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Cellular immune disorder is a common characteristic of myelodysplastic syndrome (MDS). Abnormal natural killer (NK) cell
function has been reported inMDS patients, and this is closely related to disease progression and poor prognosis. However, little is
known about the association between the abnormal immune checkpoint (IC) that results in abnormal immune NK cell function
and the prognosis ofMDS. In this study, RNA-sequencing data from 80 patients in the GSE114922 dataset and bonemarrow (BM)
samples from 46 patients with MDS in our clinical center were used for overall survival (OS) analysis and validation. We found
that the NK cell-related IC genes PDCD1, TIGIT, CD47, and KIR3DL2 had higher expression and correlated with poor OS for
MDS patients. High expression of PDCD1 or TIGIT was signifcantly associated with poor OS for MDS patients younger than
60 years of age. Moreover, co-expression of PDCD1 and TIGIT had the greatest contribution to OS prediction. Interestingly,
PDCD1, TIGIT, CD47, and KIR3DL2 and risk stratifcation based on the Revised International Prognostic Scoring System were
used to construct a nomogram model, which could visually predict the 1-, 2-, and 3-year survival rates of MDS patients. In
summary, high expression of IC receptors in the BM of MDS patients was associated with poor OS. Te co-expression patterns of
PDCD1, TIGIT, CD47, and KIR3DL2 might provide novel insights into designing combined targeted therapies for MDS.

1. Introduction

Myelodysplastic syndrome (MDS) is a group of heteroge-
neous malignancies with distinct natural histories that are
characterized by inefective clonal hematopoiesis, abnormal
hematopoietic cell morphology, and varying degrees of
cytopenia where one-third of patients progress to acute
myeloid leukemia (AML) [1–3]. Tis disease is more
prevalent in older patients aged 65–70 with less than 10% of
patients younger than 50 [4, 5]. In elderly patients, the

incidence is 7–35 per 105 with men more likely to develop
MDS than women [6]. According to the Revised In-
ternational Prognostic Scoring System (IPSS-R), treatment
strategies vary for patients with diferent risk stratifcations
[7]. Although chemotherapy, hypomethylating agents, and
allogeneic hematopoietic stem cell transplantation have
partially benefted patients, MDS treatment still poses a great
challenge [8–10]. Multiple factors have been involved in the
pathogenesis of MDS, such as cellular immune dysfunction.
Previous studies have reported abnormal natural killer (NK)
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cells in MDS patients with overexpression of immunosup-
pressive molecules [11], decreased expression of activating NK
receptors, reduced antibody-dependent cytotoxicity (ADCC),
and lowered direct NK cell lytic function [12]. Moreover,
haploidentical NK cell therapy has been reported to achieve
complete remission by reducing high-risk MDS clones [13].
ReconstructedNK cells achieve better functional education and
help reduce relapse in patients when donors and hosts express
all of the KIR ligands for donor KIRs [14]. Tese fndings
suggest that targeting NK cell-associated receptors may be
a novel immunotherapeutic strategy for MDS patients.

In contrast to T cells, NK cells can migrate to many
tissues and initiate immune responses to infections or
cancers, and they are able to dissolve certain target cells via
cytotoxicity mechanisms that release substances, such as
granzymes and perforin, without sensitizing the host
[15–17]. Increasing evidence has demonstrated that NK cells
are defective in patients with solid tumors [18] or MDS [19],
indicating that NK-mediated immune surveillance of tu-
mors may be disrupted, and immunosuppression and im-
mune escape may contribute to disease progression [12, 20].
Recent studies have suggested that immune checkpoint (IC)
receptors, such as programmed cell death protein-1 (PD-1),
programmed death-ligand 1 (PD-L1), T cell immunoglob-
ulin and ITIM domain (TIGIT), CD47, and cytotoxic T
lymphocyte-associated antigen-4 (CTLA-4), are highly
expressed in many types of cancer and are currently targeted
to improve antitumor responses [21–24]. As the classical
immune checkpoint, PD-1 binds to its ligands PD-L1 and
programmed death-ligand 2 (PD-L2) to allow tumor cells to
evade immune surveillance [25]. In numerous cancers,
TIGIT signaling negatively regulates antitumor immunity
[26], and CD47 overexpression has been reported to be
associated with poor survival and a higher rate of pro-
gression to AML in MDS patients [27]. Moreover, cytokines
secreted by KIR3DL2 expressing NK cells and T cells could
promote the progression of malignances [28]. Our previous
study found that dysregulated T cells, caused by low B-cell
leukemia/lymphoma 11B (BCL11B) expression, are associated
with the prognosis of MDS; however, the efect of abnormal IC
receptor expression on NK cells on the clinical outcomes of
MDS patients remains unclear [29]. Furthermore, the anti-
tumor efects of IC inhibitors (ICIs) alone are limited, which
may be due to heterogeneity in IC receptor expression levels
and distinct dominant IC expression patterns in diferentMDS
patients [30, 31]. Terefore, it is worth studying the expression
patterns of IC proteins in MDS.

In this study, we investigated the prognostic importance
of IC proteins in relation to NK cells using RNA-sequencing
data obtained from newly diagnosed MDS patients from the
Gene Expression Omnibus (GEO) database, and the results
were further validated by quantitative real-time PCR (qRT-
PCR) in our clinical center.

2. Materials and Methods

2.1. GSE114922Dataset. Te RNA-sequencing data from 80
de novo MDS patients and corresponding clinical in-
formation in the GSE114922 dataset were downloaded from

the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/). Overall survival (OS) was
defned as the time from the date of diagnosis to the date of
death or last follow-up. Te clinical information of the
patients, including age, gender, OS status, cancer type, and
risk stratifcation, is listed in Table S1.Te analysis process is
shown in Figure 1. Because the GSE114922 dataset is
publicly available, approval by a local ethics committee was
not required.

2.2. BM Samples. A total of 46 BM samples were collected
from the newly diagnosed MDS patients at the First Afl-
iated Hospital of Jinan University and Nanfang Hospital
Afliated to Southern Medical University (JNU-SMU) from
March 21, 2017, to March 26, 2020. Te median follow-up
time was 393 days (range: 27–1,418 days). Tis study was
performed in accordance with the principles of the Decla-
ration of Helsinki and was approved by the Ethics Com-
mittee of the First Afliated Hospital of Jinan University. All
participants provided written informed consent.

2.3.QuantitativeReal-TimePCR (qRT-PCR). Total RNAwas
isolated from the BM samples of the MDS patients using
TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according
to the manufacturer’s instructions and was then reverse
transcribed into complementary DNA (cDNA) using a re-
verse transcription kit (Promega Corporation, Madison,
Wisconsin, USA) according to the experimental in-
structions. Te relative expression levels of PDCD1, TIGIT,
CD47, and KIR3DL2 were detected by qRT-PCR with SYBR
Master Mix (TIANGEN, Beijing, China), and β-actin was
selected as an internal control. Te primer sequences for
qRT-PCR are shown in Table S2. Te expression levels of
PDCD1, TIGIT, CD47, and KIR3DL2 are presented as 2−ΔCT.

2.4. Statistical Analysis. All statistical analyses were per-
formed using R (version 4.0.2, https://www.r-project.org/)
and Statistical Product and Service Solutions (SPSS) (version
22.0, IBM, Armonk, NY, United States) software. Te
function “surv_cutpoint” in the R package “survminer”
determined the optimal cutof value for continuous variables
(Figures S1 and S2). Te log-rank test was used to compare
diferences in Kaplan–Meier curves. Cox proportional
hazards models were constructed with the R package
“survival.” A two-tailed P value <0.05 was considered to be
statistically signifcant.

3. Results

3.1. High Expression of PDCD1, TIGIT, CD47, and KIR3DL2
in the BM of MDS Patients Is Associated with Poor OS. To
investigate the prognostic contribution of NK cell-related IC
receptors in MDS patients, we performed survival analysis
based on expressions of these genes in the GSE114922
dataset. After the optimal cutof values for PDCD1, TIGIT,
CD47, and KIR3DL2 were obtained, the patients were di-
vided into low- and high-risk groups (Figures S1 and S2).
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Interestingly, patients with high expression of PDCD1,
TIGIT, CD47, and KIR3DL2 had poorer OS in the
GSE114922 dataset (PDCD1: hazard ratio (HR)� 4.04,
P< 0.001; TIGIT: HR� 8.39, P � 0.013; CD47: HR� 2.42,
P � 0.050; KIR3DL2: HR� 2.06, P � 0.092; Figures 2(a)–
2(d)). Tese fndings were confrmed in the JNU-SMU
dataset (PDCD1: HR� 2.80, P � 0.029; TIGIT: HR� 2.53.
P � 0.063; CD47: HR� 3.70, P � 0.006; KIR3DL2:
HR� 3.22, P � 0.021; Figures 2(e)–2(h)). Tese results
suggested that high expression of either PDCD1, TIGIT,
CD47, or KIR3DL2 alone could predict poor OS in MDS
patients.

3.2. PDCD1, TIGIT, and CD47 Have Potential for Stratif-
cation Prediction in MDS Subgroups. To study the correla-
tion between PDCD1, TIGIT, CD47, and KIR3DL2 and
clinical characteristics, we performed a subgroup analysis
using the GSE114922 dataset. As shown in Figure 3, there
was a clear trend suggesting that high expression of PDCD1
or TIGIT is associated with poor OS for MDS patients
younger than 60 years of age, although the P value of TIGIT
is not statistically signifcant (PDCD1: HR= 7.09, P � 0.025;
TIGIT: HR> 100, P � 0.070). Similar results were found for

patients older than 60 years, but the P values of TIGIT and
CD47 are not statistically signifcant (PDCD1: HR = 3.37,
P � 0.008; TIGIT: HR = 5.21, P � 0.075; CD47: HR = 2.44,
P � 0.089). In addition, the prognostic value of PDCD1,
TIGIT, CD47, and KIR3DL2 for MDS patients with dif-
ferent risk stratifcations was analyzed. Low/very low-risk
patients (n = 38) with high expression of PDCD1 had poor
OS (HR = 5.54, P � 0.028), and high expression of PDCD1
or TIGITwas associated with poor OS for high/very high-
risk patients (n = 19) (PDCD1: HR = 6.63, P � 0.014;
TIGIT: HR > 100, P � 0.017). However, there is no sig-
nifcant relationship between the expression of PDCD1/
TIGIT/CD47/KIR3DL2 and OS for intermediate-risk pa-
tients (n = 19). Moreover, the KIR3DL2 expression level
was not signifcantly associated with OS in patients with
low/very low, intermediate, or high/very high risk (Fig-
ure 3). Tese results indicated that PDCD1, TIGIT, and
CD47 have potential for stratifcation prediction in MDS
subgroups.

3.3. Co-Expression Patterns of PDCD1, TIGIT, CD47, and
KIR3DL2 Have Great Contribution to OS for MDS. To in-
vestigate the efects of diferent co-expression patterns of

GSE114922
dataset JNU-SMU dataset

RNA extractionPCRPrognostic analysis

Cox regressionNomogram model

HR

Survival

MDS

………
………...
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Figure 1:Workfow of study. RNA-sequencing data from 80 patients in the GSE114922 dataset were downloaded from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) and used for overall survival (OS) analysis, including Kaplan–Meier curve
analysis, Cox regression analysis, and a nomogram model. A total of 46 BM samples were collected from newly diagnosed MDS patients
from our clinical center for RNA extraction, qRT-PCR, and OS analysis. JNU-SMU, the First Afliated Hospital of Jinan University and
Nanfang Hospital Afliated to Southern Medical University.

Journal of Oncology 3

https://www.ncbi.nlm.nih.gov/geo/


PDCD1, TIGIT, CD47, and KIR3DL2 on the clinical out-
comes of MDS patients, we analyzed diferent combinations
of these genes in Kaplan–Meier curves. Signifcantly, MDS
patients who were PDCD1highTIGIThigh, TIGIThighCD47high,
PDCD1highCD47high, or PDCD1highKIR3DL2high had a worse
OS in the GSE114922 dataset (HR> 3, P< 0.001) (Figure S3).
Tese results were confrmed in the JNU-SMU dataset
(HR> 2, P< 0.05) (Figures 4(a)–4(f)). Importantly, to fur-
ther identify which co-expression pattern has the greatest
contribution to OS, we used HR as an evaluation criterion.
Interestingly, the top three combinations that contributed to
OS prediction were PDCD1/TIGIT, TIGIT/CD47, and
PDCD1/KIR3DL2, and PDCD1/TIGIT had the greatest
contribution in the GSE114922 dataset (HR= 5.45,
Figure 4(g)). Tis fnding was again confrmed in the
JNU-SMU dataset (HR= 3.07, Figure 4(h)).

3.4. New Risk Stratifcation Based on the Nomogram Model
Shows Better Performance on OS Prediction. Because stan-
dard risk stratifcation based on IPSS-R and the expression
levels of PDCD1, TIGIT, CD47, and KIR3DL2 were signif-
icantly associated with the prognosis of MDS patients, these

were all used to construct a nomogram model to visually
predict the 1-, 2-, and 3-year survival rates for MDS patients
in the GSE114922 dataset (Figure 5(a)). Te detailed points
and OS rates are shown in Table S3. To provide more precise
prognostic prediction for MDS patients, we generated a new
risk stratifcation for patients based on the total points
derived from the nomogrammodel. After obtaining optimal
cutof values 131 and 203 using X-tile software, the patients
were divided into low-, intermediate-, and high-risk groups
(Figures S4A and S4B). Interestingly, patients with higher
risk (total point >203) based on the nomogram model had
worse OS than those with low or intermediate risk in the
GSE114922 dataset (P< 0.001) (Figure 5(b)). Tis result was
also shown in standard risk stratifcation based on IPSS-R in
the GSE114922 dataset where patients with high risk had
worse OS compared with those with low or intermediate risk
(P � 0.001) (Figure 5(c)). Although high-risk patients (total
point >203) based on the nomogram model had worse OS
than those with low or intermediate risk in the JNU-SMU
dataset (P � 0.002), standard risk stratifcation based on
IPSS-R was not signifcantly associated with OS (P � 0.272)
(Figures 5(d) and 5(e)). Notably, the new risk stratifcation
was an independent predictor for OS in the GSE114922
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Figure 2: OS analysis of PDCD1, TIGIT, CD47, and KIR3DL2 for MDS patients. High expression of PDCD1, TIGIT, CD47, and KIR3DL2
was associated with poor OS. Kaplan–Meier curves were plotted according to groups of high and low expression of PDCD1 (a), TIGIT
(b), CD47 (c), and KIR3DL2 (d) in the GSE114922 dataset (n� 80). OS analysis of PDCD1 (e), TIGIT (f ), CD47 (g), and KIR3DL2 (h) in the
JNU-SMU dataset (n� 46).
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Figure 3: Subgroup analysis of PDCD1, TIGIT, CD47, and KIR3DL2 for MDS patients in the GSE114922 dataset.
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Figure 4: Co-expression patterns of PDCD1, TIGIT, CD47, and KIR3DL2 in MDS patients. OS analysis of PDCD1highTIGIThigh (a), TIGI-
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Figure 5: Continued.
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dataset (HR= 3.51, 95% confdence interval (CI): 1.99 to
6.18, P< 0.001). Tis result was again confrmed in the
JNU-SMU dataset (HR= 2.13, 95% CI: 1.20 to 3.78, P �

0.002) (Table 1). Tese fndings indicate that the new risk
stratifcation based on the nomogram model had better
performance for OS prediction than the standard risk
stratifcation based on IPSS-R.

4. Discussion

It has been demonstrated that aberrant expression of IC re-
ceptors is signifcantly associated with NK cell dysfunction in
MDS, but little is known about their association with the
prognosis of MDS patients [11, 12]. In this study, we found that
high expressions ofPDCD1,TIGIT,CD47, andKIR3DL2, which
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Figure 5: Construction of a nomogrammodel using the GSE114922 dataset. (a) A nomogrammodel was constructed according to PDCD1,
TIGIT, CD47, and KIR3DL2 expression and standard risk stratifcation based on IPSS-R. After a point for PDCD1, TIGIT, CD47, and
KIR3DL2, the standard risk stratifcation for each patient was assigned by the nomogram, and the total points could be obtained to predict
OS rates. A new risk stratifcation was constructed from the total points derived from the nomogrammodel in the GSE114922 (b) and JNU-
SMU (d) datasets. Standard risk stratifcation based on IPSS-R in the GSE114922 (c) and JNU-SMU (e) datasets.

Table 1: Univariate and multivariate Cox regression analysis in MDS patients.

Variables
GSE114922 dataset JNU-SMU dataset

Univariate Cox Multivariate Cox Univariate Cox Multivariate Cox
HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

Gender
Female Reference Reference Reference Reference
Male 2.88 (1.11, 7.48) 0.030 2.59 (0.95, 7.05) 0.063 3.39 (1.10, 10.48) 0.034 10.10 (2.08, 49.08) 0.004
Age
≤60 Reference Reference Reference Reference
>60 1.33 (0.44, 4.00) 0.611 1.60 (0.48, 5.34) 0.45 0.99 (0.40, 2.47) 0.990 0.97 (0.34, 2.73) 0.951
Risk stratifcation
Low risk Reference Reference Reference Reference
Intermediate risk 3.60 (1.30, 9.98) 0.014 0.77 (0.21, 2.87) 0.694 2.78 (0.25, 31.30) 0.404 4.93 (0.27, 90.73) 0.283
High risk 4.57 (1.50, 14.01) 0.008 2.11 (0.56, 8.01) 0.272 2.94 (0.39, 22.24) 0.296 4.40 (0.35, 55.51) 0.252
Risk stratifcation (estimated by total points)
Low risk Reference Reference Reference Reference
Intermediate risk 3.90 (1.23, 12.35) 0.021 5.75 (1.28, 25.84) 0.023 1.44 (0.33, 6.39) 0.630 1.32 (0.20, 8.60) 0.770
High risk 12.47 (3.93, 35.56) <0.001 10.83 (2.87, 40.93) <0.001 5.01 (1.60, 15.68) 0.006 20.21 (3.90, >100) <0.001
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are related to NK cells, predict poor OS for MDS patients.
Moreover, co-expression of PDCD1, TIGIT, CD47, and
KIR3DL2 correlates with poor OS for MDS patients. Of these
genes, the co-expression of PDCD1 andTIGITmight be the best
OS predictor for MDS. Interestingly, weighted combination of
IPSS-R, PDCD1, TIGIT, CD47, and KIR3DL2 could provide
more accurate prognostic stratifcation for MDS patients.

Harnessing the immune response to target malignant
tumors through the use of immune checkpoint blockade
(ICB) has now become a vital breakthrough in treating solid
tumors [32–34] and hematological malignancies [35]. In this
study, we found that overexpression of PDCD1, TIGIT,
CD47, and KIR3DL2 predicted poor OS for MDS patients,
and this may indicate that the proteins of these genes might
serve as targets for immunotherapy. Nowadays, various
clinical trials of ICBs in MDS have been carried out;
however, remission could be observed in only a small
percentage of MDS patients who were treated with a single
dose of monoclonal antibody to ICBs [30, 36–39]. Due to the
limited response activities of ICB as a single agent, com-
bination therapy with diferent ICBs may be used to over-
come primary and acquired resistance to single-agent
administration and provide more clinical beneft for patients
[40]. In a variety of solid tumors, the results of multiple
clinical trials of ICB combination therapy for malignant
tumors have shown that combining ICBs can lead to higher
response rates with manageable safety profles and good
tolerability [41–44]. Primary data from an ongoing Phase II
clinical trial suggested that combination of PD-1 and CTLA4
monoclonal antibodies can achieve 58% projected 1-year
survival in R/R AML patients [45, 46]. However, clinical
trials of ICB combination therapy in MDS patients are
recruiting and ongoing, and there are currently no relevant
preliminary data [47–50]. Our previous research has found
that the combination of two IC proteins was a better pre-
dictor for the prognosis for AML patients than individual
ones [51]. In this study, we demonstrated that co-expression
of PDCD1 and TIGITmay work the best for OS prediction in
MDS, which may provide a feasible and efective scheme for
ICB combination therapy for MDS patients.

It is common practice to detect cytogenetic changes in
patients during the diagnosis of hematological malignancies
to stratify risk and predict clinical outcomes, but due to the
heterogeneity and complexity of the diseases, individuals
difer in responses to chemotherapy, duration of remission,
and recurrence although they have the same cytogenetic
changes [52]. In recent years, genetic aberrations have
signifcant practical value, and some have been used in
National Comprehensive Cancer Network (NCCN) guide-
lines [53, 54]. Although the standard classifcation method
based on IPSS-R includes chromosomal abnormalities, it
lacks precise gene expression changes and mutations and
cannot further individualize risk stratifcation for MDS
patients. Tus, in this study, we constructed a new risk
stratifcation consisting of PDCD1, TIGIT, CD47, KIR3DL2
and the risk stratifcation based on the IPSS-R, which may
provide more precise prognosis predictions for MDS.
However, the small sample size of this study may have
statistical bias, which may account for the lack of signifcant

correlation between standard risk stratifcation based on IPSS-
R and prognosis of patients in JUN-SMU dataset (Figure 5(e)).
Moreover, there were a large number of low-risk patients in the
GSE114922 dataset, while the proportion of high-risk patients
in the JUN-SMU dataset was relatively high. Due to clinical
sample limitations, we could not collect enough low-risk pa-
tients with sufcient follow-up time; thus, we will need to
expand the sample size and include more samples from low-
risk patients to verify our results in the future.

In conclusion, we demonstrated that high expression of
PDCD1, TIGIT, CD47, and KIR3DL2, which are related to
NK cells, is associated with poor OS for MDS patients, and
co-expression of PDCD1 and TIGIT might be the best OS
predictor for MDS. Moreover, a new risk stratifcation
paradigm consisting of PDCD1, TIGIT, CD47, and KIR3DL2
expression and the standard risk stratifcation based on
IPSS-R could provide more precise prognosis predictions for
MDS. Tese fndings might provide novel insight into
prognosis stratifcation and designing combined targeted
therapy for MDS.
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