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Abstract

The accuracy and flexibility of artificial intelligence (AI) systems often comes at the cost of a

decreased ability to offer an intuitive explanation of their predictions. This hinders trust and

discourage adoption of AI in healthcare, exacerbated by concerns over liabilities and risks to

patients’ health in case of misdiagnosis. Providing an explanation for a model’s prediction is

possible due to recent advances in the field of interpretable machine learning. We consid-

ered a data set of hospital admissions linked to records of antibiotic prescriptions and sus-

ceptibilities of bacterial isolates. An appropriately trained gradient boosted decision tree

algorithm, supplemented by a Shapley explanation model, predicts the likely antimicrobial

drug resistance, with the odds of resistance informed by characteristics of the patient,

admission data, and historical drug treatments and culture test results. Applying this AI-

based system, we found that it substantially reduces the risk of mismatched treatment com-

pared with the observed prescriptions. The Shapley values provide an intuitive association

between observations/data and outcomes; the associations identified are broadly consistent

with expectations based on prior knowledge from health specialists. The results, and the

ability to attribute confidence and explanations, support the wider adoption of AI in

healthcare.

Author summary

Antimicrobial resistance is the ability of organisms (usually bacteria) that cause infections

to survive antibiotic treatments. It is a major threat to health and is responsible for an

increased risk of death and prolonged hospital stays. Artificial intelligence (AI) is starting

to be used for early prediction of resistance to different antibiotics, but care is needed to

safely and confidently incorporate this tool into clinical practice. To gain trust from both

patients and the medical profession, AI output needs to be transparent and explainable.
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Here we use explainable AI to show how the characteristics of patients can be used to

determine the chance of antimicrobial resistance. The identified patterns could potentially

inform hospital practice. Our approach reports the level of certainty and uncertainty for

each prediction. This can guide doctors on how much they should rely on it when making

initial recommendations. We also show that following our AI predictions would have low-

ered the initial number of mismatched prescriptions compared to what happened in prac-

tice. These methods may therefore increase confidence in AI predictions, improve patient

treatment and slow the increase in antimicrobial resistance by targeting antibiotics

effectively.

Introduction

As data becomes complex (and too large) for traditional statistics, artificial intelligence (AI)

systems, that are able to generate predictions from such data, could form part of health deci-

sion making. This is particularly relevant in modern healthcare, given the abundance of infor-

mation recorded and electronically available about each patient [1]. In addition to accelerate

time-consuming decision processes, adoption of AI in healthcare also has the potential to

reduce medical errors. However, despite their prospective benefits, there still are challenges to

overcome in order to routinely incorporate AI systems into medical practice [2, 3]. In fact,

compared to traditional statistical modelling, AI often comes at the cost of a decreased ability

to heuristically explain the outputs and place any confidence in AI-derived information [4].

To underline the difficulties in illustrating how they yield a particular result, AI models have

been often depicted as black-box systems [5]. This contrasts with the need for awareness of

professionals in healthcare, where patients might ask: who is at fault if this black

box malfunctions and health is at risk? In order to be able to use AI algorithms as tools, bio-

medical professionals should be able to inspect a black-box model, make sense of its outputs,

and only then use its evidence in clinical practice. The public also considers transparency of AI

systems more important in medical care than in other application domains [6]. This possibility

is granted by the so-called explainable or interpretable AI [5, 7].

Here we are motivated by the challenge of predicting whether bacterial pathogens isolated

from hospitalised patients are resistant to particular antibiotic drugs. At a public-health level,

this issue of antimicrobial resistance threatens the efficacy of the available drugs over time,

with antibiotic stewardship seen as critical for preserving a stockpile of effective treatments [8–

10]. At the level of an individual patient, the efficacy of a treatment depends on matching anti-

biotic choice to the susceptibilities of the infecting pathogen. The susceptibilities can only be

confirmed in laboratory tests [11, 12] but, to provide rapid interventions in clinical practice,

antibiotic drugs are often empirically prescribed prior to receiving laboratory results, thus risk-

ing sub-optimal treatments [13].

In this paper, we present an analysis of a large population of hospital inpatients with Gram-

negative bacteria isolated from blood and urine cultures. Several studies have demonstrated

the ability of machine-learning algorithms such as the gradient boosted decision tree (GBDT)

trained on admission data to predict the presence of antimicrobial resistance (AMR) in clinical

settings [14–18]. Here, in addition to performing predictions and discussing their accuracy,

we consider the GBDT-model predictions in more detail focusing on their predictive power

for individual patients (reducing the number of prescriptions mismatched to resistant culture

test results) as well as using Shapley values [7, 19–21] to unpick the underlying dependence of

the model. These two factors help dispel the idea that machine-learning algorithms are just
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black-boxes, providing health-care professionals with both a rationale and confidence levels

for predicted patterns of antibiotic resistance.

Materials and methods

This is a retrospective study of 5190 hospital admission events collected between January 2010

and October 2016 at Heart of England NHS Trust, Birmingham, UK (now part of University

Hospitals Birmingham NHS Trust), which also includes a specialist cystic fibrosis (CF) unit.

All patients from whose blood or urine cultures bacterial pathogens Escherichia coli, Klesbiella
pneumoniae, or Pseudomonas aeruginosa was isolated were selected. Admission data (includ-

ing Summary Hospital-level Mortality Indicator (SHMI) diagnostic codes, consultant special-

ties, admission methods, admission and discharge dates), patient demographics (age and sex),

prescription records (also including antibiotics administered during any prior admissions dat-

ing from January 2010), and clinical records of culture tests (including antibiotic susceptibili-

ties) were then searched for information linked to these patients. Since the cohort also

includes a substantial number of inpatients from a specialist cystic fibrosis (CF) unit, we

reported CF among comorbidities. Randomly generated patient identifiers and matching

dates were used to link records. All categorical variables were stratified to binary variables for

use within the machine learning algorithm. In total, 125 features were included as independent

variables and tested for association with the outcomes; all the features considered are listed in

Tables 1, 2, 3, and Tables A-B in S1 Text. These include patients’ demographics, admission

data, comorbidities, (historic and contemporary) antimicrobial drug prescriptions, and micro-

biology test results that determine whether the isolates are resistant to certain antimicrobial

agents (Table 1). Resistance (R) and susceptibility (S) of isolates to four selected common anti-

microbial agents (co-amoxiclav (AUG), ciprofloxacin (CIP), meropenem (MEM), and piperacil-
lin/tazobactam (TAZ)) were also recorded as binary outcomes. Outcome predictions specific

to each of these drugs were obtained from the subset of admissions linked to tests for suscepti-

bility to each specific drug.

To perform predictions, we used gradient boosted decision tree (GBDT) models with logis-

tic objective function implemented in the XGBoost library (v0.81) in Python (v3.7.1) [22, 23].

A GBDT aggregates a large number of weak models (decision trees) into a single prediction

Table 1. List of antimicrobial agents considered in the study. For each of these antibiotics and each admission event, binary variables record whether the antibiotic: a)

was currently prescribed, b) has been prescribed to the same patient in a previous admission, c) resistant isolate was detected, d) susceptible isolate was detected, e) was pre-

scribed within 72 hrs of admission (early prescription); other variables record f) the number of times resistant isolates were detected in previous admissions, d) the number

of times susceptible isolates were detected in previous admissions. The 4th and 5th columns report the number of admissions which had resistance tested and outcome pos-

itive (R) and negative (S), respectively. Resistance during the current admission to the four drugs marked with a star (AUG, CIP, MEM, and TAZ) are outcomes set to be

predicted by four different AI classifiers.

Drug Abbr. Class No. R No. S

�Co-amoxiclav AUG Penicillin/β-lactamase inhibitor 1455 2529

�Ciprofloxacin CIP Fluoroquinolone 1241 3883

�Meropenem MEM Carbapenem 532 4658

�Piperacillin/tazobactam TAZ Penicillin/β-lactamase inhibitor 1026 3376

Amikacin AK Aminoglycoside 384 1408

Aztreonam ATM Monobactam 644 134

Ceftazidime CAZ Cephalosporin 664 4065

Cefotaxime CTX Cephalosporin 367 3293

Ertapenem ETP Carbapenem 1259 3931

Gentamicin GT Aminoglycoside 745 4338

Temocillin TEM β-lactamase-resistant penicillin 103 2767

https://doi.org/10.1371/journal.pdig.0000162.t001
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algorithm, where an individual tree consists of a series of nodes representing binary decision

splits against one of the input variables (e.g., age>50 or history of antimicrobial resistance),

with its final output being determined by the nodes at the end of the tree. GBDTs can robustly

handle missing data and their predictions are virtually unaffected by multi-collinearity, thus

often being more appropriate for healthcare data than alternative more traditional statistical

methods such as logistic regression. A GBDT model depends on a number of hyper-parame-

ters, which we selected by means of Bayesian optimisation [24] (Table C in S1 Text). The

GBDTs were trained to predict the probability Pi that a bacterial isolate is resistant to a selected

agent is found during hospital episode i. As a measure of uncertainty of the prediction Pi we

consider the Gini impurity Gi≔ 2 Pi (1 − Pi), which is zero when Pi is either 0 or 1 (either sus-

ceptibility or resistant outcome is predicted with absolute certainty) and is maximum when Pi
= 0.5 (both outcomes are equally likely).

Our main quantity of interest is the accuracy of both the recorded prescribing and of the

GBDT predictions, key to this is the presence of mismatches between prescriptions/predic-

tions and laboratory results. A prescription made by a physician is said mismatched if at least

one bacterial isolate was found to be resistant to the drug administered, during an admission

event. Assuming that a treatment can be administered only when the physician does not expect

Table 2. Pre-existing morbid conditions classified according to the SHMI diagnosis codes and abbreviations used

throughout the text.

Abbreviation Diagnosis description

Anemia Deficiency and other anemia, Acute posthemorrhagic anemia

Arterial diseases Aortic and peripheral arterial embolism or thrombosis

Atherosclerosis Peripheral and visceral atherosclerosis

Bronchitis (acute) Acute bronchitis

COPD/bronchiectasis Chronic obstructive pulmonary disease and bronchiectasis

Cancer (rectum) Cancer of rectum and anus

Cancer (secondary) Secondary malignancies

Cancer (therapy) Cancer; chemotherapy; radiotherapy

Cancer (uterus) Cancer of uterus

Coronary diseases Coronary atherosclerosis and other heart diseases

Enteritis/colitis Regional enteritis and ulcerative colitis

Genital disorders (F) Female genital disorders

Genital disorders (M) Male genital disorders

Heart-valve disorders Heart valve disorders

Hypertension Essential hypertension, Hypertension with complications and secondary hypertension

Implant/graft Complication of device, implant or graft

Infection (intestinal) Intestinal infection

Infection (skin) Skin and subcutaneous tissue infections

Infection (unspecified) Bacterial infection; unspecified site

Lung disorders Pleurisy; pneumothorax; pulmonary collapse

Lymphoma Hodgkin’s disease, Non-Hodgkin’s lymphoma

Mental disorders Mental retardation, Senility and organic mental disorders

Mycoses Mycoses

Reprod. disorders (F) Female reproductive disorders

Respiratory insuffic. Respiratory failure; insufficiency; arrest (adult)

Septicaemia Septicaemia, shock

White-cell diseases Diseases of white blood cells

CF Cystic fibrosis

https://doi.org/10.1371/journal.pdig.0000162.t002
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antimicrobial resistance (AMR), a mismatched treatment can be thought of a false negative

(i.e., the physician predicted a negative AMR outcome while presence of resistant isolates was

later confirmed by culture tests). On the other hand, we cannot know from the data if the phy-

sician predicted positive AMR outcome (obviously, the absence of treatment does not imply

that the physician did not treat due to expected resistance). To allow fair comparison between

the GBDT and the physician predictions, we then restrict our attention to the admissions

where the drug was actually prescribed and contrast the false negative rates of the physician

and GBDT predictions. This comparison requires extracting a binary prediction from the

GBDT outcome probabilities (translating a probability into a Yes or No recommendation). In

order to do so, we mark the n admissions with the highest probability of resistance as positive

to AMR (predicting that the bacteria is resistant); n is taken as the true number of AMR out-

comes in the set (chosen to maintain the true population-level percentage of outcomes). Then,

we imagine treating only the inpatients who had predicted susceptible outcome and under-

went true treatment, and tag these as AI assisted prescriptions. We finally compare the per-

centage of mismatches in the AI assisted prescription group with that in the true-treatment

group. An example of ten different patient outcomes is given in Table 4, highlighting the AI

decision steps and prescription mismatching. This strategy also lowers the total exposure to an

antimicrobial agent. As a second mitigated strategy, we select the value of n in such a way that

the total number of matching AI-assisted prescriptions is the same as that of true matching

prescriptions (strategy 2, Table D in S1 Text). In both strategies, the idea is to order all inpa-

tients by their probability of AMR and administer the antimicrobial agent from the lowest to

the highest probability until a condition is met. In other words, the AI algorithm would assist

the drug prescription by skimming the group of inpatients deemed to receive antimicrobial

treatment, excluding those that have a high probability of AMR. Throughout our analysis, Wil-

son intervals [25] are used as 2.5%-97.5% confidence intervals (CIs) for percentages.

To dissect the GBDT models and explain their predictions, we perform Shapley additive

explanation (SHAP) analysis of the training dataset. We used an implementation specific to

tree-based models, also referred to as TreeSHAP, accessible via the XGBoost and SHAP librar-

ies [20, 21]. The Shapley values were introduced in game theory as a mathematical method for

the allocation of credit among a group of players [19]. In the context of interpretable machine

learning, these are optimal allocation of credit for the GBDT prediction among the N = 125

features included in the study, for each of the M admission events. More specifically, each

Table 3. Key covariates included in the GBDT classifier in addition to those of Table 2 and Tables A-B in S1 Text,

and their abbreviations.

Abbreviation Factor

Admi. date Admission date

Age Age in years

Early test Laboratory test was performed within 72 hrs of admission

Frac. time in hosp. Fraction of the time from first admission spent in hospital

LOS Length of stay of current admission in days

M Sex is male

# of admissions Number of past admissions

# of comorbidities Number of comorbidities

Total time in hosp. Total time spent in hospital from the beginning of the study in days

ECOL E. coli isolated in cultures

KPNE K. pneumoniae isolated in cultures

PAER P. aeruginosa isolated in cultures

https://doi.org/10.1371/journal.pdig.0000162.t003
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feature j, contributes a term ϕij to the log-odds fi≔ log(Pi/(1 − Pi)) for episode i (where Pi is

the probability of resistance from the GBDT algorithm). A negative value (ϕij< 0) implies that

the feature j contributes a negative term to the log-odds fi and thus has negative impact on the

outcome, while a positive value (ϕij> 0) indicates a positive impact, for admission event i. The

model output therefore satisfies fi ¼
PN

j¼0
�ij, where ϕi0 is a bias term. Importantly, it has been

mathematically proven that the Shapley allocation of ϕij values is the only possible one that sat-

isfies two additional desirable properties: firstly, if a feature’s contribution increases or stays

the same regardless of the other inputs, its Shapley value does not decrease (consistency prop-

erty); and secondly a zero-valued feature contributes a zero Shapley value (missingness prop-

erty). It is also possible to compute the Shapley values for a feature as differences between the

predictions of the full model and the predictions of a model with that feature removed, aver-

aged over all combinations of features held. In practice, there are far too many terms to evalu-

ate this average exactly, but this provides an intuitive representation of the Shapley value as the

additional predictive power enabled by the inclusion of each feature. For fast computation, we

used an implementation specific to tree-based models, also referred to as TreeSHAP, available

in the XGBoost and SHAP libraries [21]. By plotting the Shapley values for each admission

event, it is possible to visually appreciate the scale and sign of each feature on the predicted

outcome. Features can then be ranked by the absolute sum S of their Shapley values (where for

feature j, Sj ¼
PM

i¼1
j�ijj [21]), the slope index I (Ij ¼

PM
i¼1
�ijxij=

PM
i¼1

x2
ij, where xij is the value

of feature j for admission i [26]), and the information gain across all splits the feature is used

in, averaged over all trees (see, e.g., [22, 27]). Sj summarises the overall importance of feature j
for the prediction, regardless of whether the feature contributes a negative or positive term to

the prediction; the slope index, I, provides a measure of association with a particular outcome;

while the gain is a standard measure of feature importance available in the XGBoost library

[23]).

The area under the curve of receiver operating characteristic (ROC-AUC or c-statistic with

bootstrapped 2.5%-97.5% CIs) and the mean squared error (MSE) were used as appropriate

measures of predictive power.

Table 4. Example of mismatched therapies and comparison between true and AI assisted prescriptions using strategy 1. For a given antimicrobial drug and inpatient,

data contains prescription records (first column—1 if the drug was prescribed during admission, 0 otherwise), and later culture test (sixth column—“True outcome”, S or

R if the isolate was found susceptible or resistant to the drug, respectively). In this example, 5 inpatients had resistant cultures, which defines n in the algorithm. Drug treat-

ment corresponds to a physician’s prediction (second column—a physician prescribes a drug if they believe that isolates are susceptible to the drug, while nothing can be

said if a drug is not prescribed). An AI system such as the GBDT model returns the probability that an isolate is found resistant (third column—“AI outcome”). The binary

prediction is obtained by taking the n = 5 cases with the highest probability and assigning a label accordingly (AI prediction—fourth column). This suggests not to adminis-

ter a drug if resistance is predicted (AI prescription—fifth column), thus lowering the total exposure to the drug (from 6 to 4 inpatients under treatment). By comparing

the true prescription or the AI prescription (columns 1 and 5) with the culture test results (column 6) the number of mismatches can be computed (7th and 8th columns

for the physician and AI assisted prediction, respectively).

True prescr. Physician predic. AI outcome AI predic. AI prescr. True outcome Physician mism. AI mism.

1 S 0.1 S 1 S 0 0

1 S 0.2 S 1 S 0 0

1 S 0.7 R 0 R 1 0

1 S 0.4 S 1 S 0 0

1 S 0.6 R 0 R 1 0

1 S 0.5 S 1 R 1 1

0 ? 0.1 S 0 S - -

0 ? 0.6 R 0 S - -

0 ? 0.8 R 0 R - -

0 ? 0.9 R 0 R - -

https://doi.org/10.1371/journal.pdig.0000162.t004
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Ethics statement

This was a retrospective analysis of a large volume of routinely collected clinical data. Individ-

ual patient consent was not obtained, but all information was pseudo-anonymised and ethical

approval provided by the NHS Health Research Authority (reference 17/WM/0406).

Results

Varying confidence on predictions

The GBDT model provided drug-specific prediction of the probability of resistance, Pi, for

each admission event i. Often in machine learning a threshold is used to translate this probabil-

ity into a binary outcome—but the probability value contains important and useful insights.

The receiver operating characteristic (ROC) curves comparing probabilities with binary out-

comes are plotted in Fig A in S1 Text. The areas under the curve (ROC-AUCs or c-statistics)

were 0.78 (95% CI 0.76–0.81), 0.87 (95% CI 0.85–0.89), 0.99 (95% CI 0.98–0.99), and 0.79 (95%

CI 0.75–0.81), for resistance to AUG, CIP, MEM, and TAZ, respectively. These values are all

relatively close to one, thus denoting excellent overall performances. Prediction of meropenem
resistance is the most accurate, which may be due to repeated admissions of CF patients, for

whom presence of AMR can be easily predicted. Given predictions of the probability, Pi, for

each event and varying decision threshold P�, such that cases with Pi> P� are predicted resis-

tant, the receiver operating characteristic (ROC) curves show that many predicted outcomes

match the true outcomes, while others inevitably do not, even for the high-AUC models. To

help identify failures, the Gini impurity Gi was computed for each prediction Pi, which can be

thought of as a measure of the uncertainty of the prediction (Materials and methods). We sepa-

rated the admissions into 10 groups based on their impurity (0� Gi< 0.05, 0.05� Gi< 0.1,

etc) and computed the mean-squared error (MSE) and the ROC-AUC in each group (shown

in Fig 1 for the test set). Errors are low (close to zero) and ROC-AUC high (close to one) for

the groups with the lowest impurity, that is for those predictions where the probability is close

to one or zero. The greater predictive power for meropenem resistance is therefore directly

attributable to a distribution of impurity scores dominated by low values (grey shaded region

Fig 1), in comparison with the results for co-amoxiclav and piperacillin/tazobactam.

This strongly suggests that the calculated probability (and hence the impurity score) pro-

vides clinicians with important information of the likely accuracy of the GBDT prediction.

Predictions with low impurity are likely to be highly accurate, whereas those with high impu-

rity are more subject to error—potentially due to a lack of information on which to base

decisions.

GBDT recommendations reduce mismatched treatments

To allow fair comparison of the GBDT predictions with medical staff decisions, we argue that

for each event, all records corresponding to culture tests and drug prescriptions performed

after the admission are discarded and we only include the information available at the time of

admission. To this end, we removed all ‘future information’ from each admission event and

fed the resulting set with missing data into the trained model. The outcome predictions (as

captured by the area under the ROC curve) were virtually the same as the full model, scoring

0.77 (95% CI 0.74–0.80), 0.85 (95% CI 0.87–0.89), 0.99 (95% CI 0.98–0.99), and 0.78 (95% CI

0.75–0.81) ROC-AUC for predicting resistance to AUG, CIP, MEM, and TAZ, respectively.

Discarding features recorded after admission has a limited impact on the predictions, thus

showing that these features are largely redundant and have minor importance for the outcome.

According to the global gain and S metrics, the most important predictors were antibiotic
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prescriptions and culture reports from past admissions, along with some past diagnoses

(Table E in S1 Text).

We now turn to the question of whether GBDTs could be of practical health care benefit.

Assisting prescriptions with GBDT predictions at the point of admission and before obtaining

results on susceptibilities from laboratory tests, could have substantially reduced the percent-

age of mismatched treatment. To show this we restrict our attention to the subset of the inpa-

tients who actually had the antimicrobial drug in question prescribed. As discussed in

Materials and methods, these are individuals where the prescriber assumed the bacterial infec-

tion was susceptible to the drug; situations where a particular drug is not prescribed does not

imply that the prescriber assumed the infection was resistant, other treatments may simply

have been more appropriate. For these individuals we consider the GBDT prediction assigning

resistance to a fraction of those with the highest probability (see Materials and methods). As a

result, we find that the percentage of mismatches in this subset is substantially lower than in

the set of true prescriptions (Table 5), although this comes at a cost of having to prescribe alter-

native drugs.

Fig 1. Prediction accuracy vs prediction impurity. Impurity frequency not to scale.

https://doi.org/10.1371/journal.pdig.0000162.g001

Table 5. Mismatched therapies in true prescriptions (left columns) and prescriptions selected by the AI (center and right columns for strategy 1 and 2, respectively).

In these two strategies, the episodes most likely to report resistance to an antimicrobial agent are assumed to be left untreated (thus lowering the total exposure to the drug)

or treated with a different drug. For all drugs considered, the percentage of mismatches is significantly lower with these two strategies than in true prescriptions. Mism. =

mismatched.

True prescriptions AI assisted prescrip. (strategy 1) AI assisted prescrip. (strategy 2)

Drug Mism. Matches % mism. Mism. Matches % mism. Mism. Matches % mism.

AUG 631 1233 34% (32%–36%) 210 1016 17% (15%–19%) 557 1233 31% (29%–33%)

CIP 53 209 20% (16%–26%) 12 193 6% (3%–10%) 40 209 16% (12%–21%)

MEM 114 323 26% (22%–30%) 7 307 2%(1%–5%) 82 323 20% (16%–24%)

TAZ 190 621 23% (21%–26%) 91 560 14% (11%–17%) 171 621 22% (19%–25%)

https://doi.org/10.1371/journal.pdig.0000162.t005
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In other words, by following this procedure, the clinician would have avoided treating with

a certain drug those infections that were predicted, with high confidence, to be resistant to the

drug. This choice would have lowered the mismatch percentage, and, at the same time,

reduced the total usage of the antimicrobial agent.

Factors differentially associated with AMR

We discuss here the associations between factors and predicted AMR outcome. For each

admission event, the impact of the factors is defined by the Shapley values and the information

encoded in the distribution of all Shapley values for a single factor is summarised by the slope

index I (see Materials and methods). This represents a measure of association of the factor

with the outcome and is positive when exposed admissions typically had positive impact (in

Figs 2–5, S1–S5, S9 and S13 Figs red markers on the right side of zero—the values of I are

reported on the left).

Impact of antibiotic prescription. We identified varying associations of resistance with

past and current prescriptions. The Shapley values for any prescription during the admission

event are summarised in Fig 2. This and the following figures condense a high volume of infor-

mation into a single intuitive picture. From visual inspection of Fig 2-A (resistance to AUG,

Fig 2. Impact of present use of antibiotics on resistance to AUG, CIP, MEM, and TAZ treatment (A,B,C, and D panels, respectively). Each marker

represents an admission event, with colour red indicating exposure to the treatment and total number of treated episodes reported on the left for each drug.

The corresponding Shapley values are represented as horizontal coordinates. Values of the slope index I are reported as measures of the direction and

strength of association of the factor with AMR outcome (see also Table E in S1 Text, asterisk (�) indicates statistical significance, P< 0.01).

https://doi.org/10.1371/journal.pdig.0000162.g002
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co-amoxiclav), it can be seen that admissions where CIP or ETP treatment occurred (repre-

sented by red markers in the second and third rows of scatter plots of Fig 2-A) had strong posi-

tive impact on predictions of resistance to AUG for all admissions (all corresponding Shapley

values are positive, ϕ> 0, with varying magnitude, ϕ ranging up to 0.4) and overall positive

association (I = 0.13 and I = 0.24 for CIP and ETP, respectively). In contrast, admissions where

AUG treatment is prescribed had negative impact (−0.1< ϕ< 0) on the prediction of resis-

tance. Other treatments do not show such definite patterns of association, with the impact of

use of GT being either negative or positive for different admission and typically much lower

than other factors (|ϕ|< 0.1, Shapley values smaller than 0.1 in absolute magnitude). In the

next sub-plot (Fig 2-B), admissions where a carbapenem (MEM or ETP) is prescribed always

had positive impact on resistance to CIP (ϕ> 0, I = 0.29 and I = 0.27 for MEM and ETP,

respectively), while AUG prescription had negative impact; CIP prescription did not impact

resistance to CIP. Admissions with AUG, MEM, or ETP treatment had positive impact on

resistance to MEM for all admissions (Fig 2-C), with ETP prescription having the highest asso-

ciation at I = 0.22. Finally, the impact on resistance to TAZ (Fig 2-D), was substantially lower

in absolute values for all admissions (|ϕ|< 0.1, I< 0.05), but being treated with TAZ had

always positive impact, while AUG and GT negative impact). Interestingly, AUG was the only

drug whose use negatively impacts prediction of resistance to the same drug—that is being pre-

scribed AUG at any point during hospital stay is more likely to generate a prediction of suscep-

tibility to AUG. We argue this might be due to AUG being prescribed only after AUG

resistance was ruled out. It might be tempting to view the results in Fig 2 just as correlations

between the observation and outcome. However, these Shapley values are more specific, show-

ing how additional information on one particular characteristic (in this case the type of antibi-

otic prescribed during a stay in hospital) impacts the prediction for each single inpatient (in

this case whether the infection is resistant). As such this is much more powerful than a simple

correlation, extracting the additional predictive power that is gained from one additional fea-

ture. Of particular interest is the distribution of features (red and blue) markers across the

range of Shapley values; in particular when there is a distinct split (that is red markers on one

side of zero, blue markers on the other) the feature is a consistent sign of impact for all

admissions.

Our analysis also included variables indicating whether an antimicrobial agent has been

prescribed within 72 hours of admission (S1 Fig). Since the presence of resistant isolates is

only revealed once laboratory test results have become available, we expect that early prescrip-

tion of an antibiotic that matches with susceptibility to same drug reflects good stewardship.

In fact, early prescription of AUG had a positive impact on resistance to AUG and TAZ (ϕ>
0, I = 0.12 and I = 0.12, respectively, see top row of panels A and D in S1 Fig). This arguably

follows from AUG being the first choice for treating infections before laboratory tests confirm

their susceptibilities. Shapley values here are frequently small (|ϕ|< 0.1), suggesting that the

antibiotics prescribed in the first 72 hours are not overall a good predictor of resistance, with

impact on resistance to broad-spectrum agents CIP and MEM essentially showing no trend

(panels B and C in S1 Fig) We also observe that early prescription of MEM and CIP had nega-

tive association with resistance to AUG (I = −0.13) and TAZ (I = −0.27), respectively.

Of greater practical interest is the impact of historical antibiotic prescriptions (while in hos-

pital) on predicted resistance. In general, prescription of any antibiotic is more likely to gener-

ate resistance, but there are some notable exceptions. In more detail, we find that a positive

impact on resistance to AUG is observed for past prescription of AUG, CIP, TAZ, and GT (Fig

3-A). Interestingly, impact of past CTX usage was strongly negative for all exposed patients (ϕ
< −0.2, I = −0.28); this may suggests that AUG treatment might be a secure choice for patients

previously treated with CTX. Past use of CIP had strong impact on resistance to the same drug
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for all episodes (Fig 3-B, 0.2< ϕ< 0.7, I = 0.41), while past use of other agents did not show

any consistent association patterns. The patterns of past use of antibiotics on resistance to

MEM are summarised in Fig 3-C; impact of past use of MEM or ETP was always positive (with

indexes I = 0.22 and I = 0.15, respectively), while positive values were found for past use of CIP

and TAZ with minor impact (|ϕ|< 0.1). The impacts on resistance to TAZ were also minor

(Fig 3-D), but with previous use of AUG and TAZ always yielding positive Shapely values.

Impact of past use of a drug on resistance to the same drug was always positive.

Impact of past resistance reports. We now seek to identified impacts of previous culture

records for the same-patient across different admissions—noting that both resistant and sus-

ceptible results may both confer useful information. For each admission and antimicrobial

drug, we recorded the number of past admissions linked to resistant bacterial isolates and the

number linked to susceptible isolates. The corresponding Shapley values are summarised in

Fig 4 (resistance to the drug found in previous laboratory records) and S2 Fig (susceptibility

previously found).

Overall, past detection of a resistance or susceptible isolate was positively associated with

the presence of resistance or susceptibility to the same drug, respectively (|ϕ|> 1 for all admis-

sions and strong association of AUG with resistance to AUG, I = 0.58). This is by far the stron-

gest impact on resistance result found, so past laboratory results are the single biggest

Fig 3. Impact of past use of antibiotics (i.e., antibiotics prescribed in a previous admission) on resistance to AUG, CIP, MEM, and TAZ treatment (A,

B,C, and D panels, respectively). Each marker represents an admission event, with colour red indicating past exposure to drug treatment. The total

number of episodes that were exposed to drug treatment in previous admissions are reported on the left for each drug. Keys as in Fig 2.

https://doi.org/10.1371/journal.pdig.0000162.g003
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indicator of current resistance (see also Table E in S1 Text)—prescribing a drug where there

had previously been resistance is a risky strategy. It is also worth noting the presence of cross-

drug associations, especially those involving co-amoxiclav (AUG) and piperacillin/tazobactam
(TAZ). Past resistance to TAZ and CIP had positive impact on resistance to AUG, even if with

smaller magnitude than the impact from AUG (Fig 4-A); similarly, AUG and CIP had moder-

ate positive impact on resistance to TAZ (0.1< ϕ< 0.5, Fig 4-D). Susceptiblity results are

more subtle (S2 Fig). As expected, being susceptible to a given drug on a previous visit had a

negative impact of being resistant to that drug on a future admission. There is again the cross-

association between AUG and TAZ (panels A and D in S2 Fig). The importance of past resis-

tance report is confirmed by the fact that by removing the corresponding variables, the overall

accuracies of the GBDTs decrease substantially as quantified by their ROC-AUC metrics 0.63

(95% CI 0.60–0.65), 0.75 (95% CI 0.72–0.77), (0.97 (95% CI 0.96–0.97) and 0.59 (95% CI 0.55–

0.62)) for AUG, CIP, MEM and TAZ respectively, which are smaller than the ROC-AUCs

achieved using all predictors (albeit resistance to MEM is still accurately predicted).

Impact of comorbidities. Linking the dataset with SHMI diagnostic codes allowed us to

find the impact of 29 morbid conditions on the predicted probability of AMR (Table 2).

Fig 4. Impact of past resistance reports (obtained by cultures tested during past admission) on resistance to AUG, CIP, MEM, and TAZ treatment

(A,B,C, and D panels, respectively). Blue marker color indicates no resistance previously found, while light orange to dark red colors correspond to

increasing number N of times an isolate was found resistant in past admissions (inset colormaps). As in Fig 2, each marker represents an admission event

and the corresponding Shapley values are represented as horizontal coordinates. Values of the slope index I are reported as measures of the direction and

strength of association of the factor with AMR outcome (see also Table E in S1 Text, asterisk (�) indicates statistical significance, P< 0.01).

https://doi.org/10.1371/journal.pdig.0000162.g004
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Interestingly, many comorbidities are differentially associated with resistance to different anti-

biotics. The results are summarised in Fig 5 and S3, S4 and S5 Figs. Septicaemia has was the

strongest risk factor for resistance to AUG among comorbidities (I = 0.22), cystic fibrosis had

the strongest association with resistance to CIP and MEM (I = 0.54 and I = 0.59, respectively),

while skin and subcutaneous tissue infection was strongest for resistance to TAZ (I = 0.22),

consistently for all patients exposed (0.1< ϕ< 0.8).

An additional potential marker for resistance could be the total number of comorbidities,

rather than the particular presence or absence of individual factors (S6 Fig). For CIP and TAZ

the impact of the total number of comorbidities diagnosed was relatively low (|ϕ|< 0.1). In

contrast we observe a strong and distinctive pattern for AUG resistance (non-linear growing

trend with saturation for AUG, impact always negative when the number of comorbidities is

less than 4, panel A in S6 Fig); for MEM resistance (panel B in S6 Fig) there is only a substantial

increase in risk when the number of comorbidities exceeds 11.

Fig 5. Impact of morbidities (including cystic fibrosis and other diseases classified according to Summary

Hospital-level Mortality Indicator (SHMI) codes) on resistance to AUG. Factors are ranked by index I (top to

bottom, values of I reported on the left), which measures the direction and strength of a factor’s association with

outcome (see also Table E in S1 Text, asterisk (�) indicates statistical significance, P< 0.01). Each marker represents an

admission event, horizontal coordinates representing Shapley values, with colour red indicating presence of morbidity,

and total number of diagnosed inpatients reported on the left for each disease (Expos.). The impact of diseases on

resistance to CIP, MEM, and TAZ are illustrated in S3, S4 and S5 Figs, respectively.

https://doi.org/10.1371/journal.pdig.0000162.g005
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Impact of age and sex. S7 Fig illustrates non-linear relations with age. For all antibiotics

except ciprofloxacin, the impact of age on resistance varied widely between the individual epi-

sodes and the antibiotics considered. For TAZ the age trend appears to increase in the old-

patient group (age >80 years, panel D in S7 Fig) and a similar pattern, yet much less pro-

nounced, can be observed for AUG (panel A in S7 Fig). On the contrary, for MEM the trend is

overall decreasing, thus suggesting that the age was negatively associated with resistance to

these agents, as illustrated in panel C in S7 Fig. It appears that the patterns of CIP, MEM, and

TAZ might be driven by the presence of young CF patients. In particular, the Shapley values

are positive for young ages, the age group with the highest prevalence of CF. Sex also had vary-

ing impact on antimicrobial resistance, albeit of relatively small magnitude, with male being

positively associated with resistance to any drug except AUG (I = −3 × 10−3, 0.01, 0.09, 0.01 for

AUG, CIP, MEM, TAZ, respectively, see S8 Fig).

Impact of bacterial isolates. The bacterial species isolated had contrasting associations

with resistance to the five antibiotics considered. AUG is reported to be effective against clini-

cal Klebsiella infections, but is not efficacious against Pseudomonas infections [28]; consis-

tently, our Shapley value analysis highlighted negative impact of K. pneumonia infection for all

episodes (−0.9 < ϕ< −0.3 and I = −0.62), and zero impact for P. Aeuruginosa infections, due

to the lack of exposure to AUG for Pseudomonas infections. Interestingly, the presence of E.
coli also yielded zero impact (panel A in S9 Fig), such that the presence of E. coli infection does

not change the prediction of resistance. The impacts of bacterial isolates on resistance to CIP

and TAZ are low in magnitude compared to the other antimicrobial drugs (panels B and D in

S9 Fig), albeit it is worth noting that the presence of E. coli always had positive impact for resis-

tance to CIP. For resistance to MEM, the Shapley values are large for the impact of E. coli and

P. aeruginosa (in absolute magnitude, |ϕ|> 0.5), with P. aeruginosa yielding positive associa-

tion (I = 0.94) and E. coli infection leading to negative association (I = −1.52), thus strongly

suggesting that this class of drugs is more effective against E. coli than against P. aeruginosa
(panel C in S9 Fig).

Impact of other covariates. Admission date had varying impact on AMR, particularly in

terms of the drug considered (S10 Fig), reflecting changing levels of resistance within the pop-

ulation. The impact on resistance to AUG appears to have sharply decreased during the first

year of the study, with further slightly decreasing impact over the remaining years (panel A in

S10 Fig); a decreasing pattern can be observed also for CIP although of smaller magnitude

(panel B in S10 Fig). Overall, this suggests that antimicrobial stewardship for these agents has

been improving with time. On the contrary the impact on resistance to MEM and TAZ

increased after 2013 (panels C and D in S10 Fig). In other words, being admitted on a later

date had increased risk of resistance to MEM, which might indicate a potential emerging

concern.

Duration of hospital stay can be measured in two ways: length of stay (LOS) for the admis-

sion event under examination (S11 Fig) and the total time a patient spent in hospital also

including past admissions (S12 Fig). The LOS was generally a smaller risk factor than the total

time a patient spent in hospital. With the exception of MEM, the longer was the total time

spent in hospital, the higher was its impact on AMR. The growth appears logarithmic (hori-

zontal axes are to logarithmic scale in S12 Fig), such that changes in the lower end are the most

important for increased AMR risk. As a consequence, for CF patients (who tend to spend

more time in hospital and populate the upper end of the range), changes in the time spent in

hospital are in fact a less important factor for AMR compared to non-CF patients.

Some consultant specialties and admission methods also had an impact on AMR as illus-

trated in S13 Fig, arguably due to the fact that they carry some information on patients’ health

conditions.
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Patients’ demographics

The total data set of hospital admissions includes 4507 individual patients (2760 male and

1747 female) with age at admission ranging from 18 to 105 years (median 78, inter-quartile

range (IQR) 71 to 86). Median ages at admission of male and female patients were 75 and 80

years (IQRs 67–84 and 73–87), respectively.

Discussion

Providing medical care is a complex process that can benefit from the support of AI models

and algorithms. These can indeed outperform human predictions in speed and accuracy.

However, mere prediction is only one aspect of healthcare. Even when optimised, probabilistic

prediction always carries the risk that an AI decision system will be wrong and that, as a result,

a patient might be injured. While mistakes in healthcare are always detrimental, involvement

of AI might cause additional public mistrust and scale up a single algorithm error to injuries to

many patients. Therefore, it is desirable that clinical support systems not only predict out-

comes but also provide uncertainties and outputs interpretable to clinicians.

Here, we demonstrated that an appropriately designed AI can simultaneously achieve all of

these goals. We worked with GBDT models trained to predict the presence of isolates resistant

to co-amoxiclav, ciprofloxacin, meropenem, and piperacillin/tazobactam antimicrobial drugs as

outcomes. Predicting probabilities of AMR (continuously ranging from no chances of resis-

tance to virtual certainty of AMR, in contrast to just binary predictions) was a key factor.

Assisting prescriptions with this information lowered the percentage of mismatches compared

to real prescriptions. A measure of uncertainty was also associated with the probability and the

error rate decreased with decreasing prediction uncertainty. The methodology can be used to

help physicians reduce inappropriate use of antibiotic drugs (drugs unsuitable for a case being

identified by high probability of AMR at admission) and select alternatives (drugs with lower

probability of AMR, see also [15]). In particular, we recommend deploying broad-spectrum

drugs (such as CIP and MEM) only when those with narrower spectrum are predicted to have

high probability of resistance. This would prevent overuse of broad-spectrum agents, which is

the cause of severe consequences including the emergence of antibiotic-resistant organisms

[29].

Associations were identified based on the Shapley additive explanation, a technique of

interpretable AI, summarising its comprehensive yet cumbersome output into so-called slope

indexes I. Some of these associations are intuitive or expected, such as past use of a drug being

associated with antimicrobial resistance to the same drug, while present use is negatively asso-

ciated. Past detection of a resistance or susceptible isolate were also strongly associated with

present resistance as suggested in other studies (see, e.g., reference [15]). This result suggests

that the AI and the explanation models correctly weighted known risk factors of resistance.

Data on past culture susceptibility are crucial and in their absence, the prediction accuracy as

quantified by ROC-AUC metrics decreased significantly. Yet, in practise, these data may not

be always readily available for all patients in need of care. This broadly poses a cautionary limit

to the generalisability of data-driven predictions, which cannot be easily extended to different

cohorts or naively applied in situations when crucial data is missing: validation studies are nec-

essary. Our next steps also include attempts to model out situations where culture information

or other variables are missing. The Shapley value analysis illustrates intriguing non-linear rela-

tions between resistance detection and age, admission date, and time spent in hospital. Septice-

mia and skin infection were the strongest risk factors among comorbidities for resistance to

co-amoxiclav and piperacillin/tazobactam, respectively, while cystic fibrosis was highest for

resistance to the broad-spectrum agents ciprofloxacin and meropenem. Sex male on average
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appeared to have small positive impact on resistance, arguably to be attributed to unknown

confounding factors such as past comorbidities or varying adherence to the prescribed regi-

men rather than to biological differences [30–32]. By identifying patterns and associations, the

Shapley explanation has on one hand the potential to inform interventions and engage clinical

personnel to improve stewardship. On the other hand—and more importantly—it can also be

used by domain experts to evaluate complex automated clinical decision systems; by explain-

ing how the AI weights factors to perform its prediction, the Shapley values can be used by

physicians to determine whether AI recommendations are worthy of their trust.

As explainable AI demonstrates its capacity to summarise the effects of the predictive vari-

ables in complex data sets, we encourage the adoption of AI along with appropriate explana-

tory models in healthcare to support physician-led decisions and, in particular, to improve

antibiotic stewardship.

Supporting information

S1 Text. Supporting information text, including: Fig A and Tables A, B, C, D, and E.

(PDF)

S1 Fig. Impact of early use of antibiotics (i.e., antibiotics prescribed within the first 72

hours from admission) on resistance to AUG, CIP, MEM, and TAZ treatment (A,B,C, and

D panels, respectively). Each marker represents an admission event, with colour red indicat-

ing exposure to the treatment during the first 72 hours and total exposure reported on the left

for each drug. Keys as in Fig 2.

(PDF)

S2 Fig. Impact of past resistance reports (obtained by cultures tested during past admis-

sion) on resistance to AUG, CIP, MEM, and TAZ treatment (A,B,C, and D panels, respec-

tively). Blue marker color indicates no susceptible isolates were previously found, while light

orange to dark red colors correspond to increasing number N of times an isolate was found

susceptible in past admissions (inset colormaps). All other keys are as in Fig 4.

(PDF)

S3 Fig. Impact of morbidities (including cystic fibrosis and other diseases classified

according to Summary Hospital-level Mortality Indicator (SHMI) codes) on resistance to

CIP. Factors are ranked by index I (top to bottom, values of I reported on the left), which mea-

sures the direction and strength of a factor’s association with outcome (see also Table E in S1

Text, asterisk (�) indicates statistical significance, P<0.01). Each marker represents an admis-

sion event, horizontal coordinates representing Shapley values, with colour red indicating

presence of morbidity, and total number of diagnosed inpatients reported on the left for each

disease (Expos.).

(PNG)

S4 Fig. Impact of morbidities (including cystic fibrosis and other diseases classified

according to Summary Hospital-level Mortality Indicator (SHMI) codes) on resistance to

MEM. Keys as in S3 Fig.

(PNG)

S5 Fig. Impact of morbidities (including cystic fibrosis and other diseases classified

according to Summary Hospital-level Mortality Indicator (SHMI) codes) on resistance to

TAZ. Keys as in S3 Fig.

(PNG)
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S6 Fig. Impact of number of comorbidities on resistance to AUG, CIP, MEM, and TAZ (A,

B, C, and D panels, respectively). Red and blue markers correspond to cystic fibrosis (CF)

and non-CF inpatients, respectively. Jitter along x axis introduced to avoid marker overlap.

(PDF)

S7 Fig. Impact of age on resistance to AUG, CIP, MEM, and TAZ (A, B, C, and D panels,

respectively). Red and blue markers correspond to cystic fibrosis (CF) and non-CF inpatients,

respectively. CF inpatients are younger on average (age<60) but the impact of age does not

appear substantially different than non-CF.

(PDF)

S8 Fig. Impact of other factors (Sex, early testing, fraction of days in hospital, number of

hospital visits). Exposures of male sex and early testing are (1008, 957), (1371, 1278), (1378,

1239), and (1255, 1082), for AUG, CIP, MEM, and TAZ, respectively.

(PDF)

S9 Fig. Impact of E. coli (ECOL), K. pneumonia (KPNE), and P. aeruginosa (PAER) bacte-

rial isolates on resistance to AUG, CIP, MEM, and TAZ treatment (A,B,C, and D panels,

respectively).

(PDF)

S10 Fig. Impact of admission date (quantified by a Shapley value for each admission event,

red and blue markers corresponding to cystic fibrosis (CF) and non-CF inpatients, respec-

tively) on resistance to AUG, CIP, MEM, and TAZ (A, B, C, and D panels, respectively).

The impact varies non-linearly with the admission date.

(PDF)

S11 Fig. Impact of length of stay (LOS) on resistance to AUG, CIP, MEM, and TAZ (A, B,

C, and D panels, respectively). Red and blue markers corresponding to cystic fibrosis (CF)

and non-CF inpatients, respectively. Impact of LOS in CF inpatients is not substantially differ-

ent than in non-CF inpatiens. Horizontal axis to logarithmic scale.

(PDF)

S12 Fig. Impact of total time a patient stay in hospital including past admissions on resis-

tance to AUG, CIP, MEM, and TAZ (A, B, C, and D panels, respectively). Red and blue

markers corresponding to cystic fibrosis (CF) and non-CF inpatients, respectively. CF inpa-

tients appear to spent more time in hospital than non-CF, but the impact of time in hospital

for these is typically lower (B and D, CIP and TAZ respectively). Horizontal axis to logarithmic

scale and jitter introduced to avoid marker overlap.

(PDF)

S13 Fig. Impact of consultant specialties to AUG, CIP, MEM, and TAZ. Each marker repre-

sents an admission event, horizontal coordinates representing Shapley values. Colour red indi-

cates if the consultant responsible for the care of the patient has specialty reported on the left.

The total number of consultants of each specialty is also reported on the left (Expos.). Some

consultant specialties might contain information on the patients’ health and therefore also

impact AI AMR prediction. According to the GBDT models, important predictors are “Infec-

tious diseases” specialty, which appears to be associated with AMR to AUG (I = 0.22, F>

0.15), and “General medicine”, which appears to be negatively associated with resistance to

MEM (but positively associated to resistance to AUG and TAZ). Impact of consultant specialty

on resistance to broad-spectrum agents CIP and MEM is often zero.

(PDF)
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