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Abstract

Modern predictive models require large amounts of data for training and evaluation,

absence of which may result in models that are specific to certain locations, populations in

them and clinical practices. Yet, best practices for clinical risk prediction models have not

yet considered such challenges to generalizability. Here we ask whether population- and

group-level performance of mortality prediction models vary significantly when applied to

hospitals or geographies different from the ones in which they are developed. Further, what

characteristics of the datasets explain the performance variation? In this multi-center cross-

sectional study, we analyzed electronic health records from 179 hospitals across the US

with 70,126 hospitalizations from 2014 to 2015. Generalization gap, defined as difference

between model performance metrics across hospitals, is computed for area under the

receiver operating characteristic curve (AUC) and calibration slope. To assess model perfor-

mance by the race variable, we report differences in false negative rates across groups.

Data were also analyzed using a causal discovery algorithm “Fast Causal Inference” that

infers paths of causal influence while identifying potential influences associated with unmea-

sured variables. When transferring models across hospitals, AUC at the test hospital ranged

from 0.777 to 0.832 (1st-3rd quartile or IQR; median 0.801); calibration slope from 0.725 to

0.983 (IQR; median 0.853); and disparity in false negative rates from 0.046 to 0.168 (IQR;

median 0.092). Distribution of all variable types (demography, vitals, and labs) differed sig-

nificantly across hospitals and regions. The race variable also mediated differences in the

relationship between clinical variables and mortality, by hospital/region. In conclusion,

group-level performance should be assessed during generalizability checks to identify

potential harms to the groups. Moreover, for developing methods to improve model perfor-

mance in new environments, a better understanding and documentation of provenance of

data and health processes are needed to identify and mitigate sources of variation.
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Author summary

With the growing use of predictive models in clinical care, it is imperative to assess failure

modes of predictive models across regions and different populations. In this retrospective

cross-sectional study based on a multi-center critical care database, we find that mortality

risk prediction models developed in one hospital or geographic region exhibited lack of

generalizability to different hospitals or regions. Moreover, distribution of clinical (vitals,

labs and surgery) variables significantly varied across hospitals and regions. Based on a

causal discovery analysis, we postulate that lack of generalizability results from dataset

shifts in race and clinical variables across hospitals or regions. Further, we find that the

race variable commonly mediated changes in clinical variable shifts. Findings demonstrate

evidence that predictive models can exhibit disparities in performance across racial

groups even while performing well in terms of average population-wide metrics. There-

fore, assessment of sub-group-level performance should be recommended as part of

model evaluation guidelines. Beyond algorithmic fairness metrics, an understanding of

data generating processes for sub-groups is needed to identify and mitigate sources of var-

iation, and to decide whether to use a risk prediction model in new environments.

Introduction

Validation of predictive models on intended populations is a critical prerequisite to their appli-

cation in making individual-level care decisions since a miscalibrated or inaccurate model

may lead to patient harm or waste limited care resources [1]. Models can be validated either

on the same population as used in the development cohort, named internal validity, or on a

different yet related population, named external validity or generalizability (or sometimes

transportability) [2]. The TRIPOD (Transparent Reporting of a multivariable prediction

model for Individual Prognosis Or Diagnosis) Statement strongly recommends assessing

external validity of published predictive models in multiple ways including testing on data

from a different geography, demography, time period, or practice setting [3]. However, the

guidelines do not specify appropriate external validity parameters on any of the above factors.

At the same time, recent studies in the computer science and biomedical informatics literature

have indicated that sub-group performance of clinical risk prediction models by race or sex

can vary dramatically [4,5], and clinical behavior can guide predictive performance [6]. Within

the statistics literature are several methods for computing minimum sample size and other

best practices for assessing external validity of clinical risk prediction models [7–9]. However,

the assessment of sub-group-level performance and data-shifts are not explicitly considered in

such guidance [10]. Moreover, recent analyses have shown that clinical prediction models are

largely being developed in a limited set of geographies, bringing significant concern regarding

generalizability of models to broader patient populations [11]. Amidst such rising challenges,

an understanding of how differences among population and clinical data impact external gen-

eralizability of clinical risk prediction models is imperative.

When a model fails to generalize for specific patient groups (such as racial or gender identi-

ties), using it to guide clinical decisions can lead to disparate impact on such groups. This

raises questions of equity and fairness in the use of clinical risk prediction models, for which

performance on diverse groups has been repeatedly lacking [12–14]. Predictive discrimination

quantifies how well a model can separate individuals with and without the outcome of interest

(we study mortality prediction here). Calibration quantifies how well the predicted probabili-

ties match with the observed outcomes. These measures can be used to check for aggregate
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model performance across a study sample or within groups, but do not illuminate variation

across groups. Hence, in assessment of generalizability, we add another set of measures to our

analyses which we refer to as “fairness” metrics, following the algorithmic fairness literature

[15–17]. Such performance checks are important, especially given the evidence on racial bias

in medical decision-making tools [4,13,14].

The primary objective of this study is to evaluate the external validity of predictive models

for clinical decision making across hospitals and geographies in terms of the metrics–predic-

tive discrimination (area under the receiver operating characteristic curve), calibration (cali-

bration slope) [18], and algorithmic fairness (disparity in false negative rates and disparity in

calibration slopes). The secondary objective is to examine the possible reasons for performance

changes via shifts in the distributions of different types of variables and their interactions. We

focus on risk prediction models for in-hospital mortality in ICUs. Our choice of evaluation

metrics are guided by the use of such models for making patient-level care decisions. We note

that similar models (e.g., SAPS and APACHE scores) [19,20] are widely-used for other applica-

tions as well such as assessing quality-of-care, resource utilization, or risk-adjustment for esti-

mating healthcare costs [19–21], which are not the focus of this study. Recently, prediction

models for in-hospital mortality have been prospectively validated for potential use [22], or in

case of sepsis, have even been integrated into the clinical workflow [23]. With access to large

datasets through electronic health records, new risk prediction models leveraging machine

learning approaches have been proposed, which provide considerable accuracy gains [24].

Being flexible, such approaches might overfit to the patterns in a particular dataset, thus, rais-

ing concerns for their generalization to newer environments [25]. We use the eICU dataset

[26] as a test bed for our analyses. Past studies have employed the dataset for evaluating mor-

tality prediction models [27,28]. As the dataset was collected from multiple hospitals across the

US, it allows us, in a limited way, to test external validity across hospitals, diverse geographies,

and populations.

Materials and methods

Analyses are based on data obtained from the publicly-available eICU Collaborative Research

Database [26], designed to aid remote care of critically-ill patients in a telehealth ICU program.

The database is composed of a stratified random sample of ICU stays from hospitals in the tele-

health program where the sample is selected such that the distribution of the number of unique

patient-stays across hospitals is maintained [26]. Data on 200,859 distinct ICU stays of 139,367

patients with multiple visits across 208 hospitals in the US between 2014 and 2015 are

included. We followed the Strengthening the Reporting of Observational Studies in Epidemi-

ology (STROBE) reporting guideline [29].

Data preprocessing

We follow the feature extraction and exclusion procedures including the exclusion criteria

used by Johnson et al [27] which removes patient stays conforming to APACHE IV exclusion

criteria [20] and removes all non-ICU stays. APACHE IV criteria excludes patients admitted

for burns, in-hospital readmissions, patients without a recorded diagnosis after 24 hours of

ICU admission, and some transplant patients [26]. Only patients 16 years or above are

included. Age of patients above 89 years (which is obfuscated to adhere to HIPAA provisions)

is coded as 90. After pre-processing, the dataset consists of 70,126 stays from 179 hospitals. For

analyses, data is grouped at two levels–by individual hospitals and by U.S. geographic regions

(Northeast, South, Midwest, West) [30]. Hospital-level analyses are restricted to the top 10

hospitals with the most stays, all of which have at least 1631 stays, to ensure enough examples
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for model training and evaluation. Data is split into ten separate datasets using a hospital iden-

tifier for hospital-specific analyses and into four separate datasets using a region identifier for

region-specific analyses. The outcome label is in-hospital mortality (binary). Mortality rates

differed in the range of 3.9%-9.3% (1st-3rd quartile) across hospitals. Summary statistics by

hospital and region are included in Table A and Table B in S1 Text.

Mortality prediction model

Features from the SAPS II risk scoring model [19] from the first 24 hours of the patient-stay

starting from ICU admission were extracted and are summarized in Table C in S1 Text. These

include 12 physiological measurements (vitals and labs), age, and an indicator for whether the

stay was for an elective surgery. For features with multiple measurements, their worst values

determined using the SAPS II scoring sheet (Table 3 in Le Gall et al [19]) are extracted. For

example, for Glasgow Coma Score, we take the minimum value among the measurements. As

previously employed for mortality prediction [27], we use logistic regression with ℓ2 regulari-

zation using the implementation in scikit-learn v0.22.2 package with default hyperparameters

[31]. Missing values in features are imputed with mean values computed across the corre-

sponding columns of the full dataset. We experimented with other imputation methods as

well, specifically imputation with mean or median across the train datasets and single imputa-

tion with a decision tree [32], however, the conclusions did not change. Features are then stan-

dardized to zero mean and unit variance using statistics from the train datasets. As sample size

used in training models can affect generalizability, we control for this factor by fixing the num-

ber of samples used for training and testing. We use 1631 (or 5000) samples from each hospital

(or region) while training and testing models. For model development, each dataset (for a hos-

pital or region) is randomly split with the training set comprising 90% of samples and the vali-

dation set comprising the remaining 10%. The test set comprises all samples from the hospital

(or region) different from the one included in the training set.

Statistical analysis

Performance metrics. Discrimination ability of the models is assessed using area under

the receiver operating characteristic curve (AUC). For binary outcomes, calibration slope (CS)

is computed as the slope of the regression fit between true outcomes and logits of the predicted

mortality, with a logit link function. A perfectly calibrated model has a CS of 1. A value lower

than 1 indicates that the risk estimates are extreme, i.e. overestimation for high risk patients

and underestimation for low risk patients, and suggests overfitting of the model [33]. Hence, a

value close to 1 is desirable. In addition to reporting AUC and CS computed on the test sets,

we also report how much the metrics differ from their values computed on the validation set.

This difference, known as the generalization gap, provides a quantitative measure of generali-

zation performance (e.g. Jiang et al [34]). If this difference is high, i.e. the test metrics are

worse than the train metrics, the model is said to lack generalizability. The allowable difference

between test and train depends on the application context. Studies typically report confidence

intervals around the difference and/or the percentage change relative to the train performance

[35]. To measure fairness of model predictions, we use the racial/ethnic attributes to form two

groups–African American, Hispanic, and Asian as one group and the rest as another. These

will be referred to as minority and majority groups. Note that the racial/ethnic attributes are

used only for the purposes of fairness analysis, these are not part of the model building process.

We acknowledge that aggregating multiple groups does not represent an exposition of which

groups are advantaged in the models. Based on the available dataset sizes, this approach serves

to illustrate differences that would ideally be unpacked in detail in future work addressing
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such issues. Disparity in false negative rates (DisparityFNR), and disparity in calibration slope

(DisparityCS) are computed as the difference between the respective metric’s value for the

minority and the majority group. Differences in these two metrics have been employed in

recent studies for bias analysis [16,17]. FNR quantifies the rate at which patients with the

observed outcome of death were misclassified. Thus, a high FNR for the score may lead to an

increase in undertreatment, and high DisparityFNR (in absolute value) highlights large differ-

ences in such undertreatment across groups. For the prediction threshold for FNR we use the

mortality rate at the test hospital (assuming it is known beforehand). This threshold can be

chosen in a more principled way, for example, based on decision-curve analysis [18], which

will depend on the application context. We further acknowledge that there are myriad ways to

define fairness that will depend on the context of the risk prediction’s use and inputs from

stakeholders [36].

Dataset differences. To address our secondary objective of studying external validity-spe-

cific performance changes, we test for dataset shifts across hospitals and geographies (i.e.

whether the distributions of two datasets differ), and use causal graph discovery to explore the

reasons for these differences. Dataset shifts are measured using squared maximum mean dis-

crepancy (MMD2) [37]. We perform the two-sample tests under the null hypothesis that the

distributions are the same and threshold the resulting p-values at the significance level of 0.05.

Details of the MMD2 metric and the hypothesis test are included in Method A in S1 Text. To

explain the shifts we leverage the recently introduced framework of Joint Causal Inference [38]

which allows constructing a single graphical representation of how variables relate to each

other, in the form of a causal graph. We use the Fast Causal Inference (FCI) algorithm [39] for

constructing the causal graph as it is methodologically well-developed and requires fewer

assumptions on the data generating process as it allows for the presence of unobserved vari-

ables affecting the observed variables in the data (i.e. unobserved confounders). We also

include race as an indicator in the datasets, before running FCI, to study the causes of unfair-

ness with respect to the race variable. Details of the causal modeling are included in Method B

in S1 Text. Note that we use causal graphs as a compact representation of (conditional) inde-

pendencies in the datasets. These are not meant to make statements about the causal effect of

treatments on physiological variables, for which randomized controlled trials and other meth-

ods may be used to gather better evidence.

The metrics of interest–AUC, CS, DisparityFNR, DisparityCS, p-value, and MMD2 –are

averaged over 100 random subsamples of the datasets (i.e. resampling without replacement).

While aggregating across hospitals (or regions), we report the median, 1st, and 3rd quartiles

across all train-test set pairs which includes the 100 random subsamples in each pair.

Results

Fig 1 demonstrates the highly varied external validity of models across hospitals based on

AUC, CS, generalization gap in AUC and in CS, DisparityFNR, and DisparityCS. Across all

train-test hospital pairs, median AUC is 0.801 with 1st-3rd quartile range (IQR) as 0.778 to

0.832, and CS is 0.853 (IQR 0.725 to 0.983). AUCs are lower than the typical values for mortal-

ity risk prediction models of around 0.86 [19,22], although AUCs in the same range (around

0.8) have been observed in other studies (albeit in different populations) and were considered

acceptable [40–42]. CS of around 0.8, as observed in our case, is considered to indicate overfit-

ting [7]. Transferring a model trained on hospital ID 73, which is the hospital with the most

samples, to other hospitals results in a median gap in AUC of -0.087 (IQR -0.134 to -0.046)

and a median gap in CS of -0.312 (IQR -0.502 to -0.128). In aggregate, we observe a decline in

the performance on the test hospitals relative to that on the train hospitals (Fig 1A). Across all
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train-test hospital pairs, the median generalization gap in AUC is -0.018 (IQR -0.065 to 0.032)

and the median generalization gap in CS is -0.074 (IQR -0.279 to 0.121). Fig 1B shows that the

majority of models have CS of less than 1, indicating consistent miscalibration of mortality

risk at test hospitals. This conforms with the typical observation of good discriminative power

but poor calibration of SAPS II models [40,42–44]. The median values of AUC and CS are neg-

ative, indicating that both of them decrease in majority of the cases upon transfer. For compar-

ison, the generalization gap in AUC for the SAPS II score in the original study by Le Gall et al

[19] was -0.02 (AUC decreased to 0.86 in validation from 0.88 in training data), which is the

same as the median gap here. Thus, for more than half of the hospital pairs the AUC drop is

worse than the acceptable amount found in the original SAPS II study. Percentage changes in

AUC and CS from train to test set, reported in Table D in S1 Text also indicate substantial

drop in performance (in the range of -2.5% to -31.5% in AUC and -15.9% to -45.4% in CS). In

some cases, for example for hospital ID 252, we observe an improvement in AUC (fourth row

from bottom, Fig 1D). With regard to fairness metrics, DisparityFNR (absolute value) has

median 0.093 (IQR 0.046 to 0.168), i.e. false negative rates across the racial groups differ by

4.6% to 16.8%. DisparityCS, i.e. the absolute value of difference in calibration across racial

groups, is large as well (median 0.159; IQR 0.076 to 0.293). Considering that the ideal Dispari-

tyCS is 0, when CS is 1 for both the groups, the observed DisparityCS of 0.159 is large. There

Fig 1. Generalization of performance metrics across individual hospitals. Results of transferring models across top 10 hospitals by number of stays. Models are trained

and tested on a fixed number of samples (1631, the least in any of the 10 hospitals) from each hospital. Results are averaged over 100 random subsamples for each of the

10×10 train-test hospital pairs. All 6 metrics show large variability when transferring models across hospitals. Abbreviations: AUC, area under ROC curve; CS, calibration

slope; FNR, false negative rate.

https://doi.org/10.1371/journal.pdig.0000023.g001
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are both positive and negative values in the disparity metrics (Fig 1C and 1F), i.e. models are

unfair to the minority groups for some pairs and vice versa for others. Note that disparity met-

rics for hospital ID 338 are considerably different from others (third column in Fig 1C and 1F)

due to the skewed race distribution with only 74 (3.2%) samples from the minority groups

(Table A in S1 Text). We observe that the variation across hospitals in fairness metrics (Dispar-

ityFNR, and DisparityCS) is not captured by the variation in discrimination and calibration

metrics (AUC and CS). Thus, fairness properties of the models are not elucidated by the stan-

dard metrics and should be audited separately.

Next, given concerns about the development of machine learning models in a limited set of

geographies [11], we pool hospitals by geographic region, and validate models trained in one

region and tested on another (Fig 2). Performance in terms of AUC and CS across regions

improves as a result of pooling hospital data. Overall, AUC varies in a small range (median

0.804; IQR 0.795 to 0.813) as does CS (median 0.968; IQR 0.904 to 1.018). The same can be

observed through generalization gaps in AUC and CS which are smaller–median generaliza-

tion gap in AUC is -0.001 (IQR -0.017 to 0.016) and median generalization gap in CS is -0.008

(IQR -0.081 to 0.075). However, such pooling does not alleviate fairness metric disparities.

DisparityFNR (absolute value) has a median value of 0.040 (IQR 0.018 to 0.074). This trans-

lates to, for example, a disparity between minority and majority groups of 6.36% (95% CI

Fig 2. Generalization of performance metrics across US geographic regions. Results of transferring models after pooling hospitals into 4 regions (northeast, south,

midwest, west). Models are trained and tested on 5000 samples from each region. Results are averaged over 100 random subsamples for each of the 4×4 train-test hospital

pairs. DisparityFNR and DisparityCS show large variability when transferring models across regions. Abbreviations: AUC, area under ROC curve; CS, calibration slope;

FNR, false negative rate.

https://doi.org/10.1371/journal.pdig.0000023.g002
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-7.66% to 17.42%) and 8.06% (95% CI -3.81% to 19.74%) when transferring models from Mid-

west to West and Northeast to West respectively (though CIs are large, both values are greater

than 0%; one-sided one-sample t-test, p = 10−5). DisparityCS (absolute value) is still high with

a median value of 0.104 (IQR 0.050 to 0.167). For example, transferring models from South to

Northeast (the region with the least minority population size) has a high DisparityCS (median

0.108; IQR -0.015 to 0.216). Percentage change in the test set metrics relative to the train set is

reported in Table E in S1 Text which shows significant changes in DisparityFNR (ranging

from -33% to 65%) and DisparityCS (ranging from -52% to 67%). Apart from geography, dif-

ferences across hospitals can also be due to differences in patient load and available resources.

In Figure B in S1 Text we include results for more fine-grained pooling of hospitals based on

their number of beds, teaching status, and region where we again find consistent lack of gener-

alizability in fairness metrics.

To investigate reasons for these performance differences across hospitals and regions, we

first consider whether the corresponding datasets differ systematically. Fig 3 shows results

from statistical tests for dataset shifts across hospitals and regions. Shifts across all pairs of hos-

pitals are significant. Some hospitals are considerably different from others like hospital ID 73

in the first column of Fig 3B, which has significantly lower mortality rate than the other hospi-

tals (Table A in S1 Text).

Fig 3. Statistical tests for dataset shifts. Results for two-sample tests with and without pooling of hospitals by region. Test results are plotted in (a,c) and test statistics

are plotted in (b,d) to examine the test results in more detail. Since the order of hospitals considered in the two-sample test does not change the test statistic, we plot only

the lower halves of the matrices. Results are averaged over 100 random subsamples. Feature distribution changes across all hospital and region pairs.

https://doi.org/10.1371/journal.pdig.0000023.g003
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Finally, we study explanations for the observed shifts in Fig 3A via individual features. The

discovered causal graph is included in Figure C in S1 Text which shows the estimated causal

relationships among clinical variables, and which of these variables shift in distribution based

on hospital, geography and other factors (i.e. which variables have a direct arrow from the

indicators like hospital or region). Fig 4 summarizes the shifts from the causal graph. From Fig

4, we note that the distribution of all fourteen features and the outcome are affected either

directly or indirectly by the hospital indicator. However, restricting to direct effects of hospital

(first row in Fig 4), we observe that shifts are explained by few of the features–demography

(age and race), vitals (3 out of 6), and labs (3 out of 6). Not all vitals and labs change directly as

a result of a change in hospitals; changes in 3 of the vitals and 3 of the labs are mediated

through changes in other features. We attempt to further understand these changes across hos-

pitals by including hospital-level contextual information, namely, their region, size (number of

beds), and teaching status. We observe that there exists common features that explain shifts

across the three attributes (different rows in Fig 4). Thus, some of the variation across hospitals

is explained through its region, size, and teaching status. But, notably, the three attributes do

not explain all variation among hospitals and more contextual information is required. For the

fairness analysis, we observe the direct effects of the race variable (last row in Fig 4). There are

direct effects from the race variable to most vitals (4 out of 6), labs (4 out of 6), and indicator

for elective surgery. These direct effects support past observations made on racial disparities,

e.g. in access to specialized care (race! elective surgery) [45] and in blood pressure measure-

ments (race! sysbp or systolic blood pressure) [46]. Out of the 9 features that are directly

affected by the race variable, 4 also vary across the hospitals. This suggests that the distribution

of clinical variables for the racial groups differs as we go from one hospital to another. As a

result, the feature-outcome relationships learnt in one hospital will not be suitable in another,

Fig 4. Shifts in variable distributions due to hospital, region, and other factors based on mortality causal graph. Each row represents (in red) the features which

explain the shifts across each of the indicators labeling the row, i.e. the features with an edge from the indicator in the causal graph. For instance, shift across the hospital

ID indicator (first row) is explained by shifts in the distributions of age, race, temp (or temperature), urine output, and so on. We observe that shifts are explained by

changes in a few variables which are common across indicators. Full forms of the abbreviated feature names are added in Table C in S1 Text.

https://doi.org/10.1371/journal.pdig.0000023.g004
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leading to the observed differences in model performance (as quantified by the fairness met-

rics) upon model transfer.

Discussion

We retrospectively evaluate generalizability of mortality risk prediction models using data

from 179 hospitals in the eICU dataset. In addition to commonly-used metrics for predictive

accuracy and calibration, we assessed generalization in terms of algorithmic fairness metrics.

To interpret results, we investigated shifts in the distribution of variables of different types

across hospitals and geographic regions, leading to changes in the metrics. Findings highlight

that recommended measures for checking generalizability are needed, and evaluation guide-

lines should explicitly call for the assessment of model performance by sub-groups.

Generalizability of a risk prediction model is an important criteria to establish reliable and

safe use of the model even under care settings different from the development cohort. A num-

ber of studies have reported lack of generalizability of risk prediction models across settings

such as different countries [47–50], hospitals [27,51–54], or time periods [55–57]. For instance,

Austin et al [58] study the validity of mortality risk prediction models across geographies in

terms of discrimination and calibration measures. They find moderate generalizability, how-

ever, the hospitals considered belonged to a single province in Canada. More importantly,

these works did not investigate generalizability for different groups in the patient cohorts.

Results in Fig 1 show that the fairness characteristics of the models can vary substantially

across hospitals. Prior work investigating algorithmic fairness metrics in a clinical readmission

task [4] did not investigate changes in the metric when models are transferred across care set-

tings. A recent study of a mortality prediction model showed good performance across 3 hos-

pitals (1 academic and 2 community-based) as well as good performance for subgroups within
a hospital [22]. However, the change in performance for the subgroups across hospitals was

not explored.

One strategy to tackle the lack of generalizability is to pool multiple hospital databases to

potentially increase diversity of the data used in modeling [59]. However, available databases

may not faithfully represent the intended populations for the models even after pooling. A

recent study [11] found that US-based patient cohorts used to train machine learning models

for image diagnosis were concentrated in only three states. However, the effect of using geo-

graphically-similar data on generalizability and fairness had not been studied previously.

Results in Fig 2 suggest that pooling data from similar geographies may not help mitigate dif-

ferences in model performance when transferred to other geographies. This finding adds more

weight to the concerns raised about possible performance drop when transferring models

from data-rich settings to low-resource settings [60].

Prior work has postulated multiple reasons for lack of generalizability [61] including popu-

lation differences and ICU admission policy changes [47]. In Davis et al [55], reasons includ-

ing case mix, event rate, and outcome-feature association are assessed. However, specific

variables which shift across clinical datasets have not been examined. Through an analysis of

the underlying causal graph summarized in Fig 4, we identify specific features that explain the

changes in data distributions across hospitals. Demographics (age and race) differ across hos-

pitals which is aligned with population difference being the common reason cited for lack of

generalizability [47,55]. We find that vitals and labs differ as well but only a few change as a

direct consequence of changes in the hospital setting. Often, the changes are mediated via a

small number of specific vitals and labs. For understanding the root causes of the shifts, causal

graph analysis helps to narrow down candidate features to analyse further. Significant differ-

ences found across ICUs in feature distributions and model performance calls for a systematic
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approach to transferring models. Understanding the reasons for the lack of generalizability is

the first step to deciding whether to transfer a model, re-training it for better transfer, or devel-

oping methods which can improve transfer of models across environments [62]. Factors affect-

ing generalizability can potentially be due to variations in care practices or may represent

spurious correlations learned by the model. These findings reinforce calls to better catalog clin-

ical measurement practices [63] and continuously monitor models for possible generalizability

challenges [61].

Beyond the descriptive analyses of dataset shifts with causal graphs, in Figure A in S1 Text,

we examine whether the shifts can predict lack of generalizability. We plot the generalization

gap in AUC and CS against the amount of shift, as measured in MMD2
, and report the correla-

tion coefficient. Although we find only low correlation, this suggests a need to develop better

methods of quantifying dataset shifts that can predict future model performance. One such

metric derived from a model trained to discriminate between training and test samples was

found to explain the test performance well (focusing on environments that primarily differ by

case-mix, without attention to specific clinical or demographic shifts) [64]. We hope that cur-

rent work motivates development and evaluation of such metrics on larger and more diverse

populations and datasets. Recent work has also proposed methodological advances to ensure

transferability of models across settings, for example, by pre-training on large datasets from

related machine learning tasks [65,66] and with the help of causal knowledge about shifts [67–

69]. Better metrics for dataset shift can help practitioners decide whether to transfer a model to

a new setting based on how large the shift is between hospitals, for example.

Importantly, findings here showed that the race variable often mediated shifts in clinical

variables. Reasons for this must be disentangled. As race is often a proxy variable for structural

social processes such as racism which can manifest both through different health risk factors as

well as different care (differences in health care received by patients’ racial group are well-doc-

umented) [70–73], shifts across hospitals cannot be mitigated simply by population stratifica-

tion or algorithmic fairness metrics alone. Indeed, better provenance of the process by which

data is generated will be critical in order to disentangle the source of dataset differences (for

example, if clinical practices or environmental and social factors are giving rise to different

healthcare measures and outcomes). Following guidelines developed for documenting datasets

[74] and models [75] in the machine learning community, similar guidelines should be estab-

lished for models in healthcare as well [10]. An example is the proposal for reporting sub-

group-level performances in MI-CLAIM checklist [76]. Further, the datasets have a skewed

proportion of the minority population (as low as 3.2% for hospital ID 338, Table A in S1 Text).

This may negatively impact model performance for minority groups since the number of

training samples might be insufficient to learn group-specific outcome characteristics, which

is a recognized source of bias termed as representation bias [77]. To reduce the impact of

skewed data, algorithmic fairness literature proposes strategies such as reweighting data points

for different groups based on their proportions or classification error [78–80]. Efficacy of such

strategies to decrease the disparity metrics reported in our results can be investigated in future

work. In sum, our findings demonstrate that data provenance, as described above, is needed in

addition to applying algorithmic fairness metrics alone, to understand the source of differences

in healthcare metrics and outcomes (e.g. clinical practice versus other health determinants),

and assess potential generalizability of models.

Limitations

The main limitation of this study is that the results are reported for a collection of ICUs within

the same electronic ICU program by a single provider. This collection captures only a part of
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the diversity in care environments that a mortality prediction model might be deployed in.

Further, our investigation is limited to models constructed using the SAPS II feature set con-

taining 14 hand-crafted features for the mortality prediction task. Though we employ widely-

used methods, our analysis is limited by the specific methods used for computing dataset dif-

ferences, building predictive models and causal graphs. For analyzing reasons for dataset shifts,

we could only investigate explanations based on the 14 features along with limited hospital

characteristics (such as geographic region, number of beds, and teaching status). Multiple fac-

tors are left unrecorded in the eICU database, such as patient load, budget constraints, and

socioeconomic environment of the hospital’s target population, that may affect the care prac-

tices and outcomes recorded in the dataset. We do not investigate dataset shifts in time, which

are common [81], as the eICU database includes patient records only for a year. Finally, we do

not assess the effect of resampling data points on model performance to address issues of

skewed mortality-class distribution or minority-majority group distribution.

Conclusion

External evaluation of predictive models is important to ensure their responsible deployment

in different care settings. Recommended metrics for performing such evaluation focus primar-

ily on assessing predictive performance of the models while ignoring their potential impact on

health equity. Using a large, publicly-available dataset of ICU stays from multiple hospital cen-

ters across the US, we show that models vary considerably in terms of their discriminative

accuracy and calibration when validated across hospitals. Fairness of models, quantified using

their differential performance on racial groups, is found to be lacking as well. Furthermore,

fairness metrics continue to be poor when validating models across US geographies and hospi-

tal types. Importantly, the pattern of out-of-sample variation in the fairness metrics is not the

same as that in the accuracy and calibration metrics. Thus, the standard checks do not give a

comprehensive view of model performance on external datasets. This motivates the need to

include fairness checks during external evaluation. While examining reasons for the lack of

generalizability, we find that population demographics and clinical variables differ in their dis-

tribution across hospitals, and the race variable mediates some variation in clinical variables.

Documentation of how data is generated within a hospital where a model is developed specific

to sub-groups, along with development of metrics for dataset shift will be critical to anticipate

where prediction models can be transferred in a trustworthy manner.
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