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Abstract

Machine learning has become a key driver of the digital health revolution. That comes with a

fair share of high hopes and hype. We conducted a scoping review on machine learning in

medical imaging, providing a comprehensive outlook of the field’s potential, limitations, and

future directions. Most reported strengths and promises included: improved (a) analytic

power, (b) efficiency (c) decision making, and (d) equity. Most reported challenges included:

(a) structural barriers and imaging heterogeneity, (b) scarcity of well-annotated, representa-

tive and interconnected imaging datasets (c) validity and performance limitations, including

bias and equity issues, and (d) the still missing clinical integration. The boundaries between

strengths and challenges, with cross-cutting ethical and regulatory implications, remain

blurred. The literature emphasizes explainability and trustworthiness, with a largely missing

discussion about the specific technical and regulatory challenges surrounding these con-

cepts. Future trends are expected to shift towards multi-source models, combining imaging

with an array of other data, in a more open access, and explainable manner.

Author summary

Machine learning is becoming an important part of digital health and medical imaging.

Many believe that it is the solution to some of the challenges our medical systems cur-

rently face. In this study, we reviewed the literature to explore this topic, focusing on the

promises, challenges, and future developments. The literature emphasises that machine

learning allows us to use medical images in ways that are more reliable and precise, requir-

ing less time and resources. That can lead to better decision-making, as well as allow for

more people to access affordable image-based care. Some of the mentioned challenges

include the large differences between images and imaging techniques, the difficulty in

accessing enough high-quality images, the costs and infrastructure associated with that

and the resulting geographic inequalities. In addition, the literature emphasizes that is dif-

ficult to understand how machine learning works, as well to assess how valid and reliable
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it is in analysing medical images. Equally difficult is its regulation and integration in

everyday clinical work. The future is expected to bring machine learning models that will

be able to analyse different types of images and other clinical data at once, in ways that are

more transparent and understandable.

Introduction

Amidst the so-called digital health revolution, the Lancet and Financial Times Commission on

governing health futures 2030 called upon decision-makers and experts to consider digital

technologies as modern health determinants [1]. Although the digitalization of healthcare lags

behind other industries, the amount of healthcare data generated electronically is now larger

than ever [2]. Harnessing the power of that data leaves no alternative besides the use of tech-

nology [2]. Technologies such as artificial intelligence (AI) and machine learning (ML) have

rapidly become the epicenter of that revolution, as well as of political, scholarly, and public

attention [2,3].

Much of the hype around AI and ML is rooted in mainstream media, with claims about the

limitless capabilities of data-driven algorithms to achieve disproportionate reach [4–7]. Head-

lines with terms such as “transforming healthcare” and “reshaping medicine” generate unreal-

istic expectations, and inevitably skepticism by healthcare professionals and patients alike

[7,8]. AI is widely used as a broad umbrella term, rooted in computer science and describing

computational methods that allow computers to perform tasks that would traditionally require

human intelligence [9,10]. While often used interchangeably with AI, ML is a subset of AI

which allows computers to self-sufficiently learn to perform a pre-defined task and possibly

improve over time [11].

Medical ML undeniably achieved remarkable progress, particularly in the field of visual pat-

tern recognition [2,12]. ML and its subsets such as deep learning (DL) have been extensively

applied in the field of medical imaging, accounting for about 40% of all ML-related publica-

tions in the health sciences domain over the past five years. With the amount of imaging data

skyrocketing, ML offers efficient ways to use this data for clinical decision-making, ranging

from computer-aided diagnosis to radiomics and image-guided therapy [13]. Considering

these successes, together with the yet-undefined boundaries of the discipline, uncertainty

about the clinical impact of AI is expected [5,7].

It is thus appropriate to ask: what are the prospects of ML to become clinically integrated,

and what impediments can slow down or stifle innovation? To go from proof-of-concept mod-

els built on retrospective data, to ML systems capable of improving healthcare, the nature of

the expected impact of AI in healthcare must be clarified. Moreover, we need to identify per-

ceived bottlenecks and impediments to the successful integration of ML in routine clinical

medical imaging practice. Such information is key to inform policy development around a

clear vision of AI-driven transformation in the medical imaging sector and to foster the emer-

gence of efficient technological and clinical validation standards.

To this aim, this review explores and critically discusses the latest (2019–2021) scientific dis-

course around ML in clinical imaging, highlighting the field’s promise, challenges, ethical and

regulatory implications, and future directions. We focused on the big five chronic conditions,

including cardiovascular diseases, diabetes, stroke, chronic respiratory diseases, and cancer.

The rationale behind this review’s focus is the following. First, we believe that the big five

chronic conditions constitute a significant amount of available scientific output, and thus, pro-

vide a representative picture of current trends. Second, focusing on a selected number of medi-

cal areas ensures that this review’s output remains manageable. Third, these five chronic
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conditions are responsible for a considerable share of healthy years lost, globally. These areas

are therefore some of the most relevant for ML application and impact. To the best of our

knowledge, this is the first systematic approach to exploring the scientific discussion around

ML in image-based care, with a comprehensive outlook encompassing scientific and socio-

technical aspects.

Methods

We conducted a scoping review of narrative reviews and editorials. These two types of publica-

tions typically reflect expert opinion about the latest trends and prospects of any given scien-

tific field. Therefore, they are likely to provide a broad picture of current scientific discourse,

being published in a shorter timeframe not constrained by complex and lengthy methodolo-

gies. Our approach was guided by Arksey and O’Malley’s framework, as well as Levac, Colqu-

houn, and O’Brien’s conceptual extensions [14,15].

Search strategy and selection criteria

Guided by the study’s aims, a specialized librarian developed a comprehensive search strategy

that was applied on six electronic databases, including Medline, Embase, CINAHL, PsycInfo,

Scopus, and Web of Science. Searches were run on August 12, 2020, and updated on December

5, 2021, to cover publications until August 31, 2021. We used multiple variations (and syno-

nyms) of the following search terms: machine learning, artificial intelligence, and medical

imaging. We only included narrative reviews, editorials and commentaries, written in English.

An example of our search strategy (Web of Science) is provided in S1 File. In addition, within

the same time frame, we hand-searched four of the most prominent journals in the field,

including the Journal of Medical Internet Research, npj Digital Medicine, Lancet Digital

Health, and Nature Machine Intelligence.

We conducted title, abstract, and full-text screening in duplicate and independently, guided

by a set of predefined exclusion criteria (see Table 1) and excluding papers if any of the below

criteria were true. Any disagreements were resolved by a third reviewer. For title and abstract

screening, we utilized two web-based systematic reviewing tools, DistillerSR (Evidence Part-

ners) and Rayyan [16,17].

Data extraction

We extracted (single reviewer) data with a predefined data extraction sheet that captured the

study’s aims, including (a) strengths and promises of ML use in clinical imaging, (b) the

Table 1. Selection Criteria.

[1] Addressing ML (and sub-fields, e.g., deep learning) AND Imaging. Studies using the term “AI” interchangeably

with ML are included.

�ML & Imaging should be addressed either in (a) title and/or (b) abstract AND throughout the main body

[2] A narrative review, commentary or editorial

[3] Focused on one (or multiple) of the five chronic conditions:

- Cardiovascular diseases

- Cancer

- Chronic Respiratory diseases

- Diabetes

- Stroke

[4] Not a technical paper (e.g., describing algorithms without conveying a scientific opinion, neither discussing the

broader clinical, social, ethical, or regulatory implications of ML)

[5] Published after the first of August 2019 and before the first of September 2021

[6] Written in English

https://doi.org/10.1371/journal.pdig.0000189.t001
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challenges (including weaknesses, barriers), (c) the potential solutions to these challenges, and

(d) the field’s future trends. We initially tested the form on a sample of 15 studies, which

allowed for further refinement and adjustment. Finally, we validated the data extraction sheet

through multiple rounds of internal reviews.

Data synthesis and reporting

We synthesized our findings following a qualitative and iterative thematic approach, con-

ducted by one reviewer and quality-checked by a second reviewer [15]. After data familiariza-

tion, we generated initial codes inductively. We then clustered emergent themes and

synthesized these in conceptual maps that provided an overall picture of our findings. The

reporting of our results was based on the Preferred Reporting Items Extension for Scoping

Reviews (PRISMA-ScR) statement [18].

Results

Our database searches yielded a total of 8079 references, and our hand searches 23. Of these,

7249 were excluded at the title and abstract screening. The full texts of 673 papers were

assessed, leading to 561 further exclusions. We finally included 112 publications, listed in S2

File. Fig 1 provides the PRISMA flow chart for our screening and study inclusion process

[19,20].

Most included publications (published between August 2019 to August 2021) were narra-

tive reviews (n = 92, 82%), followed by editorials and short opinion-based papers (n = 20,

18%). First authorship was affiliated with institutions in the European region in 48 (43%) pub-

lications, followed by 38 (34%) from North America, 23 (20%) from Asia, and three (3%) from

Australia. Most publications addressed the use of image-based ML in oncology (n = 51, 45%),

followed by cardiology (n = 39, 35%), respiratory diseases (n = 5, 4%), diabetes (n = 3, 3%) and

stroke (n = 3, 3%). Eleven (10%) studies had a multi-disease focus. The following paragraphs

provide our findings around: (1) the strengths of ML use in medical imaging, (2) the challenges

of ML use in medical imaging, with a focus on ethical and regulatory challenges, (3) the poten-

tial solutions to these challenges and (4) future trends.

About 60% (n = 66) of all included publications primarily focused on a single and 40% on

multiple imaging modalities (n = 46). Among these, computed tomography (CT) was the most

commonly addressed (n = 46, 41%), followed by magnetic resonance imaging (MRI) (n = 33,

29%), ultrasound imaging (n = 20, 18%), nuclear imaging (n = 22, 20%), digital pathology

(n = 11, 10%), X-ray imaging (n = 8, 7%), and retinal fundus imaging (n = 3, 3%). About 20%

(n = 22) of included publications primarily focused on the use of ML for classification tasks,

most often employing artificial neural networks, convolutional neural networks and support

vector machines. Among those, most publications focused on cancer (n = 10), followed by car-

diovascular diseases (n = 6), pulmonary diseases (n = 4) and diabetes (n = 2). About 14%

(n = 16) of publications focused solely on prediction and regression, all of them addressing

either cancer (n = 10) or cardiovascular diseases (n = 6). The remaining 66% (n = 74) of publi-

cations simultaneously addressed both classification and prediction.

Strengths/Promises

Almost all publications (n = 110, 98%) reported at least one expected strength of ML applica-

tions in imaging (with two not mentioning any). We identified four closely related but distinct

domains: (a) analytic power, (b) efficiency, (c) clinical impact, and (d) equity. Each of these

contained subdomains, described in Table 2.
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Challenges/Impediments

Most publications (n = 102, 92%) reported at least one challenge of ML applications in medical

imaging (with ten not mentioning any). We distinguish between those challenges mostly

related to imaging, and those generally pertinent to ML. The first are summarized in Table 3,

the second in Table 4. The ML challenges were further divided into three distinct domains,

including (a) structural barriers, (b) validity and performance, and (c) clinical relevance.

The challenge of image heterogeneity was mostly discussed in the context of cancer and car-

diovascular diseases [9,21–29]. This is particularly applicable to imaging modalities with no

standardized pixel values or agreed format, such MRI and digital pathology imaging, or those

with high noise and low resolution, such as intravascular ultrasounds [23,30–32]. In both

cases, interobserver reliability is high and feature extraction challenging [31,33]. Besides the

inevitable heterogeneity arising from the use of different image generation, reconstruction and

preprocessing techniques, there is a large impact by confounders, such as noise due to artifacts

Fig 1. PRISMA flowchart

https://doi.org/10.1371/journal.pdig.0000189.g001
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(e.g. implants in CT images) or motion, which is especially relevant to heart imaging

[22,29,34]. Authors mentioned that heterogeneity increases as the dimensionality, number

and complexity of images increases, making it hard for features to be extracted and used for

ML training purposes [28,35]. Modalities such as echocardiography create large datasets, with

varying operator-depending image quality, yielding high complexity and interrater variability

[36,37]. This is applicable to cardiac imaging in general, which is dynamic and generated while

the heart is in constant motion, posing particular challenges for ML [36,37] Variation, noise,

and complexity ultimately hinder the extraction of information from images, as well as the

determination of ground truth, which is essential during training and validation of ML algo-

rithms [9,27,38].

The next four challenges of image and annotation scarcity, class imbalance, image silos and

cost all fall under the category of missing resources and infrastructures in medical imaging.

Image scarcity was primarily mentioned in the context of neuro-oncology, particularly with

Table 2. Reported (expected) strengths and promises of image-based machine learning.

Domain Subdomain(s) Descriptions

Analytic

power

accuracy ability to classify images as well as experts, ensuring diagnostic and
prognostic accuracy

superiority ability to differentiate images better than an expert, identifying patterns not
always visible to the human eye

objectivity lack of human subjective biases and errors, reducing variability and
improving comparability and reproducibility

big data use ability to handle and analyse large amounts of data and tackle the
challenges of big data

Efficiency time efficiency ability to speed up analysis and clinical translation through automation of
otherwise time-consuming manual tasks

cost efficiency ability to lower direct and indirect costs through time and diagnostic
efficiency, automation, and enhanced workflows

Clinical

impact

workflow

improvements

ability to optimize clinical workflows through integrating, automating,

streamlining, and structuring processes
decision making supporting faster, cheaper, more accurate and higher-level decision making

and clinical interpretations
personalization facilitate personalized care, though higher analytic power, efficiency and

improved clinical workflows
Equity reach, access, and

affordability

promise of increased geographic reach of and better access to affordable
image-based healthcare

https://doi.org/10.1371/journal.pdig.0000189.t002

Table 3. Image-related challenges of machine learning, as reported in the literature.

Domain(s) Descriptions

Image

heterogeneity

high image variation due to non-standardized acquisition, reconstruction and preprocessing
protocols

Image scarcity image scarcity, especially in complex fields such as neuro-oncology and rare diseases
Annotation

scarcity

lack of properly annotated image datasets, and if annotated, subject to high inter-rated
variability

Class imbalance datasets often include too few cases (images indicating disease)
Image silos large volumes of imaging data exist in silos, with low interconnectivity
Cost access to medical images often costly, requiring adequate training and infrastructural support
Subjectivity image selection, segmentation and annotation conducted by human experts and not entirely free

of subjective biases
Inequities / bias most advanced imaging modalities mostly accessible in high-income countries and to high-

income population subgroups, leaving many underrepresented

https://doi.org/10.1371/journal.pdig.0000189.t003
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very heterogeneous tumours like Glioblastoma Multiforme, as well as in the context of nuclear

imaging [21,39]. Authors suggested that where images are abundant (e.g., in areas such as

breast imaging), they often lack adequate annotations, as these are often not required for regu-

lar clinical workflows [40,41]. On the opposite, detailed enough annotations depend on scarce

resources such as time, effort and training [40,41]. Some authors mentioned that a plethora of

images are stored in silos, across different institutions and platforms, making access and inter-

connectivity difficult [42,43]. Within these silos, the number of images from healthy individu-

als is often significantly larger than the number of images indicating disease [41,44]. In

addition, when disease is indicated (e.g. malignant nodule) the occupied region of interest is

often relatively small and hard to detect [24]. This class imbalance makes a dataset less valuable

for ML training and was mentioned in the context of cancer and diabetic retinopathy [41,44].

Primarily mentioned in the context of stroke, images alone are often not powerful enough for

creating clinically useful ML tools. Predicting or classifying conditions like stroke depends on

an array of contextual data, which images alone do not provide [45]. Finally, accessing medical

images to train ML algorithms can be a costly endeavour, requiring large capital costs, skilled

and trained personnel and adequate infrastructures [46]. This is particularly relevant to the

generation and use of digital pathology images, as the digitalization of pathology workflows

and the transition to whole-slide imaging comes with particularly high costs [47].

The two final mentioned challenges are those of subjectivity and inequities. Considering

that images are often selected, segmented, interpreted and annotated by individuals, subjectiv-

ity and bias cannot be entirely ruled out [48]. In addition to that, advanced imaging modalities

are mostly accessible in high-income countries and among higher income population sub-

groups. This generates image datasets that underrepresent low- and middle-income countries

and population subgroups from lower socio-economic strata [49]. A strong example of such

inequities is in the field of cardiac imaging, with newest imaging technologies often being geo-

graphically and socio-demographically limited [49].

Many of the challenges listed in Table 4 have an ethical and/or regulatory dimension.

Authors argue that lack of regulatory frameworks limits fairness and increases the risk of

biased algorithms and widening inequities [4,37,50–54]. Such inequities are further exacer-

bated by ML’s costs (e.g. technology, training, staff), which limit its use to high-resource set-

tings [55]. Liability was mentioned as a further challenge. The main question posed was: in

Table 4. General machine learning challenges, as reported in the literature.

Domain Subdomain(s) Descriptions

Structural barriers assessment challenging validation, evaluation, and prediction of algorithm performance
regulation lacking regulatory and reimbursement frameworks, inhibiting standardization and creating liability uncertainties
resources algorithm development requires extensive time, financial, and human resources

Validity and

performance

generalizability training with small samples and lacking external validation, limiting broader applicability

reliability training with small samples and lack of testing, leading to often overfitted algorithms, uncertainty, and poor performance
bias prone to systematic biases (e.g., learning bias, social biases)
narrowness (task) limited to solving isolated tasks, unlike human intelligence and expertise, which can grasp clinical complexities in full
narrowness (data) most algorithms not capable of integrating multiple data sources simultaneously (e.g., images and health records)

Clinical relevance explainability inherently complex, with data-driven, non-intuitive features, limited understanding of the logic behind algorithms’ decisions
integration lacking clinical integration due to structural barriers, uncertainty, missing training, low explainability and trust
human factors human factors (e.g., cognition, biases, demographics, experience) mostly overlooked in the design and development of ML

algorithms
clinical

performance

most current studies retrospective and “offline”, not providing evidence on the clinical performance of algorithms in
multidimensional and dynamic settings (e.g., real-world conditions)

https://doi.org/10.1371/journal.pdig.0000189.t004
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case of harm (e.g., due to misdiagnosis), who is responsible? The physician, institution, or

algorithm developer? [56–59]. Some argued that ML applications are merely assistive, and

thus liability falls with the treating physician [49,58,60]. Others emphasized that many factors

(e.g., integration of a tool within an institution or how it changes with use) make liability diffi-

cult to assign, further limiting trust and hindering clinical uptake [40,49,61].

The data-dependency of ML algorithms comes with concerns around privacy, security, and

data ownership [25,46,50,59,62,63], including secure storage and sharing of data, and protec-

tion from data breaches and attacks [54,64]. Authors argue that ML’s need for large volumes of

images for training and validation poses security and consent challenges. Individualized con-

sent is rarely feasible, creating the need for alternative solutions, such as opt-out consent or

broad consents, in which individuals consent to multiple secondary uses of their data, balanc-

ing between data availability and privacy [49,54,65]. Even after consent is obtained, the anon-

ymization of images (to which identifiers are often attached) poses a significant processing

burden and risk for re-identification [4]. Finally, the question arises of whether patients should

be given the option to not include ML in their care [58,66].

Authors also argue that low explainability could reduce trust, in turn hindering clinical

acceptance and uptake [9,32,49]. That may potentially affect the patient-physician relationship,

interfering in decision-making and eventually leading to unease or confusion [42,56,67]. An

additional challenge is the perception of competition between ML and human intelligence,

with healthcare providers fearing gradual replacement, although this was often debunked as

unlikely [27,59,68,69]. As overreliance on ML can lead to automation bias, increase mistakes,

cause avoidable harm, and deskill physicians [54], clinicians should view ML tools as systems

to support rather than replace their decision making.

Suggested solutions for identified challenges

Around 80% of publications (n = 81) provided potential solutions to these challenges. Some

argued for facilitating access to high-quality data and existing algorithms, pooling of resources,

and dialogue between stakeholders, while ensuring that privacy, ethics, and commercial inter-

ests are aligned and safeguarded [30,50,70–73]. Others called for more standardization, includ-

ing well-defined imaging protocols and research methods (e.g. image acquisition), as well as

open access and easily available algorithm codes, to enable reproducibility [9,21,51,74,75].

Standardizing how and what information is extracted from images for ML purposes is another

proposed solution [22]. Authors mentioned the Image Biomarker Standardization Initiative,

which provides guidelines on how that is to be achieved, yet these remain to be adjusted and

adapted to the needs of more challenging imaging areas, such as cardiac imaging [9,71]. The

exclusion of image features that are too sensitive to variation has been another suggested solu-

tion towards increased standardization [9]. For generalizability, authors emphasized the need

for more and better-performed external validation, using multicentric imaging datasets

obtained under real-world conditions and representative of the target patient group

[4,9,11,22,28,46,72,76–78]. Transfer learning, crowd-sourced, and open-access image reposito-

ries, and mathematically generated datasets are alternatives if data scarcity cannot be solved

[41,71,79–81].

Beyond enhancing data availability and quality, Radakovich and colleagues highlight the

risk of overfitting, which can be regulated through penalization of very complex models or

image augmenting techniques that increase heterogeneity (e.g. adding image noise) in datasets

with which ML algorithms are trained [80]. A further approach to improving reliability

involves training algorithms away from strict outcomes (e.g. disease is/is not present) towards

outcomes that communicate uncertainty, a third “grey zone” category [82]. Class imbalance
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issues should be addressed with more research into advanced deep learning algorithms that

can deal with a low number of cases (images indicating disease) [41]. Some authors pointed to

regulatory frameworks as essential for ensuring safe and fair ML; yet they lag behind innova-

tion, and are challenged by the continuously evolving nature of ML algorithms [4,49,54,60,83].

Malpractice insurance must be adjusted to the unique liability challenges posed by AI and ML,

complemented by comprehensive risk reduction plans [54].

Acknowledging the black box nature of ML, some authors argued that data science and

advanced statistical and computational methods should be integrated into the education of

medical professionals [58,59,84–87]. Similarly, ML developers should be educated on clinical

needs and challenges, including clinical workflows, so that products avoid unnecessarily delay-

ing clinical practice, overburdening practitioners, or negatively affecting the patient-physician

relationship [50,54]. Engagement was repeatedly mentioned, including meaningful inclusion

of clinicians, patients, and other stakeholders in the development of ML algorithms

[22,39,49,57,88,89]. Finally, some authors argue that ML should be accompanied by under-

standable feedback on why a decision or classification was made [34]. For example, saliency

heat maps visually indicate which parts of an image contribute to an ML decision, confidence

intervals communicate uncertainty, and interactive dashboards help physicians better under-

stand a system [12,24,32,40,42,61,90].

Clinical utility and integration

Some publications included in this review highlighted that clinical integration has not yet been

achieved, and thus the clinical utility of ML is limited [9,29,91]. The authors suggested poten-

tial reasons for this. First, most ML studies fail to compare their algorithms to current gold

standards and instead retain a technical, proof-of-concept focus [9,30]. Others argued that the

performance of most ML algorithms is not assessed based on their impact on disease out-

comes, quality of care, or cost-effectiveness, with most studies adopting rather non-transparent

workflows that do not resemble real-word settings [24,36,38,42,50,76,87,92]. Thus, it remains

unknown how many of these tools perform under complex and unpredictable conditions, or

how they affect the broader planning and provision of care [40,42,59].

To address this, some authors suggest large, multi-center prospective trials and quasi-exper-

imental studies, embedded in clinical settings and focusing on downstream impact, including

patient outcomes, safety, efficacy, and acceptance [36,50,63,78,89,93]. These shall be comple-

mented by economic evaluations, evaluating cost-effectiveness relative to standard care

[40,50]. Furthermore, it is essential to account for the human factor when developing and eval-

uating ML tools, understanding the impact of algorithms on clinical behavior, interactions

between physician and machine, and effects of human traits (e.g., cognition, bias, demograph-

ics, experience) on algorithm performance [53,64,94]. Finally, authors raised concerns that

ML studies are not driven by clinical relevance but rather by the availability of datasets, with

little effort to address the black box nature and bias-related challenges of ML algorithms

[35,42,84].

Future directions

One often discussed future trend was the capability of ML algorithms to combine multiple

data sources [21,71,81,85,86,95–97], including biological and biochemical data, genomic infor-

mation, socio-demographics, life-style risks, linkages to electronic health records, and other

clinical information [9,22,23,34,68]. Multi-data ML (or multi-omic ML) is expected to inform

and improve clinical workflows [21,22,36,42,68,98,99]. Mobile and wearables devices and sen-

sors generate large volumes of yet-untapped health information, and are expected to
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democratize and contribute significantly to multi-omic ML, reducing costs and accessibility

[35,57,63,69,96,100]. Yet, the actual application of multi-omic ML remains limited, with first

efforts being reported in the field of oncology and cardiac imaging (e.g., combining echocar-

diographic and other clinical data for heart failure diagnosis; combining radiological tumour

data with an array of physiological and genomic data) [69,95].

While advocating for multi-data ML, the literature does not provide insights into which

types of image modalities yield highest compatibility with physiological and other clinical data.

In fact, most publications did not focus on a single imaging modality but imaging in general.

This was followed by publications on CT, MRI and echocardiography. On the other hand, the

need to combine images with other data might arise from the area of application, instead of

the imaging modality per se. Using ML for stroke detection is a good example of that. Decision

support in stroke strongly depends on subtle clinical findings and multiple contextual data.

For an ML tool to provide value in stroke care, it must be trained with such rich contextual

and clinical data, which includes images and physiological data [45]. Similally, to fully and bet-

ter understand the pathological mechanisms of certain tumors might require ML models that

take into account an array of data, combined with images [22].

Another desired trend is that of higher standardization of image generation and processing,

as well as multistakeholder engagement [11]. The future should see an emphasis on collabora-

tion between academia, industry, and healthcare institutions to facilitate knowledge exchange

and data sharing around AI and ML [11]. For ML tools to be clinically useful, their future use

must be rooted in clinical need, while clinicians of the future will, in turn, need to understand

the basics of ML and data science [36,45,57,101]. Shared, open-access databases for ML train-

ing and comparison are essential to the field’s future [31,60].

Finally, the development of robust and less labour-intensive ML, shifting from hand-engi-

neered input to algorithms that automatically extract required information, was another major

trend [32,78]. Future ML will be more robust to noise, more capable of learning from smaller

or imbalanced datasets, and designed to shift away from binary (yes, no) outcomes to also

communicate uncertainty [41,82,102].

Discussion

The scientific discourse around the use of ML in medical imaging evolves rapidly. While the

promises and potential of ML in imaging has been prominently defined, the current scientific

discourse highlights multiple remaining challenges. Undoubtedly, medical images differ signif-

icantly from any other type of images. They are highly heterogenous, multidimensional, often

complex and subject to high interrater variability. For some medical fields they are scarce and

difficult to access. Datasets are often incomplete, of low quality, imbalanced, inadequately

labeled or annotated, and contain an abundance of images that are of lower value for ML. Cur-

rent ecosystems are divided in silos, in which large amounts of images are stored, fully sepa-

rated and with no interconnectivity channels, further increasing heterogeneity and access

costs. In the context of ML, all these challenges above present major hurdles, as they limit

access to and the use of images for training and validation purposes.

Many of these challenges identified in the literature go well beyond imaging and broadly

apply to medical ML in general. However, with imaging being the largest subdomain of medi-

cal ML, it can serve as a good indicator for the state of the broader field. Our findings suggest

the line between the strengths and challenges of image-based AI is often blurred, with equity

as one example. While some scholars argue that ML will increase access and affordability of

healthcare, allowing broader geographic reach, others highlight an algorithmic divide, due for

instance to bias in training datasets [49,57,103]. Another example is time efficiency. Despite
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the emphasis on the time-saving nature of ML, actual clinical benefits for physicians and

patients are debatable. Does the time gained allow for less tedious work and more time avail-

able for consultation, or will it rather lead to higher workloads, with a higher number of

patients seen in less time [3]?

Trustworthiness, perceived as a driver of acceptance and adoption, is explicitly and implic-

itly present in the discussion around ML, related to model accuracy, reproducibility, generaliz-

ability, and explainability [56,67,104–106]. Each of these aspects is ultimately linked to trust, in

line with the emphasis placed on trust by policy and regulatory bodies. The European Com-

mission’s Joint Research Centre, for instance, calls for an ethics and trust framework that will

enable the safe use of AI and ML, while the US Department of Health and Human Services

vows to support AI systems that inspire trust and respect privacy and security [107,108]. The

High-level Expert Group on Artificial Intelligence established by the European Commission

has issued Ethical Guidelines for Trustworthy AI [109]. While not specific to health-related

uses of AI, such guidelines emphasize the centrality of trustworthiness. Yet, some scholars

challenge the notion of trust in machines, characterizing hype around ML trustworthiness as

inappropriate and ineffective. Trust is something given voluntarily, with the trustor vulnerable

and reliant on the goodwill of the trustee and cannot be transferred to a relationship between a

human and machine. Instead of developing abstract guidelines that foster trust, it may be

wiser to focus on developing reliable algorithms, underpinned by policy and regulation [110].

Our findings confirm a strong emphasis on explainability. Explainability is a major discus-

sion topic in the field of medical AI and is not limited to AI for medical imaging. This corre-

sponds with accumulating policy-level pressure. The European Union’s General Data

Protection Regulation references transparency requirements and data subjects’ right to “mean-

ingful information about the logic behind automated decisions using their data” [106,111–

113]. Similarly, in its proposed AI Regulation, the European Commission prescribes that high-

risk AI systems (which include clinical-grade ML) “shall be designed and developed in such a

way to ensure that their operation is sufficiently transparent to enable users to interpret the

system’s output and use it appropriately” [113]. Yet, there is wider scepticism about the value

and feasibility of explainability [114,115]. Ghassemi and colleagues refer to explainability as

false hope, as most models are too complex and multi-dimensional to be explained accurately

[106]. While explanation efforts (e.g., heat maps in imaging) may provide broad indications of

how an algorithm operates, their contribution to understanding individual decisions is super-

ficial, and in some instances misleading [106]. A further challenge is that such explainability

methods lack performance indications and add additional risk for error [106]. For example,

heat maps indicate how image regions contribute to an algorithm’s decision, but not whether

these regions are truly clinically relevant [106]. This discussion raises questions over the

requirement of explainability of ML in the clinical setting, with important issues of whether

and in which circumstances AI should be explained to patients remaining unsettled [114,115].

While explainability remains an important topic, greater attention should be paid to the

assessment of ML algorithms, as proposed by other scholars. Most evaluation methods fail to

capture what matters most to patients, i.e., the impact of an algorithm on their care and out-

comes [116,117]. Comprehensive evaluation frameworks are needed to capture the perfor-

mance of an algorithm in the clinical setting, and the care-related actions it triggers [116]. In

the diagnostic testing field, such evaluations are classified as phase 5 and 6 studies, primarily

consisting of randomized controlled trials [118]. Economic evaluations should be an integral

part of such frameworks, assessing cost-effectiveness relative to the standard care [40,50].

Cost-saving is an often-mentioned benefit of ML, with little clinical evidence to support this

[87].
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The predicted evolution of medical ML towards increasingly complex models also warrants

consideration. As more data types are integrated into image recognition tasks, the scope of

medical ML is likely to expand from simple binary classification in a diagnostic context, to

more subtle forms of prognostic assessment and treatment decision support tools. Perfor-

mance evaluation, validation, and clinical implementation will likely require more granular

guidance, improved standards, and best practices. Integrating large-scale omic data may

require ad hoc adaptations to account for clinical and regulatory uncertainties linked to its use.

Broader regulatory implications for medical ML

To keep pace with the rapid progress of ML, we identified an urgent need for comprehensive

regulatory and governance models that go beyond abstract principles [60,65,70,105,119].

Abstract regulatory and ethical principles can provide a false sense of safety, and bear the risk

of being misused to increase trust and acceptability [119]. Concrete guidelines, sector-specific

standards, and clear regulatory requirements are needed to promote responsible innovation in

the medical AI [119]. As suggested by Reddy and colleagues as well as the WHO Ethics and

Governance of Artificial Intelligence for Health Guidance, such frameworks should be com-

prehensive and target equity, transparency, trustworthiness, accountability, and openness

[105,120]. Interdisciplinarity should take center stage, fostering a dialogue between law and

ethics experts, computer scientists, healthcare professionals, and patients [3,119].

The dynamic nature of ML also requires a degree of regulatory flexibility, one that acknowl-

edges uncertainty and embraces change and adaptation [121,122]. In 2019, the US Food and

Drug Administration (FDA) proposed a “Predetermined Change Protocol”, through which

manufacturers can report expected algorithm changes, how these changes will occur, and how

continued safety will be ensured [61,123]. The FDA subsequently published the AI/ML Soft-

ware as a Medical Device Action Plan, vowing to develop the proposed regulatory framework

and contribute to good ML practice [124]. Its Pre-Certification Pilot program, targeting the

regulation and oversight of software-based medical devices, was developed to cover AI/ML-

based products and is an important response to the constantly evolving AI/ML landscape.

Such regulatory approaches are an important paradigm shift towards embracing the

dynamic nature of ML without discounting safety or timely technology access [61]. Inevitably,

such frameworks will depend on a proactive approach to ethical ML development, such as

through wider implementation of ethics by design [119], which ensures that ethical challenges

are acknowledged and addressed at each stage of ML development [119]

Limitations

The findings of the present review should be viewed and interpreted with the following limita-

tions in mind. For the purpose of keeping the volume of eligible studies within a manageable

range, we decided to focus on a fraction of the existing literature, mainly addressing the big

five chronic conditions. This decision was based on the consideration that the big five chronic

conditions cover a large and important fraction of currently existing literature in the field.

Nonetheless, that focus provides an incomplete picture of published work.

Conclusion

Our work systematically and comprehensively captured the latest scientific discourse around

the use of ML in medical imaging across the continuum of care for the big five chronic dis-

eases. We found a broad range of reported strengths and limitations, ethical and regulatory

challenges, as well as pointers for future trends. Medical images, and the ecosystems they are

embedded in, present unique challenges. High heterogeneity, complexity, variations in image
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quality, scarcity of well-annotated datasets and access hurdles all limit their use for ML training

and validation. Among the more broadly applicable ML challenges, we found that the bound-

aries between strengths and limitations are often blurred, placing a strong positive emphasis

on explainability and trustworthiness, with a largely missing discussion about the specific tech-

nical and regulatory challenges surrounding these concepts. The uncertainties around the

effective translation of image-based ML tools from proof-of-concept phases to clinical integra-

tion are equally emphasized. Further efforts are needed to promote this translation, including

multistakeholder engagement that takes into consideration the dynamic and complex ecosys-

tem of technical, ethical, and regulatory constraints. Finally, the future of image-based ML is

expected to shift towards multi-source models, combining imaging with an array of other

data, in a more open access, and explainable manner.
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