples. Due to their requirement
of at least 3 days with at least 10 hours per day sensor records, they excluded 21K participants
while we excluded 3K participants, so we have 7 times more inclusions for measured
participants.

In our study, we used Date fields giving physician consensus for disease diagnosis, more
detailed from more sources than the participant self-reported answers used in the concurrent
study. The Diagnosis features are the most discriminating of all the categorical features, and
the Date fields were generated around the same time as the sensor records. This enables a fair
comparison between categorical and continuous features, both up to date at the time of sensor
records. We took the rest of the categorical features from self-reported features. The self-
reported features are from participant registration, which is 6 years before the sensor records
(2008 versus 2014, for categorical 2006-2010 and continuous 2013-2015). The concurrent
study used only self-reports for categorical features, even for the most discriminating diagnosis
features. So the concurrent study has a recency problem with the dataset. Their sensor features
are more recent than their categorical features, and hence more accurate for mortality predic-
tion than is actually correct, similar to 5-year versus 10-year mortality risk. Their primary con-
clusion that sensor features improve prediction performance more than risk factors thus is
flawed, a confounded artifact of when data was gathered. As our Fig 3 shows, categorical fea-
tures actually improve prediction more than continuous features. Our study does not directly
compare continuous to categorical features to avoid this artifact.

Discussion

Measuring physical activity via walking intensity has become a standard practice for certain
clinical settings, where gait speed can be quantified with a short walk. Detailed meta-analyses
showed that gait speed is a predictor independent of age/sex [4], with a pooled C-index close
to 0.72 model accuracy for 5-year mortality risk. Other metrics like Objective Physical Activity
(OPA) look at the “quantity” of physical activity, such as total amount of moderate-to-vigorous
physical activity, requiring sensor devices to be worn all day. For example, the concurrent
study [26] of the same UK Biobank sensor dataset developed a model where the highest predic-
tor of mortality was relative amplitude (RA), the ratio of the most active 10 hours of average
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acceleration to the least active 5 hours. The C-index studied was 0.72, with RA plus age/sex for
5-year risk, based upon 600 minutes per day of sensor records.

A walk test measures “quality” (intensity) rather than “quantity” (duration). Our previous
work showed accelerometer sensors in carried smartphones can digitally model physical dis-
tance [27] and oxygen saturation [28] during a Six Minute Walk Test (6MWT). We also
showed that the pulmonary models similarly worked with smartphones carried during daily
living [16]. The logistical advantage of using 6 minutes of walking intensity is two orders of
magnitude less frequent sensor input, using ENMO for quality instead of RA for quantity.
Measuring intensity/quality makes it possible to effectively utilize smart phones instead of
wearable sensors for predictive models.

Our Min Model with only sensor features holds at the same C-index of 0.72 for 5-year mor-
tality risk. For continuous features only without categorical features, our Max Model with all
the sensor features yields 0.73 C-index for 5-year risk. This model has greater accuracy in ear-
lier years yielding 0.76 for 1-year risk. We note model accuracy varies by local sites, as shown
in S2 Fig, with 0.77 for 5-year risk at the Scottish sites of Glasgow and Edinburgh, where the
original mortality study using self reports also did best [23].

There are significant limitations to our current research. The most obvious is that the UK
Biobank dataset was generated by wrist-worn motion-sensors. The sensors themselves are
equivalent to those contained in smartphones, but the wearing patterns may not be, so results
may differ when large datasets generated by personal smartphones become available. The
walking patterns of large populations chosen for health equity may also differ, since low-
income lifestyles differ from high-income lifestyles even when the demographics of age and
sex are the same, as in the UK Biobank dataset. The methodology of what is considered to be
walking sessions might be thus affected, since 6 minutes of steady walking was chosen to
mimic walk tests for hospital patients with cardiopulmonary diseases. Our models computed
all-cause mortality of patients aged 45-79 for the 5 years past when sensors were recorded. Uti-
lizing walking intensity implies that higher predictive accuracy might be achieved for older
patients only, especially those who ultimately die from cardiopulmonary diseases where char-
acteristic motions are more discriminating than with other causes of mortality. We have
planned large population trials with only cardiopulmonary patients carrying their personal
smartphones, to investigate whether such walk test cohorts produce more accurate predictive
models. We hope our research makes clear that large trials employing passive monitors with
diverse populations using cheap phones are now technically feasible and socially desirable.

In terms of future directions, we are involved in planning the physical activity study for the
US Precision Medicine Initiative (All of Us Research Program), especially the use of phones
for health monitoring. This historic longitudinal cohort is planned to have more than 1M par-
ticipants and is already over 50% enrollment. Participants are being recruited to be representa-
tive of the US national population, which is considerably more diverse than that of the UK.
For example, the ethnicity “white” covers 94% of all UK Biobank participants, so “race” is
weakly correlated with mortality risk in our current analysis. Race/ethnicity is more easily
stratified with the US Precision Medicine Initiative population. All consenting participants
would be longitudinally measured on their personal smartphones, directly utilizing smart-
phone sensors, with both a larger sample size and a longer time horizon than our current mor-
tality analysis.

Our previous work showed accelerometer motion sensors in cheap smart phones can cap-
ture predictive model input for walking intensity analysis equivalent to expensive medical
devices. This is particularly important for health equity purposes, given populations at highest
health risk are often the least resourced—so persons most likely to have cheap phones rather
than wearable devices would benefit most from easy assessment. Phone apps could record six
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minutes of consecutive walking during daily living, then compute predictive models for risk
stratification via population analysis [11]. To test this strategy, we have planned large trials
with minority populations using personal smartphones, within the US Hispanic Community
Health Study. Our results from high-income countries may be directly applicable to low-
income countries. Major cohort studies using self-reported status have shown cardiovascular
health is strongly correlated with physical activity, largely independent of the socioeconomic
level of the participants country [29]. Healthy longevity can be facilitated globally for all adults
possessing cheap phones, using the minimum model to assess gait status, computed on their
phones for the maximum privacy. Implementing effective healthcare infrastructure requires
continued research into screening populations with ubiquitous sensors [30].

Materials and methods
Ethics statement

This study analyzes datasets provided by UK Biobank, with subjects identified only by partici-
pant number. This Biobank is a national resource in the United Kingdom, providing datasets
to international researchers who have approved projects. Our project entitled “Predictive
Models of Mortality Risk from Passive Monitors measuring Physical Activity” is approved
with ID 45178. This enabled us to download datasets with selected portions of their complete
database, each dataset was approved by the Biobank as was each investigator including all of
the authors. UK Biobank supports extensive human subjects protection including written
informed consent from each participant. The signed Materials Transfer Agreement between
University of Illinois and UK Biobank specifies that we will abide by all their ethical standards.

Study participants

UK Biobank is a prospective study with over 500,000 participants aged 40-69 years [8]. These
participants were recruited during 2006-2010 from 22 assessment centers throughout the UK.
The study is longitudinally collecting participants’ information, including data from question-
naires (self reports), physical measures (laboratory tests), and accelerometers (sensor records).
It is representative of the national population for demographic and geographic considerations,
although the entire cohort shows less disease and more education than the UK population at
large [17]. Within the entire cohort, traditional risk factor associations agree for mortality out-
comes with nationally representative cohort studies [31]. Thus the cohort dataset for sensor
analysis is uniquely suitable for predictive models. UK Biobank provides accurate datasets for
sensor input with physical activity and status output with health outcomes [19].

Our study focuses on the subset of 103,683 participants who agreed to wear a wrist-worn
triaxial accelerometer, an Axivity AX3 sampling at 100Hz, continuously for 1 week [9]. These
participants were aged 45-79 when data was collected in 2013-2015. We implemented inclu-
sion/exclusion criteria shown in Fig 2. We exclude 257 participants for insufficient device
wear time. Our analysis focused on walking intensity, so participants must have sufficient
length of steady walking, as defined below. The Biobank software [19] divides sensor data into
non-overlapping 30-second windows with activity labels. These are highly accurate, due to
careful derivation from training set of representative participants who wore head-mounted
cameras to visually identify activities. We included any participant with at least one session of
steady walking, defined by 12 consecutive walking windows. Only windows labelled as walking
were considered input data for feature extraction. We exclude 2758 participants for insufficient
walking, which with other minor exclusions, yields total 100,655 participants for our analysis.

There were 2048 included deaths from UK Biobank field 40023, derived from the National
Death Registry, which is a comprehensive curated dataset. We analyzed all-cause 5-year
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mortality, with sensor records from Jun 2013 to Dec 2015 and deaths until Dec 2019 to avoid
COVID-19. For highest accuracy, our analysis used all qualifying participants, after trying dif-
ferent subsets including different age ranges. Most participants had known 5-year mortality.

Steady walking in daily living

Walk tests are widely used to clinically evaluate status of cardiopulmonary patients. A standard
assessment is the Six Minute Walk Test (6MWT), where a patient walks back and forth in a
corridor for six minutes and their walked distance indicates their health status [6]. With
COPD patients, this period is long enough so patients slow down in correlation with their sta-
tus determined by spirometry [32]. Such walk tests are also used for CHF patients [33], who
also exhibit Shortness of Breath on Exertion (SOBOE) [34]. We have previously shown with
such cardiopulmonary patients that accelerometer sensors can measure slowdown/speedup
with clinical accuracy, for predictive models of 6MWT distance and pulmonary function
[27,16]. These were clinical experiments with COPD/CHF patients who performed 6MWT in
hospital rehabilitation, with carried smartphones recording accelerometer sensors.

There is no current standard for walk tests during daily living. We chose 6 minutes as
empirical lower bound for cardiopulmonary slowdown during steady walking, with relaxed
criteria to allow longer periods. During daily living, a person may walk more slowly than when
they are pushing hard during walk test, so it might take longer for them to experience SOBOE.
Thus we require 12 consecutive walking windows to be the “equivalent of 6sMWT”, and
include all such labelled windows for included participants with at least 1 such session. For
example, 4 consecutive walking windows would be excluded, while 12 consecutive windows or
even 20 would be included. All included participants had at least 1 session of 6 minutes contin-
uous walking during the 1 week, although only 10% walk half an hour in 6 minute sessions as
shown in Fig 6.

Walking Time Distribution

Probabllity Dentsity Function

Time Length (Minute)

Fig 6. Walking Distribution of Labelled Sessions during Daily Living. Steady walking sessions only for included
participants.

https://doi.org/10.1371/journal.pdig.0000045.9006
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Mortality predictors: traditional categorical and accelerometer continuous

UK Biobank collected questionnaires during 2006-2010, when participants registered. We
extract categorical features based upon self-reported answers and laboratory tests. We select 20
questions to characterize health status, including 7 Advanced Disease Conditions (ADC), 10
Modifiable Risk Factors (MRF), 3 Demographics. These are grouped into categories in

Table 1. The original analysis for mortality risk using only categorical features found 13 fea-
tures to be most discriminating [23], a subset of ours. S1 Table gives the deriving Biobank
fields.

Accelerometer data is collected with the Axivity AX3 wrist-worn accelerometer, which col-
lects 100Hz triaxial signals [9]. We follow the provided Biobank methods to extract features
from raw data [19]. Our previous work showed raw sensor data was needed to predict status of
pulmonary function in clinical studies with cardiopulmonary patients [16]. Model input was
6MWT sensor records, so more data points are needed than simply average sensor data over a
labelled walking window.

Every 30 second time window is an epoch for measuring physical activity with single
label, yielding 3000 3D acceleration points. The total number of possible epochs over 7 days
is 20160. In each epoch, we extract a 76-dimensional feature vector, where each feature
describes certain characteristics of motion patterns. Signal features are derived from time
domain and frequency domain [35,36]. We use only features from time domain, since mea-
suring walking intensity over time periods. We used 38 features from the Biobank software
time domain [19], and computed another 38 features from their frequency domain follow-
ing our previous work [16]. The 76 sensor features are listed in Table 2, while S2 Table gives
their deriving formulas.

We added dimensional data, such as x-y-z, plus computing our own features from the fre-
quency domain of Biobank software [19]. Our new features include those useful in other stud-
ies. These included RMS (root mean square) from our prior work [16], which is computable
from FFT. Total activity count (TAC) is the overall feature provided by commercial fitness
devices such as the research standard Actigraph GTX-3. We computed comparisons of most
active periods to least active, such as MMCR (Maximum and Minimum average Cross Rate)
and MCR (Mean Cross Rate), similar to physical activity profiles from activity duration meth-
ods. Full formulas for sensor features are given in S2 Table. The major features are defined in
terms of ENMO, mean acceleration correlated with activity intensity such as walking versus
standing. These include MPD and MAD, Mean Power Deviation and Mean Amplitude Devia-
tion of accelerometer magnitude signals [37].

Sensor data processing

The raw data was collected into 30-second windows over the entire week of recording, each
window contained 3000 3-axis motion samples from field 90001. This comprised 25 terabytes.
We analyzed this dataset using the Biocluster2 at the Carl R. Woese Institute for Genomic Biol-
ogy, which has 72 nodes of Xeon Gold 6150s with 2 cores each of 2.7 GHz and 4GB memory.
We computed 1037 batches of instances, where each batch consists of 100 instances. These
instances covered the participant sensor record for each of almost 103,700 participants.

The total processing time for feature extraction was 3100 hours of compute time. It takes
about 3 hours for each node to process each batch. The typical sensor processing used 50
nodes on the shared cluster, so the total real time was about 62 hours, or about 3 days. The
steady state of extracted features is 1.2 TB, which we kept on the cluster storage as input to run
the models.
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Mortality prediction models and survival function estimation

The prediction response is the time interval between end time of participant mortality and
device wearing for sensor record. Since the outcome is time-to-event and subject to censoring,
we utilize survival analysis [38]. Hence we consider the Cox proportional hazard model [39]
and its penalized version [40]. We use the elastic net penalty [41], which consists of both 11
and 12 penalties of the coefficients, controlled by two tuning parameters o and A. The method
is implemented using the R package glmnet [42]. To select the optimal tuning, we consider o. =
0, 0.5, 1 and use a grid of Avalues automatically selected by the glmnet package.

We tested the assumptions of proportionality of risks in the Cox proportional hazard mod-
els using Schoenfeld residuals [43]. Figs 7-10 show the results of these tests. Fig 7 tests demo-
graphics features only, while Fig 8 adds ENMOtrunc. This represents our practical model with
activity intensity. Fig 9 tests the Min Model, which includes the top 10 discriminating features
from sensors and demographics, as listed in Table 4. Our practical model is a subset of these
features. In all these figures, all variables pass the PH test (non-significant) if the significance
threshold is at 0.001. Fig 10 tests our full featured Max Models with all categorical and all con-
tinuous features. In this figure, the p-values of 2 (categorical) variables, Hospital Admissions
(in Medical_Care) and Cancer (in Diagnosis), are close to 0 while all the other selected vari-
ables remain non-significant, thus passing the PH test. As Biobank field 40001 shows, Cancer

Global Schoenfeld Testp: 0.1598

Schoenfeld Individual Test p: 0.288

Radtiond ARSI AL il

068 18 22 28 33 39 44 48
Time

Schoenfeld Individual Test p: 0.0824

Time
Schoenfeld Individual Test p: 0.3314

Time

Fig 7. Feature tests for proportionality of risks: Demographics.

https://doi.org/10.1371/journal.pdig.0000045.9007
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Global Schoenfeld Test p: 0.00153

Schoenfeld Individual Test p: 0.2921 Schoenfeld Individual Test p: 0.0808

Schoenfeld Individual Test p: 0.3321 Schoenfeld Individual Test p: 0.0018

Time Time

Fig 8. Feature tests for proportionality of risks: Demographics + ENMOtrunc.
https://doi.org/10.1371/journal.pdig.0000045.9008

is the largest cause of death in this cohort, producing almost exactly half of participant mortal-
ity. Note since our sample size is very large, significance level is probably not the most reliable
determining factor, so visualization is likely more appropriate. By checking the residual plots,
we can find visually that they center around the middle line very well. This indicates that the
violation of the PH assumption is mild.

To test the accuracy of our results, we perform 10-fold cross-validation [44]. Cross-valida-
tion procedures are more stable than pre-fixing testing data since they enable all observed data
to be used in evaluation steps. These are commonly used in data analytic procedures with
machine learning methods [45]. The procedure 10-fold is the averaged result of performing 10
such pre-fixing procedures. In contrast, results derived from pre-fixing the testing data only
once can be greatly affected by the randomness involved in choosing the test set.

We use a stratified 10-fold cross-validation approach, since the proportion of death is small
(about 2% of participants). For each model with maximum follow-up length (1/2/3/4/5 years),
we consider the data is randomly split into 10 equal-sized subsets. Each subset contains 1/10 of
the live data (participants who are still alive or censored by the maximum follow-up time) and
1/10 of the dead data (participants who have died by the maximum follow-up time). With
these 10 equal-size datasets, a single subset is utilized for testing the model and the remaining
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Fig 9. Feature tests for proportionality of risks: Min Model (10 top variables).
https://doi.org/10.1371/journal.pdig.0000045.9009

9 subsets are used as training data. The cross-validation process is repeated 10 times with
every subset used exactly once as the testing data. Finally, the 10 results from the folds can be
averaged to produce a single estimation for a specific model with exact $alpha$ and $lambda$.
For each $alpha$, the $lambda$ with best performance is selected from grid as model
parameter.

In addition to the regularized Cox proportional hazards model, we fit other models to com-
pare their performance. We adopt stepwise selection to choose variables. With fixed variables
as input, we set the prediction performance as inclusion criteria to do stepwise forwards select-
ing over these variables. In every step, the variable that increases the C-index the most based
on the previous selected variables is included in the group. The selection runs until the incre-
ment is less than a specific threshold. We have tested over traditional predictors and acceler-
ometer derived predictors with threshold 0.01 and 0.001, to enable model evaluation.

The Concordance Index (C-index) is used to evaluate the model performance [46]. The C-
index can be interpreted as the fraction of all pairs of subjects whose predicted survival times
are correctly ordered as the observed survivals, while correcting for censoring. Hence, it is
more sensible than other common criteria such as the overall accuracy or the Area under the
Curve.
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Fig 10. Feature tests for proportionality of risks: Max Model (select by lambda.1se).
https://doi.org/10.1371/journal.pdig.0000045.9010
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