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Abstract

Language impairment is an important biomarker of neurodegenerative disorders such as

Alzheimer’s disease (AD). Artificial intelligence (AI), particularly natural language process-

ing (NLP), has recently been increasingly used for early prediction of AD through speech.

Yet, relatively few studies exist on using large language models, especially GPT-3, to aid in

the early diagnosis of dementia. In this work, we show for the first time that GPT-3 can be

utilized to predict dementia from spontaneous speech. Specifically, we leverage the vast

semantic knowledge encoded in the GPT-3 model to generate text embedding, a vector

representation of the transcribed text from speech, that captures the semantic meaning of

the input. We demonstrate that the text embedding can be reliably used to (1) distinguish

individuals with AD from healthy controls, and (2) infer the subject’s cognitive testing score,

both solely based on speech data. We further show that text embedding considerably out-

performs the conventional acoustic feature-based approach and even performs competi-

tively with prevailing fine-tuned models. Together, our results suggest that GPT-3 based

text embedding is a viable approach for AD assessment directly from speech and has the

potential to improve early diagnosis of dementia.

Author summary

Alzheimer’s disease is a currently incurable brain disorder. Speech, a quintessentially

human ability, has emerged as an important biomarker of neurodegenerative disorders

like AD. Can AI-driven speech analysis help identify AD? We show in this study that

GPT-3, a specific language model produced by OpenAI, could be a step towards early pre-

diction of AD through speech. Specifically, we demonstrate that text embedding, powered

by GPT-3, can be reliably used to (1) distinguish individuals with AD from healthy con-

trols, and (2) infer the subject’s cognitive testing score, both solely based on speech data.

We further show that text embedding considerably outperforms the conventional feature-

based approach and even performs competitively with the mainstream use of fine-tuned

models. Our results suggest that there is a huge potential to develop and translate a fully

deployable AI-driven tools for early diagnosis of dementia and direct tailored interven-

tions to individual needs, thereby improving quality of life for individuals with dementia.
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease that involves progressive cognitive

declines, including speech and language impairments. It is the most common etiology of

dementia, affecting 60–80% cases [1]. Given its prevalence and still no cure available for AD

treatment [2], there is an urgent need for the early diagnosis of dementia, which would yield

clear benefits in improving quality of life for individuals with dementia.

Current diagnoses for AD are still primarily made through clinical assessments such as

brain imaging or cognitive tests e.g., Mini-Mental State Examination (MMSE) [3] for evaluat-

ing the progression of AD [4,5]. However, they are often expensive and involve lengthy medi-

cal evaluations. Previous studies have shown that spontaneous speech contains valuable

clinical information in AD [6]. The use of speech as a biomarker provides quick, cheap, accu-

rate and non-invasive diagnosis of AD and clinical screening. Previous works on speech analy-

sis are mainly based on the feature-based approach using acoustic features extracted from the

speech audio and the linguistic features derived from the written texts or speech transcripts

through NLP techniques [7]. Both the linguistic and acoustic features, sometimes along with

other speech characteristics, have been extensively used for dementia classification based on

speech data [8–17]. This feature-based approach, however, relies heavily upon domain specific

knowledge and hand-crafted transformations. As a result, it often fails to extract more abstract,

high-level representations [18,19], hence is hard to generalize to other progression stages and

disease types, which may correspond to different linguistic features. AI-enabled speech and

language analysis has emerged as a promising approach for early screening of Alzheimer’s

dementia [9,10,15,20–22].

Large language models (LLMs), which have demonstrated impressive performance on

many NLP tasks, provide powerful universal language understanding and generation [23–25].

GPT- 3, or Generative Pre-trained Transformer 3, one of the largest existing language models

produced by OpenAI [26], has been shown to be particularly effective in (1) zero-shot learning
(i.e., zero-data learning), where the language model is adapted to downstream tasks, such as

translation, text summarization, question-answering and dialogue systems, without the need

for additional, task-specific data [26], and (2) encoding a wealth of semantic knowledge about

the world and producing a learned representation (embedding), typically a fixed-size vector,

that lends itself well to discriminative tasks [27]. The text embeddings entail meaningful vector

representations that can uncover additional patterns and characteristics, as captured in the

semantic meaning of the input, that might not be evident even to trained experts. It has been

extremely successful to learn text embeddings in NLP [23,24,28–30]. However, so far there is

no study on the use of GPT-3 for AD detection.

In this work, we study the extent to which text embeddings generated by GPT-3 are utilized

to predict the dementia. We use the data from the ADReSSo (Alzheimer’s Dementia Recogni-

tion through Spontaneous Speech only) Challenge [21], a shared task for the systematic com-

parison of approaches to the detection of cognitive impairment and decline based on

spontaneous speech. With this dataset, we perform two tasks: an AD classification task for dis-

tinguishing individuals with AD from healthy controls, and an MMSE score regression task to

infer the cognitive test score of the subject, both solely based on the demographically matched

spontaneous speech data. We show that the text embedding can be reliably used for detection

of Alzheimer’s dementia and inference of the cognitive testing score. We further show that text

embedding (Fig 1B) considerably outperforms the conventional acoustic feature-based

approach (Fig 1A) and is even competitive with fine-tuned models. Taken together, our results

demonstrate that text embedding, derived from GPT-3 model, is a viable approach for the

assessment of AD status with great promise in assisting with early diagnosis of dementia.
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Results

We report the results from two tasks which include AD vs non-AD classification and AD

severity prediction using a subject’s MMSE score. For the classification task, either the acoustic

features or GPT-3 embeddings (Ada and Babbage) or both are fed into a machine-learning

model such as support vector classifier (SVC), logistic regression (LR) or random forest (RF).

As a comparison, we further perform finetuning on the GPT-3 model to see if there is any

advantage over the GPT-3 embedding.

For the AD severity prediction, we perform the regression analysis based on both the acous-

tic features and GPT-3 embeddings to estimate a subject’s MMSE score using three regression

models, i.e., support vector regressor (SVR), ridge regression (Ridge) and random forest

regressor (RFR).

AD vs Non-AD classification

In this section we present the AD classification results between AD and non-AD (or healthy

control) subjects based on different features: our proposed GPT-3 based text embeddings, the

acoustic features, and their combination. We also benchmark the GPT-3 based text embed-

dings against the mainstream fine-tuning approach. We show that the GPT-3 based text

embeddings considerably outperform both the acoustic feature-based approach and the fine-

tuned model.

Using acoustic features

The classification performance in terms of accuracy, precision, recall and F1 score for all the

models with the acoustic features is shown in Table 1 for both the 10-fold cross-validation

(CV) and evaluation on the held-out test set not used in any way during model development.

Fig 1. Schematic showing two different feature representations that are derived from speech. A. The acoustic

features are engineered to capture the acoustic characteristics of speech and therefore the pathological speech behavior.

B. The linguistic features, represented as text embeddings, are derived from the transcribed text. Central to our

proposed approach is the GPT-3 based text embeddings (shaded), which entail meaningful vector representations that

can capture lexical, syntactic, and semantic properties for dementia classification.

https://doi.org/10.1371/journal.pdig.0000168.g001

Table 1. Model performance obtained by the 10-fold CV (top) where the mean (standard deviation) are reported, and evaluated on test set (bottom) for AD classifi-

cation using acoustic features. Bold indicates the best overall performance for the metric.

Model Accuracy Precision Recall F1

10-fold CV SVC 0.697 (0.095) 0.722 (0.091) 0.660 (0.120) 0.678 (0.084)

LR 0.632 (0.120) 0.645 (0.136) 0.656 (0.131) 0.647 (0.121)

RF 0.668 (0.101) 0.705 (0.156) 0.704 (0.114) 0.686 (0.084)

Test Set SVC 0.634 0.657 0.622 0.639

LR 0.620 0.600 0.618 0.609

RF 0.746 0.771 0.730 0.750

https://doi.org/10.1371/journal.pdig.0000168.t001
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From Table 1, we can see that for the evaluation on the test set, RF performs the best among

the three models in all the metrics used. For the 10-fold CV, RF also has the highest recall and

F1 score among all the models, although the SVC performs better than other two models in

both accuracy and precision.

Using GPT-3 embeddings

The classification performance of the GPT-3 embedding models is shown in Table 2 for the

10-fold CV (top, unshaded) and for the evaluation on the test set (bottom, shaded). Several

observations can be made: (1) the use of GPT-3 embeddings yields a substantial improvement

in performance when compared to the acoustic feature-based approach (Table 1); (2) the Bab-

bage outperforms the Ada, a result consistent with the general notion that larger model is

more powerful in various tasks [27]; (3) the performance of the 10-fold CV is comparable to

that for the evaluation on the test set on the hold-out test set; and (4) direct comparison with

the best baseline of the classification accuracy of 0.6479 [21] on the same test set reveals that

GPT-3 performs remarkably well with the best accuracy of 0.8028 by SVC, showing clear

advantage of using GPT-3 models.

To examine how the GPT-3 based text embeddings fare with the fine-tuning approach, we

use the GPT-3 Babbage as the pretrained model and fine tune it with the speech transcripts.

The results are shown in Table 3 for both the 10-fold CV and evaluation on the test set. We see

from Table 3 that, while the overall performance is comparable for both the 10-fold CV and

the evaluation on the test set, the fine-tuned Babbage model underperforms the GPT-3 based

text embeddings, a result in line with the recent findings that GPT-3 embedding model is even

competitive with fine-tuned models [27]. We note, however, that there is no statistically signif-

icant difference of the accuracy between the finetuned model and the GPT-3 embedding based

on a Kruskal-Wallis H-test (H = 0.8510, p> 0.05).

Table 2. Model performance obtained by the 10-fold CV (top, unshaded) where the mean (standard deviation) are reported, and evaluated on test set (bottom,

shaded) for AD classification using text embeddings from the GPT-3 base models (Babbage and Ada). Bold indicates the best overall performance of each metric sepa-

rately for the top and the bottom panels.

Embeddings Model Accuracy Precision Recall F1

10-fold CV Ada SVC

LR

RF

0.788 (0.075)

0.796 (0.107)

0.734 (0.090)

0.798 (0.109)

0.798 (0.126)

0.738 (0.109)

0.819 (0.098)

0.835 (0.129)

0.763 (0.149)

0.799 (0.066)

0.808 (0.100)

0.743 (0.103)

Babbage SVC

LR

RF

0.802 (0.054)

0.809 (0.112)

0.760 (0.052)

0.823 (0.092)

0.843 (0.148)

0.780 (0.102)

0.804 (0.103)

0.811 (0.091)

0.781 (0.110)

0.806 (0.053)

0.818 (0.091)

0.770 (0.047)

Test Set Ada SVC 0.788 0.708 0.971 0.819

LR 0.718 0.653 0.914 0.762

RF 0.732 0.690 0.829 0.753

Babbage SVC 0.803 0.723 0.971 0.829

LR

RF

0.718

0.761

0.647

0.714

0.943

0.857

0.767

0.779

https://doi.org/10.1371/journal.pdig.0000168.t002

Table 3. Results for the fine-tuned GPT-3 Babbage model obtained by the 10-fold CV where the mean (standard deviation) are reported, and evaluated on test set

for AD classification.

Accuracy Precision Recall F1

10-fold CV 0.797 (0.058) 0.810 (0.127) 0.809 (0.071) 0.797 (0.105)

Test Set 0.803 0.806 0.806 0.806

https://doi.org/10.1371/journal.pdig.0000168.t003

PLOS DIGITAL HEALTH Predicting dementia from speech

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000168 December 22, 2022 4 / 14

https://doi.org/10.1371/journal.pdig.0000168.t002
https://doi.org/10.1371/journal.pdig.0000168.t003
https://doi.org/10.1371/journal.pdig.0000168


Combination of acoustic features and GPT-3 embeddings

To evaluate whether the acoustic features and the text embeddings can provide complemen-

tary information to augment the AD classification, we combine the acoustic features from

speech audio data and the GPT-3 based text embeddings by simply concatenating them.

Table 4 shows the results for both the 10-fold CV and evaluation on the test set for different

machine learning models. With additional acoustic features, we observe only marginal

improvement in the classification performance on the 10-fold CV. There is no clear difference

in predicting the test set in terms of accuracy and F1 score when the acoustic features are com-

bined with GPT-3 based text embeddings, but we instead observe higher precision at the

expense of lower recall. This observation indicates that the combined approach could be well-

suited in screening AD when high precision is much more important than the recall.

Comparison of acoustic features with GPT-3 embeddings

To compare the acoustic features with the GPT-3 embeddings, we perform further analysis

based on the performance measurement of the area under the Receiver Operating Characteris-

tic (ROC) curve (AUC). Fig 2 shows the ROC curves for RF model using the acoustic features

(the best-performing acoustic model) and the GPT-3 embeddings (both Ada and Babbage).

The mean and standard deviation of AUCs from the 10-fold CV are also reported, which indi-

cate that the GPT-3 embeddings outperform the RF model using the acoustic features and the

Babbage is marginally better than Ada. The Kruskal-Wallis H-test reveals a significant differ-

ence between the GPT-3 embeddings and the RF acoustic model (H = 5.622, p< 0.05).

Comparison with several existing models

We benchmark our proposed GPT-3 embedding (Babbage) method against other state-of-the-

art AD detection models. The existing methods include the studies from Luz et al [21], Balago-

palan & Novikova [8] and Pan et al [31], which all used the ADReSSo Challenge data. The

models selected are all trained based on the 10-fold CV and evaluated on the same unseen test

set to ensure fair comparison. For example, we do not include Model 4 & 5 in Pan et al [31] as

the models were trained by holding out 20% of the training set. Instead, we select the best

model (Model 2), which was trained using 10-fold CV. The comparison is presented in

Table 5, from which we can see that our method overall outperforms all other models in terms

of accuracy, recall, and F1 score, though the precision is relatively low.

MMSE Score Prediction

We perform the regression analysis using three different models: Support Vector Regression

(SVR), Ridge Regression (Ridge) and Random Forest Regressor (RFR). The regression results,

reported as root mean squared error (RMSE), using acoustic features and text embeddings

Table 4. Model performance for the 10-fold CV with standard deviation and the evaluation on test set using a combination of the GPT-3 Babbage embeddings and

the acoustic features.

Model Accuracy Precision Recall F1

10-fold CV SVC 0.814 (0.115) 0.838 (0.133) 0.802 (0.136) 0.814 (0.119)

LR 0.800 (0.108) 0.831 (0.137) 0.803 (0.097) 0.809 (0.093)

RF 0.731 (0.121) 0.741 (0.141) 0.762 (0.119) 0.745 (0.109)

Test Set SVC 0.802 0.971 0.723 0.829

LR 0.676 0.971 0.607 0.747

RF 0.788 0.914 0.727 0.810

https://doi.org/10.1371/journal.pdig.0000168.t004
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from GPT-3 (Ada and Babbage) are shown in Tables 6 and 7, respectively. In each table, we

provide the RMSE scores of the MMSE prediction for both the 10-fold CV and evaluation on

the test set.

With acoustic features, Table 6 shows that Ridge has the lowest RMSE score (6.2498) for

MMSE prediction on the evaluation on the test set and the lowest RMSE of 6.7683 on the

10-fold CV. With the GPT-3 based text embeddings, Table 7 shows that Babbage has better

prediction performance than Ada in terms of RMSE score in both the 10-fold CV and evalua-

tion on the test set. When comparing the overall regression results in relation to what kinds of

features are used, the GPT-3 based text embeddings provide clear advantage, as they always

outperform the acoustic features.

Fig 2. ROC curves, along with the averaged AUC scores and standard deviations, obtained by the 10-fold CV for

the best acoustic, Ada and Babbage embedding models.

https://doi.org/10.1371/journal.pdig.0000168.g002

Table 5. Performance comparison between our model and other models on the ADReSSo 2021 unseen test set.

Model Accuracy Precision Recall F1

GPT-3 Embedding (ours)

Pan et al 2021

Balagopalan et al 2021

Luz et al 2021

SVC

BERTbase

SVC

SVC

0.803

0.803

0.676

0.789

0.723

0.862

0.636

0.778

0.971

0.714

0.800

0.800

0.829

0.781

0.709

0.789

https://doi.org/10.1371/journal.pdig.0000168.t005
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Discussion

The current NLP landscape has been revolutionized by large language models [23,26]. GPT- 3,

a specific language model produced by OpenAI [26], is particularly powerful in encoding a

wealth of semantic knowledge about the world and producing a high-quality vector represen-

tation (embedding) that lends itself well to discriminative tasks [27]. Given its impressive per-

formance, we probe in this work the ability of GPT-3 to predict dementia from speech by

utilizing the vast semantic knowledge encoded in the model. Our results demonstrate that the

text embedding, generated by GPT-3, can be reliably used to not only detect individuals with

AD from healthy controls but also infer the subject’s cognitive testing score, both solely based

on speech data. We further show that text embedding outperforms the conventional acoustic

feature-based approach and even performs competitively with fine-tuned models. These

results, all together, suggest that GPT-3 based text embedding is a promising approach for AD

assessment and has the potential to improve early diagnosis of dementia. We should note that

our study performed model development and internal validation based mainly on the

ADReSSo Challenge data; thus, further independent external validation is needed to confirm

our findings.

There are four GPT-3 models available to the public via the OpenAI API, each having dif-

ferent number of embedding size and parameter: Ada (1024 dimensions, 300M), Babbage

(2048 dimensions, 1.2B), Curie (4096 dimensions, 6B) and Davinci (12288 dimensions, 175B).

These models have different capabilities and price points. Ada is the fastest and most

Table 6. MMSE prediction in terms of RMSE scores for three different models (SVR, Ridge and RFR) using acous-

tic features on the 10-fold CV (top) with standard deviation and on the inference on test set (bottom). Bold indi-

cates the best RMSE score.

Model RMSE

10-fold CV SVR 7.049 (2.355)

Ridge 6.768 (1.524)

RFR 6.901 (1.534)

Test Set SVR 6.285

Ridge 6.250

RFR 6.434

https://doi.org/10.1371/journal.pdig.0000168.t006

Table 7. MMSE prediction in terms of RMSE scores for three different models (SVR, Ridge and RFR) using text

embeddings from GPT-3 (Ada and Babbage) on the 10-fold CV (top) with standard deviation and on the inference

on test set (bottom). Bold indicates the best RMSE score.

Embeddings Model RMSE

10-fold CV Ada SVR 6.097 (2.057)

Ridge 6.058 (1.298)

RFR 6.300 (1.129)

Babbage SVR 5.976 (1.173)

Ridge 5.843 (1.037)

RFR 6.330 (1.032)

Test Set Ada SVR 5.6307

Ridge 5.8735

RFR 6.0010

Babbage SVR 5.4999

Ridge 5.4645

RFR 5.8142

https://doi.org/10.1371/journal.pdig.0000168.t007
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affordable model but is the least capable, while Davinci is the most powerful but is most expen-

sive among the models. As of this writing, we note the OpenAI paid-API is now more afford-

able. It is expected that GPT-3 will be eventually made free available to the community. When

the decision is made as to which model should be used, the embedding size and the number of

parameters are two important factors that ought to be taken into consideration. In general,

larger models incur higher cost in terms of storage, memory, and computation time, which

inevitably has direct impact on the model deployment in real-world applications such as AD

diagnosis. Given the budget consideration and especially small data sample in the ADReSSo

Challenge, we decided to go with the Ada and Babbage models in this application. Otherwise,

there is a risk of overfitting when the data are not abundant, especially with the larger models

(Curie and Davinci). Indeed, when we tested with the Curie and Davinci, we found the model

overfitting by observing almost perfect recall and extremely low precision in AD classification

task. We note that, while large sample sizes certainly help, we have taken precautious steps to

test model generalizability with both the 10-fold CV and evaluation on the test set to guard

against the problem of small sample size.

Fine-tuning has become the de facto standard to leverage large pretrained models to per-

form downstream tasks [24,25,32]. When we used the GPT-3 Babbage as the pretrained model

and fine-tuned it with the speech transcripts, we however did not see the improvement in per-

formance, as generally expected. While our results are in line with the recent findings that

GPT-3 embedding model performs competitively with fine-tuned models [27], there is a possi-

bility that the underperformance could be due to the insufficient data available in this task, as

it is well known that the fine-tuning may predispose the pretrained model to overfitting due to

the huge model and relatively small size of the domain-specific data. Such a possibility remains

to be tested in the future when more data is available.

There is a huge potential to develop and translate a fully deployable AI-driven speech analy-

sis for early diagnosis of dementia and direct tailored interventions to individual needs.

Despite promising, major challenges lie with data quality (inconsistency and instability), data

quantity (limited data), and diversity. For any models to work well, we need to have a very

large, diverse and robust set of data. Leveraging AI with the growing development of large-

scale, multi-modal data such as neuroimaging, speech and language, behavioral biomarkers,

and patient information on electronic medical records, will help alleviate the data problem and

allow for more accurate, efficient, and early diagnosis [33].

Our AI model could be deployed as a web application or even a voice-powered app used at

the doctor’s office to aid clinicians in AD screening and early diagnosis. When applying AI

and machine learning to predict dementia in clinical settings, there are however a number of

potential problems. First, the bias should be considered in model development. It is mandated

to have speech data from around the world, in many different languages, to guard against this

problem, and to ensure the models work equitably for all patients, regardless of age, gender,

ethnicity, nationality and other demographic criteria. It is preferred to develop ethical and

legal systems for the implementation, validation and control of AI in clinical care [34]. Second,

the privacy is a major concern in this nascent field, particularly speech data, which can be used

to identify individuals. Third, there is a need to establish trust in AI, especially pertinent to the

so-called ‘black box’ problem. This often arises in machine learning models where even the

developers themselves can’t fully explain, particularly which information are used to make pre-

dictions. This can be problematic in clinical practice to explain how a diagnosis of dementia is

ascertained and what can determine personalized treatments. Explainable AI aims to address

the questions about the decision-making processes. Therefore, it is important to acknowledge

that AI is not a replacement for human, but rather provides augmented decision making in

driving efficient care and helping make accurate diagnoses. Before the AI-driven technologies
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enter mainstream use in aiding the diagnosis of dementia, it is essential to have rigorous vali-

dation from large-scale, well-designed representative studies through multidisciplinary collab-

oration between AI researchers and clinicians. This will ultimately allow AI to improve early

diagnosis, which is crucial to improve quality of life for individuals with dementia.

Materials and methods

Dataset description

The dataset used in this study is derived from the ADReSSo Challenge [21], which consists of

set of speech recordings of picture descriptions produced by cognitively normal subjects and

patients with an AD diagnosis, who were asked to describe the Cookie Theft picture from the

Boston Diagnostic Aphasia Examination [6,35]. There are totally 237 speech recordings, with

70/30 split balanced for demographics, resulting in 166 and 71 in the training set and the test

set, respectively. In the training set, there are 87 samples from AD subjects and 79 from non-

AD (or healthy control) subjects. The datasets were matched so as to avoid potential biases

often overlooked in assessment of AD detection methods, including incidences of repetitive

speech from the same individual, variations in speech quality, and imbalanced distribution of

gender and age. The detailed procedures to match the data demographically according to pro-

pensity scores were described in Luz et al. [21]. In the final dataset, all standardized mean dif-

ferences for the age and gender covariates are< 0.001.

Ethics statement

The studies involving human participants were reviewed and approved by DementiaBank con-

sortium. All enrolled participants provided informed written consent to participate in this

study. All data analyses in this work are conducted using the de-identified data.

Computational approaches

At the core of our proposed approach (Fig 1B) is the text embedding from GPT-3 [26], which

can be readily accessed via OpenAI Application Programming Interface (API). The OpenAI

API, powered by a family of models with different capabilities and price points, can be applied

to virtually any task that involves understanding or generating natural language or code. We

use the GPT-3 for text embedding, which is powerful representation of the semantic meaning

of a piece of text. We benchmark our GPT-3 embedding approach against both the conven-

tional acoustic feature-based approach (Fig 1A) and the prevailing fine-tuned model.

Text embeddings from GPT-3

Central to our approach is the innovative use of text embeddings, powered by GPT-3. To our

knowledge, this is the first application of GPT-3 to predicting dementia from speech. In our

approach (Fig 1B), we first convert voice to text using Wav2Vec 2.0 pretrained model [36], a

state-of-the-art model for automatic speech recognition. We use the base model wav2vec2--
base-960h that was pretrained and fine-tuned on 960 hours of Librispeech on 16 kHz sampled

speech audio, which can be accessed from Huggingface [37]. Each audio file is loaded as a

waveform with librosa [38], a python package dedicated to analyzing sounds. The waveform is

then tokenized using Wav2Vec2Tokenizer and if necessary, divided them into smaller chunks

(with the maximum size of 100,000 in our case) to fit into memory, which is subsequently fed

into the Wav2Vec2ForCTC (a wav2vec model for speech recognition) and decoded as text

transcripts.
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GPT-3 based text embeddings are afterwards derived from the transcribed text obtained via

wav2vec2. We use the endpoint in the OpenAI API, which is available to the registered

researchers, to access GPT-3 embedding models [27]. These embeddings entail meaningful

vector representations that can capture lexical, syntactic, and semantic properties useful for

dementia classification. It is recently shown that with GPT-3 based text embeddings new state-

of-the-art results can be achieved in a variety of tasks including semantic search, clustering,

and classification [27].

There are four GPT-3 models on a spectrum of embedding size: Ada (1024 dimensions),

Babbage (2048 dimensions), Curie (4096 dimensions) and Davinci (12288 dimensions).

Davinci is the most powerful but is more expensive than the other models, whereas Ada is the

least capable but is significantly faster and cheaper. As of this writing, the embeddings are

billed at 10 times of the base prices. Specifically, they charge $0.2 and $0.004 per 1000 tokens

for the largest model (Davinci) and the smallest model (Ada), respectively. These embeddings

are finally used as features to train machine learning models for AD assessment. Given the cost

consideration, especially the small sample size in the ADReSSo Challenge, we report the results

obtained by the Ada and Babbage models.

Acoustic feature extraction from speech

Conventional acoustic feature-based approach (Fig 1A) will be used as benchmark for compar-

ison. The acoustic features considered are mainly related to temporal analysis (e.g. pause rate,

phonation rate, periodicity of speech, etc.), frequency analysis (e.g. mean, variance, kurtosis of

Mel frequency cepstral coefficients) and different aspects of speech production (e.g. prosody,

articulation, or vocal quality). In this work, acoustic features are extracted directly from speech

using OpenSMILE (open-source Speech and Music Interpretation by Large-space Extraction),

a widely used open-source toolkit for audio feature extraction and classification of speech and

music signals [39]. We primarily used the extended Geneva Minimalistic Acoustic Parameter

Set (eGeMAPS) features due to their potential to detect physiological changes in voice produc-

tion, as well as theoretical significance and proven usefulness in previous studies [40]. There

are, in total, 88 features: the arithmetic mean and coefficient of variation of 18 low-level

descriptors (e.g., pitch, jitter, formant 1–3 frequency and relative energy, shimmer, loudness,

alpha ratio and Hammarberg index etc), 8 functionals applied to pitch and loudness, 4 statis-

tics over the unvoiced segments, 6 temporal features, and 26 additional cepstral parameters

and dynamic parameters. This feature set once obtained can be used directly as inputs to a

machine learning model.

Fine-tuning with speech transcripts

Fine-tuning is the prevalent paradigm for using LLMs [23–25] to perform downstream tasks.

In this approach, the pretrained models such as the BERT (Bidirectional Encoder Representa-

tions from Transformers) [32], either some or all the model parameters, can be finetuned or

updated with downstream task-specific data. Recent work has shown encouraging results with

fine-tuned BERT for AD detection [20,41]. In this study, we will also benchmark our proposed

GPT-based embedding approach against the mainstream use of fine-tuned model. As such, we

use the GPT-3 as the pretrained model and fine-tune it with speech transcripts obtained by

wav2vec2 from raw audio files.

To fine tune our own custom GPT-3 models, we use the OpenAI command-line interface,

which is released to the public. We simply follow the instructions about fine-tuning, provided

by OpenAI, to prepare the training data that consists of 166 paragraphs, totaling 19,123 words

that are used to fine tune one of the base models (Babbage and Ada in our case) with speech
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transcripts. Tokens used to train a model are relatively cheaper, as billed at 50% of the base

prices.

Experimental tasks

AD vs non-AD classification. The AD classification task consists of creating a binary

classification model to distinguish between AD and non-AD speech. The model may use

acoustic features from speech, linguistic features (embeddings) from transcribed speech, or

both. As such, we use (1) the acoustic features extracted from speech audio data, (2) the text

embeddings from each GPT-3 base model (Babbage or Ada), and (3) the combination of both

as inputs for three different kinds of commonly used machine learning models, including Sup-

port Vector Classifier (SVC), Random Forest (RF), and Logistic Regression (LR). We use the

scikit-learn library for the implementation of these models [42]. The hyperparameters for each

model are tuned using the 10-fold cross-validation. Specifically, there are two key parameters

(the regularization parameter and the kernel coefficient) for SVC trained with a radial basis

function kernel, the L2-penalty parameter for LR and two key parameters (the number of esti-

mators and the maximum depth of the tree) for RF. As a comparison, we also fine tune the

GPT-3 model (Babbage) with the speech transcripts to assess if the GPT-3 based text embed-

dings can be better used to predict the dementia.

MMSE score prediction. MMSE is perhaps the most common measure for assessing the

severity of AD. We perform regression analysis using both the acoustic features and text

embeddings from GPT-3 (Ada and Babbage) to predict the MMSE score. The scores normally

range from 0 to 30, with scores of 26 or higher being considered normal [3]. A score of 20 to

24 suggests mild dementia, 13 to 20 suggests moderate dementia, and less than 12 indicates

severe dementia. As such, the prediction is clipped to a range between 0 and 30. Three kinds of

regression models are employed, including Support Vector Regression (SVR), Ridge regres-

sion (Ridge) and Random Forest Regressor (RFR). The models are similarly implemented with

the scikit-learn library [42], with the hyperparameters for each model determined using grid-

search 10-fold cross-validation on the training dataset.

Performance evaluation

For AD classification task, the performance is evaluated by a panel of metrics such as the accu-

racy, precision, recall and F1-score, where the threshold of 0.5 is used. The ADReSSo Chal-

lenge dataset was already split into the training set and the test set, with 70% of samples

allocated to the former and 30% allocated to the latter. To evaluate the generalization ability of

the model, we have two ways to report the performance: 10-fold cross-validation (CV) and

evaluation on the test set. The model is well calibrated before testing. The first way is to test for

generalizability within a dataset using the 10-fold CV approach. This way, we partition all the

available data (i.e., the entire data including the training set and test set) into three sets (train-

ing, validation and test sets) in an 80/10/10 ratio using the 10-fold CV. That is, we use 8-fold

for training, 1-fold for validation, and the remaining for testing in each run. We report the

average of the ten independent runs in which the test data is different in each run. As such, we

can reduce the potential sampling bias where the results can depend on a particular random

choice of the data sets. We also report the averaged AUC scores, along with the corresponding

standard deviations over the 10-fold CV when comparing the different models using acoustic

features, GPT-3 embeddings (both Ada and Babbage) for AD classification.

The second way to report the performance is that the model is evaluated on an unseen test

set not used in any way during model development. Since we have a separate test set that was

already set aside, we use it as the independent, held-out dataset. We still perform the 10-fold
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cross-validation, but only the existing training set. That is, we split the training dataset into ten

folds, with 9 folds for training, and the remaining for validation to tune hyperparameters in

each run for ten independent runs. We then fit the model on all the training dataset using the

hyperparameters of the best model, and then use the final model on the held-out test data. The

use of the held-out test data allows us to directly compare the different models as well as with

Challenge baseline on the same dataset. We stress that the test dataset is different between

10-fold CV and evaluation on the test set.

For AD regression task, we similarly conduct the 10-fold CV and inference on the test set.

We report root mean squared error (RMSE) for the MMSE score predictions on the testing

data using the models obtained by 10-fold CV. The hyperparameters for each model are deter-

mined based on performance in grid-search 10-fold cross-validation on the training dataset.

In finetuning GPT-3 for the AD classification task, the hyperparameters we used are consis-

tent with the recommendations by OpenAI for its Babbage model. Specifically, the hyperpara-

meters available to be tuned include the number of epochs, batch size and learning rate

multiplier. We vary the number of epochs from 1 to 5, learning rate multiplier between 0.02 to

0.2 and the batch size between 4 to 10 and compare with the results from default internal

parameters originally set by OpenAI. It turned out that the recommended hyperparameters by

OpenAI work best for the finetuning.

In doing the 10-fold CV, all the results we reported are the average of the ten folds, together

with its standard deviation. The statistical significance between the models is performed via

the Kruskal-Wallis H-test. We use the Kruskal-Wallis H test for sample comparison because it

is non-parametric and hence does not assume that the samples are normally distributed.
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