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Abstract

Traditional disease surveillance is increasingly being complemented by data from non-tradi-

tional sources like medical claims, electronic health records, and participatory syndromic

data platforms. As non-traditional data are often collected at the individual-level and are con-

venience samples from a population, choices must be made on the aggregation of these

data for epidemiological inference. Our study seeks to understand the influence of spatial

aggregation choice on our understanding of disease spread with a case study of influenza-

like illness in the United States. Using U.S. medical claims data from 2002 to 2009, we

examined the epidemic source location, onset and peak season timing, and epidemic

duration of influenza seasons for data aggregated to the county and state scales. We also

compared spatial autocorrelation and tested the relative magnitude of spatial aggregation

differences between onset and peak measures of disease burden. We found discrepancies

in the inferred epidemic source locations and estimated influenza season onsets and peaks

when comparing county and state-level data. Spatial autocorrelation was detected across

more expansive geographic ranges during the peak season as compared to the early flu

season, and there were greater spatial aggregation differences in early season measures

as well. Epidemiological inferences are more sensitive to spatial scale early on during U.S.

influenza seasons, when there is greater heterogeneity in timing, intensity, and geographic

spread of the epidemics. Users of non-traditional disease surveillance should carefully con-

sider how to extract accurate disease signals from finer-scaled data for early use in disease

outbreaks.

Author summary

Administrative health records, social media streams like Twitter, and participatory

surveillance systems like Influenzanet are increasingly available for infectious disease sur-

veillance, but are often geographically aggregated to preserve data privacy and confidenti-

ality. We explored how an arbitrary choice in the spatial aggregation of non-traditional

disease data sources may influence estimates of disease burden and epidemiological
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understanding of an outbreak. Using influenza-like illness as measured through a medical

claims database as our case study, we find that there is substantial variation in influenza

season timing and magnitude across spatial scales due to which spatial aggregation could

lead to misleading estimates of epidemiological quantities. In particular, we find that epi-

demiological inferences are more sensitive to spatial scale early on during U.S. influenza

seasons, when there is greater heterogeneity in timing, intensity, and geographic spread

of the epidemics. Non-traditional disease surveillance may have distinct advantages in

reporting speed and volume, but care is required when aggregating this data for spatial

epidemiological analysis.

Introduction

Effective disease surveillance systems seek to capture accurate, representative, and timely dis-

ease data in the face of complex logistical challenges and limited human resources [1]. As these

data are typically collected at centralized locations like sentinel healthcare facilities and sum-

marized according to political administrative boundaries, there are natural spatial units that

may be incorporated into the surveillance system design and reporting. Aggregating surveil-

lance data to administrative boundaries is useful because these units are used in the allocation

and distribution of resources and the development of public health guidelines.

While the hope is that spatial and temporal heterogeneity in reported surveillance corre-

sponds to the true underlying disease burden, biases in measurement may contribute to inac-

curate estimates. One potential source of bias when working with aggregated surveillance data,

often overlooked, stems from choices in the design and aggregation of the reporting data

stream itself. In disease ecology, it is well-documented that ecological processes are sensitive to

spatial scale, that differences in scale may explain seemingly-conflicting data, and that disease

distributions are the result of hierarchical processes that occur on different scales [e.g. [2–6]].

Parallel concerns arise in spatial statistics, where the ecological and atomistic fallacies warn

against the extension of statistical conclusions from populations to individuals and vice versa

[e.g. [7–9]]. In epidemiology, statistical methods that account for the hierarchical nature of

spatial data have been developed to improve disease mapping for small area aggregated health

data [e.g. [10, 11]].

Non-traditional disease data such as digital data streams, syndromic disease reporting, and

medical claims were not necessarily generated for the purpose of disease surveillance, but they

have the potential to provide information relevant to disease tracking in a timely and cost-effi-

cient way across large geographic scales [12–17]. Traditional surveillance systems are designed

to meet pre-determined objectives such as routine surveillance or outbreak detection, for a

fixed set of syndromes or diseases in a specific population. Non-traditional data are typically

more voluminous and collected at the individual level, but they often capture a convenience

sample limited by user biases. For example, medical claims data captures only individuals with

health insurance, while Twitter users with a specific geolocation tag may be younger than the

general population in that location. Moreover, the collection of non-traditional disease data is

not often designed with attention to logistical reporting constraints. Consequently, epidemiol-

ogists and policy makers increasingly have new choices in how to aggregate these records spa-

tially and temporally. Noise and random variability may mask epidemiologically-relevant

disease signals in data at finer spatial and temporal scales, and we have limited understanding

about how these choices might affect subsequent inference [18–20].
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Using U.S. medical claims data for influenza-like illness as a case study, we consider the

issue of ‘spatial aggregation choice’ among potentially novel sources of surveillance data. First

we characterize influenza season dynamics from 2002–2003 through 2008–2009 across differ-

ent spatial aggregation scales. We examine defining influenza season features such as the

epidemic source location, onset and peak season timing, and epidemic duration with data

aggregated to the county and state levels. Finally, we compare spatial autocorrelation for bur-

den between the early and peak influenza seasons, and test the relative magnitude of spatial

aggregation differences for seasonal measures related to timing and intensity. This work high-

lights the scenarios under which spatial aggregation choice are important, particularly when

considering the use of alternative surveillance data streams.

Methods

Medical claims data

Weekly visits for influenza-like illness (ILI) and any diagnosis from October 2002 to April

2009 were obtained from a records-level database of U.S. medical claims managed by IMS

Health and processed to the county scale. ILI was defined with International Classification of

Diseases, Ninth Revision (ICD-9) codes for: direct mention of influenza, fever combined with

respiratory symptoms or febrile viral illness, or prescription of oseltamivir, while any diagnosis

visits represent all possible medical diagnoses including ILI (also see [21]). We also obtained

metadata from IMS Health on the percentage of reporting physicians and the estimated effec-

tive physician coverage by visit volume [21]. Over the years in our study period, our medical

claims database represented an average of 24% of visits for any diagnosis from 37% of all health

care providers across 95% of U.S. counties during influenza season months [21].

We also aggregated visits for ILI and any diagnosis to the U.S. state- and region-levels,

where region boundaries were defined by the groupings of states by the U.S. Department of

Health and Human Services.

We performed the same data processing procedure for each county-, state- and region-level

time series of ILI per any diagnosis visits (ILI ratio) that has been described elsewhere [21]. In

brief, ILI intensity is calculated as a detrended ILI ratio during the flu period from November

through March. The flu period is defined as the maximum consecutive period when the ILI

ratio exceeds an epidemic threshold (minimum of at least two weeks).

Defining disease burden and spatial aggregation difference

The study considered five measures of influenza disease burden—two measures of timing

(onset and peak flu season timing), two measures of intensity (onset and peak intensity), and

epidemic duration—at county, state, and region scales. In the below definitions, the intensity
of influenza activity in a given location and time refers to the time series of the detrended ILI

ratio (See details about the intensity calculation at [21]).

We defined onset timing as the number of weeks from week number 40 (first week of Octo-

ber) until the first week in the epidemic period. We defined peak timing as the number of

weeks from week 40 until the week with the maximum epidemic intensity during the epidemic

period. The epidemic duration was the number of weeks where the ILI intensity exceeded the

epidemic threshold.

Proxies for prevalence during the onset flu season and peak flu season were calculated like

relative risks; the onset intensity and peak intensity for a given county, state, or region was

defined as its risk relative to a single, national ‘expected’ onset and peak prevalence, respec-

tively. This ‘expected prevalence,’ calculated for each influenza season, was the county popula-

tion-weighted mean of the associated intensity measure. The onset flu season was identified as
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a 2–3 week flu season period with the greatest exponential growth rate, while the peak flu sea-

son was identified as the week with the maximum ILI intensity.

We defined spatial aggregation difference as the difference between a given influenza disease

burden measure at an aggregated spatial scale (i.e., state or region) and the county spatial scale

(e.g., μstate − μcounty, where μ is a burden measure). As burden measures are normalized, they

may be compared across spatial scales and the scale of the spatial aggregation difference is the

same as that of each individual burden measure. A positive spatial aggregation difference indi-

cates that state- or region-level data over-represented disease burden magnitude (onset and

peak intensity) or had later epidemic timing (onset or peak timing) relative to county mea-

sures. Among timing measures, spatial aggregation error of 20 means that state surveillance

data presented epidemic onset or epidemic peak 20 weeks after county surveillance data.

Among intensity measures, a spatial aggregation error of -1 means that state surveillance data

reported e−1� 0.37 times the risk of county surveillance data.

Inferring probable source location

Using seasonal time series of intensity, we identified the top 10% of locations (at the county or

state scale) with the earliest epidemic onset for each season as potential source locations and

calculated the Euclidean distances between the centroids of potential source locations and all

other locations. We then used the Pearson correlation coefficient (Ho: no difference from zero)

between distance to potential source location and onset week to identify probable county or

state source locations for a given influenza season (higher correlation coefficient means higher

probability of being source location).

Examining spatial dependence in influenza disease burden

We plotted spatial correlograms to examine the global spatial autocorrelation of the four

county-level summary measures of disease burden in the statistical programming language R

with the ncf package [22]. A two-sided permutation test was performed with 500 permuta-

tions to identify correlations that deviated significantly from zero (Ho: no difference from

zero).

Comparing spatial aggregation differences across measures and scales

We tested whether spatial aggregation difference was greater among early season or peak sea-

son measures of disease burden, and whether state- or region-level aggregations generated

greater differences across all measures of disease burden. To compare onset and peak season

measures, we paired the spatial aggregation differences for county-season observations across

all influenza seasons within our study period for 1) onset timing and peak timing and 2) onset

intensity and peak intensity, and tests were performed for both state- and region-level values.

To compare differences among state- or region-level aggregations, we paired state-county and

region-county differences by county observation for each of the four disease burden measures.

We compared spatial aggregation difference with Bayesian intercept models (effectively, a

Bayesian paired t-test) that accounted for county spatial dependence (See SM Methods). The

models were implemented with approximate Bayesian inference in R using Integrated Nested

Laplace Approximations (INLA) with the INLA package (www.r-inla.org) [23, 24].

Positive estimates mean that 1) spatial aggregation differences for peak timing are greater

than those for onset timing, 2) spatial aggregation differences for peak intensity are greater

than those for early intensity, or 3) spatial aggregation differences for region and county are

greater than those for state and county, and vice versa for negative values. If the 95% credible

intervals for β0 fail to overlap with zero, we interpret that there is a statistically significant
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difference between the measures contributing to δi. We used relatively non-informative nor-

mal priors for β0 and log-gamma priors for the precision term τϕ.

Results

We explore the scales of influenza surveillance using county-level U.S. medical claims data rep-

resenting 2.5 billion visits from upwards of 120,000 health care providers each year for influ-

enza seasons from 2002–2003 through 2008–2009. There was evident heterogeneity in the

intensity and timing of ILI activity between counties and their aggregated state and HHS

region scales (Fig 1).

Probable epidemic source locations rarely overlap between county- and

state-level data streams

We inferred the most probable epidemic counties and states independently for each influenza

season. Across all seasons, we found disagreement in the top two most probable source states

and the top 50 most probable source counties (Fig 2). Probable source counties partially over-

lapped with probable source states only in a few influenza seasons and in a small set of loca-

tions: four counties representing 41% of the population of Rhode Island overlapped in the

2004–2005 season; nine counties in California (33% of state population) and seven counties in

Nevada (21% of state population) overlapped in the 2005–2006 season; eight counties in Ala-

bama (7% of state population) and 28 counties in Georgia (6% of state population) overlapped

in the 2006–2007 season.

A majority of county data streams achieve onset and peak timing

milestones before state data streams

To elucidate the discrepancy between county and state epidemic source locations, we com-

pared the influenza season onset and peak week between county and state scales. While ILI

spread was sometimes very rapid, with influenza season onset striking almost all counties

within a given state at once, these patterns were not consistent across seasons or states (Fig O

in S1 Text).

State-level flu season onset and peak timing tended to occur after the majority of counties

in the state had already achieved those milestones. Across the 2002–2003 through 2008–2009

influenza seasons, a mean of 62% and 70% of state populations had already experienced the

onset and peak of the influenza season by the times when the aggregated state-level data

achieved its influenza season onset and peak, respectively (Fig 3). County population size did

not appear to have an association with onset or peak timing (Fig A-N in S1 Text).

Through visual examination of correlograms, we found that spatial autocorrelation

remained present at greater distances for peak measures than early season measures of disease

burden, suggesting that seasonal dynamics become more spatially synchronized as the influ-

enza season progresses (Fig 4). Autocorrelation declined to zero at 1177 km and 1359 km for

onset and peak timing and at 809 km and 1140 km for onset and peak intensity, respectively.

While county-level epidemics had greater heterogeneity in epidemic duration, often with

longer right-skewed tails, epidemic durations were similar across spatial scales (Fig P in S1

Text). There was greater variability in epidemic duration between influenza seasons than

between different spatial scales. Only in the HHS region centered in New York did the distri-

butions in epidemic duration appear to be shifted. However, this region may be particularly

subject to discrepancies related to spatial scales because it represents the smallest geographic

area in the study region.
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Fig 1. ILI intensity by influenza season from 2002–2003 through 2008–2009 across 10 HHS regions. ILI intensity is displayed for

all available counties and states in a given HHS region in different colors (grey for counties, black for states, and red for region). Some

regions (such as Region 1) have fewer counties than others so heterogeneity at the county level may be less apparent.

https://doi.org/10.1371/journal.pdig.0000039.g001
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County-level maps of burden and spatial aggregation difference for an example influenza

season for onset timing, peak timing, onset intensity, and peak are displayed in the supplement

(Fig Q in S1 Text).

Spatial aggregation differences are more prevalent at epidemic onset than

at peak flu season

We compared spatial aggregation differences between onset and peak timing and between

onset and peak intensity using a Bayesian procedure that may be viewed as a paired t-test for

spatially correlated data. The estimates indicate that spatial aggregation differences between

state and county measures were greater for onset timing than peak timing and for onset inten-

sity than peak intensity (Table 1). This means that there was greater heterogeneity in the tim-

ing and intensity of early season measures than in the peak season measures. Region-county

differences were also greater for onset intensity than peak intensity (Table A in S1 Text).

Region-county differences were larger than state-county ones for timing measures, while

state-county differences were larger than region-county ones for measures of disease intensity

(Table B in S1 Text).

Discussion

Administrative health records, social media streams like Twitter, and participatory surveillance

systems like Influenzanet, Flu Near You, and Facebook COVID-19 Symptom Survey are

increasingly available for disease surveillance, but use of these data for epidemiological analysis

is subject to ‘spatial aggregation choice’ [15, 17]. In this study, we examined how an arbitrary

choice in the spatial aggregation of non-traditional disease data sources may influence esti-

mates of disease burden and epidemiological understanding of an outbreak. First, we describe

the dynamics and burden of influenza-like illness across the United States from 2002–2003

through 2008–2009 with medical claims data across the county, state, and HHS region spatial

scales. We observed substantial heterogeneity in influenza season timing and magnitude across

spatial scales and found that analyses performed with county-level and state-level data could

provide contradictory results regarding inference on the most probable epidemic source

Fig 2. Most probable influenza season U.S. source locations at state and county scales across all influenza seasons. We present the two states (pink)

and 50 counties (red) that are the most probable source locations for each influenza season from 2002–2003 through 2008–2009. Probable source

counties were partially contained within probable source states only in the 2004–2005, 2005–2006, and 2006–2007 influenza seasons. When inferring

probable source locations, disagreement between county- and state-level analyses was common. The map base layer is from the US Census Bureau.

https://doi.org/10.1371/journal.pdig.0000039.g002
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Fig 3. Comparison of county and state influenza season onset and peak timing. We present the cumulative percentage of county populations

that have experienced (A) influenza season onset and (B) the influenza season peak by the time that these milestones have been achieved by the

aggregated state-level data. For each state abbreviation (rows), the point represents the mean across influenza seasons from 2002–2003 through

2008–2009 while the horizontal line indicates the range of one standard deviation on either side of the mean. The red vertical lines indicate the

mean of the mean values across states.

https://doi.org/10.1371/journal.pdig.0000039.g003
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location. State-level timing measures provided delayed information about the onset and peak

season timings, and timing-related measures had greater spatial heterogeneity in disease bur-

den and spatial aggregation error than did intensity-related measures.

We initially hypothesized that influenza epidemics aggregated to larger spatial scales would

have longer epidemic duration than county-level data because a state-level or region-level epi-

demic should represent the set of all lower-level epidemics, which are staggered in time. Dur-

ing our study period, however, state-level onset and peak season timings occurred only after

60–70% of the state’s population had experienced those milestones (as reported by county-

level data), and epidemic duration was similar across spatial scales. Our analysis suggests that

spatial aggregation makes influenza season outbreaks less sensitive to onset and peak timing

detection. The identification of source locations was also highly scale-dependent; probable

source counties were only occasionally located within the probable source state, and when

there was overlap, those counties represented only a small proportion of the state population.

We also highlight that seasons with more geographically synchronized flu epidemics, which

can occur in antigenically novel or severe seasons [25, 26], are not any more likely to have

overlap in source locations across spatial scales. We thus hypothesize that source locations are

independent of peak dynamics.

Fig 4. Spatial correlograms for timing and intensity measures across all influenza seasons. We present spatial autocorrelation among counties

within specified distance classes for timing measures (left) and intensity measures (right). Early season measures (onset timing and early season

intensity) are represented in blue and peak season measures (peak timing and intensity) are in orange. Points are displayed only if the p-value for a two-

sided permutation test to evaluate correlation is less than 0.01. Colored vertical lines indicate the mean distance where county measures are no more

similar than that expected by chance in a given region.

https://doi.org/10.1371/journal.pdig.0000039.g004

Table 1. Comparison of state-county spatial aggregation differences between onset and peak season measures.

Negative values mean that spatial aggregation estimates for peak measures were smaller than spatial aggregation differ-

ences for onset measures. Bolded values denote mean estimates that we interpret to have statistical significance; that is,

the 95% credible intervals did not overlap with zero.

State-County Comparison Estimate (95%CI)

Peak-Onset Timing -0.23 (-0.29, -0.16)

Peak-Early Intensity -0.31 (-0.33, -0.30)

https://doi.org/10.1371/journal.pdig.0000039.t001
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These results suggest that spatially-aggregated data are less reliable in representing early

season dynamics. This may be because the timing and intensity of ILI activity appears to be

more heterogeneous in the early season than the peak season [27], and heterogeneity is associ-

ated with greater spatial aggregation differences (Fig T-W in S1 Text). Counties were spatially

autocorrelated at greater distances for both peak timing and peak intensity as compared to

onset timing and early season intensity, respectively (Fig 4), and spatial aggregation differ-

ences were smaller for peak measures than early season measures (Table 1 and Table A in S1

Text). Two factors may contribute to these differences between early and peak season: 1)

there are less reliable disease signals during the early flu season, and 2) observations in epi-

demic onset are asynchronized, but they become more spatially synchronized as the season

progresses. Together, these results bolster the hypothesis that seasonal influenza is seeded to

many locations and spread primarily through local transmission [28], while prior work sug-

gests that school-holiday-associated contact reductions may play a role in synchronizing

influenza outbreaks [29].

Our study suggests that spatial aggregation choice is most critical in early influenza season

surveillance (i.e., identifying source locations and early season inference), particularly for assess-

ing season onset (Fig R-S in S1 Text). Delayed detection of season onset and inaccurate estima-

tion of early season intensity may lessen agility of policymakers and healthcare facilities to

anticipate staffing and hospital supply needs as they prepare for the peak influenza season activ-

ity. Nevertheless, further work should be done to verify the generalizability of our results to dif-

ferent disease syndromes and data sources. Our conclusions about when and how spatial

aggregation choice is most important may be conflated with other data reporting processes,

such as the expanding geographic coverage of our medical claims data over time, the distribu-

tion of reporting healthcare facilities, variability in reporting quality (driven by differences in

healthcare and surveillance resources), clustered use of certain ICD-9 diagnosis codes (driven

by hospital practices or knowledge-sharing between physicians, for example), and healthcare

access, as well as the stochastic variation in influenza season dynamics itself. In addition, changes

of mobility over time (e.g. due to family or touristic travels during the winter holidays) associ-

ated with changes of contact patterns (e.g. due to closure of schools during holidays) are known

to contribute to influenza diffusion [29, 30] and may therefore affect the spatial aggregation.

As big data becomes more prevalent and fine-scale targeting and measurement becomes

the norm in infectious disease surveillance, spatial aggregation and zoning biases, discrepan-

cies between statistical inference when the boundaries of contiguous spatial units are re-

arranged [31, 32], may become regular concerns for epidemiologists. This case study has a

direct link to the modifiable areal unit problem (MAUP), a phenomenon which describes how

spatial aggregation of data can yield different statistical results and highlights the need for sen-

sitivity analyses examining spatial scale [32]. While we sought to describe differences in influ-

enza season features across spatial scales, other recent work pursues the identification of

epidemiology-driven geographic regions as a potential solution to this problem [25]. At this

juncture, where traditional, administrative, and digital data may be used in disease surveil-

lance, it is critical to develop general methodologies that can extract useful disease signals from

fine-scaled data early on in an outbreak [16].

Supporting information

S1 Text. Detailed descriptions about data processing, methodological choices, sensitivity

analyses, and supporting evidence. The Supporting Information includes Table A and B and

Figures A to W.

(PDF)
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