
Artificial intelligence in microbial natural product drug 
discovery: current and emerging role

Vinodh J Sahayasheelaa, Manendra B Lankadasarib, Vipin Mohan Danc, Syed G Dastagerd, 
Ganesh N Pandiane, Hiroshi Sugiyamaa,e

a.Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-
Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan.

b.Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, 
NY 10065, USA

c.Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, 
Thiruvananthapuram, Kerala, India

d.NCIM Resource Centre, Division of Biochemical Sciences, CSIR - National Chemical 
Laboratory, Pune, Maharashtra, India

e.Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-
Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan

Abstract

Microorganisms are exceptional sources of a wide array of unique natural products and play 

a significant role in drug discovery. During the golden era, several life-saving antibiotics and 

anticancer agents were isolated from microbes; moreover, they are still widely used. However, 

difficulties in the isolation methods and repeated discoveries of the same molecules have caused 

a setback in the past. Artificial intelligence (AI) has had a profound impact on various research 

fields, and its application allows the effective performance of data analyses and predictions. With 

the advances in omics, it is possible to obtain a wealth of information for the identification, 

isolation, and prediction of the targets of secondary metabolites. In this review, we discuss drug 

discovery based on natural products from microorganisms with the help of AI and machine 

learning.

Introduction

Microorganisms are well known to produce structurally diverse secondary metabolites 

that are widely used in clinical settings for treating various clinical conditions, such as 

cancer, infectious disease, and inflammation.1 Conversely, they are also used in various 

other sectors, such as agriculture (as herbicides and insecticides), the food sector (as 
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nutraceuticals), enzyme inhibitors, and for bioremediation, which uses natural products 

(NPs) directly or develops molecules derived from their scaffolds.2,3 Compared with 

synthetic molecules, NPs offer specific features in terms of structural complexity and 

scaffold diversity.4 The discovery of NPs has also revealed previously unknown targets 

in cells. For instance, rapamycin, which was isolated from a strain of Streptomyces 
hygroscopicus, has resulted in the identification of the mechanistic target of the rapamycin 

(mTOR) cell signaling pathway.5

Artificial intelligence (AI) uses computers to perform complex functions, analyse large 

datasets, and interpret them based on algorithms.6 AI has been used widely in various 

research fields and industries for decision-making and processing tasks because it provides 

efficient analysis and faster results with reduced human error and at times uncovers data 

structures difficult to obtain from other sources.7 Recently, AI has received increased 

attention and is being used by chemists to perform various tasks in drug discovery, as well 

as to identify molecular properties, process automation, plan synthetic routes, and predict the 

bioactivity of molecules.8–10 Based on the recent prolific growth in machine learning (ML) 

and the wealth of information in cloud computing in the form of databases and repositories, 

researchers can now gain access to big data and integrate AI/ML approaches into their tasks.

Despite the unparalleled role of NPs in drug discovery, this approach has various challenges, 

such as the isolation, screening, purification, and structural characterization of the NPs 

derived from microbial sources.11 However, in the past two decades, the repetitive 

identification of existing and already known NPs, the demand for resources, and the 

time-consuming nature of the tasks have curbed interest in NPs among researchers and 

industries.12 With the advancement of genomics, proteomics, metabolomics, and other 

omics technologies recently, it is now possible to obtain a wealth of information to identify 

the biosynthetic dark matter.13,14 AI/ML in the field of NPs has been growing, to analyse 

the extensive amount of data stemming from the omics techniques (Figure 1) and open the 

microbial Pandora’s box for the discovery of bioactive molecules.

This review features the existing and emerging AI- and ML-based tools in various stages of 

the investigation of NPs from microorganisms. (Figure 2) We will highlight the techniques 

available to identify the microbes and prioritize them based on their genome and metabolite 

potentials. Subsequently, we will discuss fast dereplication, which is one of the major 

challenges in NP discovery, together with the tools available for this type of analysis. 

Furthermore, we will address the expedited elucidation of the structure of compounds 

and the identification of their targets with the aid of AI/ML. Finally, we will discuss the 

development of new powerful tools and the integration of multiple techniques that will speed 

up NP discovery, thus leading to a boom in the identification of potent drug candidates in the 

future.

2. Application of AI/ML in natural product discovery

2.1 Selection of organism and Taxonomic Identification.

The selection of organisms is the preliminary step in NP discovery. Certain species, such 

as actinomycetes, have been among the most prolific sources of pharmaceutical candidates 
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in the past.12 However, the overmining of this limited resource has led to the repeated 

rediscovery of known compounds and has exhausted the identification of novel molecules 

in this setting.15 Although the isolation of NPs is very laborious and challenging, careful 

selection of underexplored microorganisms16 from untapped environments, such as marine 

sources17 and symbiotic sponges,18 increases the chance of identifying molecules with 

different scaffolds. In addition to cultured microorganisms, nearly 99% of microbial species 

are uncultured in the lab and hold promise in the search for new NPs. This has led to the 

identification of potent antibiotics, such as teixobactin19 and lassomycin,20 using specialized 

culture techniques.

The classical approaches in bacterial identification according to taxonomy are time-

consuming and misleading; however, with the advent of the omics and ML techniques, 

it is possible to predict microbes efficiently.21 Although Gram staining is the gold-standard 

technique for the initial classification of bacteria, it is a highly time-intensive and manual-

dependent activity. In contrast, using convolutional neural networks (CNNs), researchers 

were able to classify different shapes of Gram-positive and Gram-negative bacteria via 

imaging with high confidence.22 This technique can be further extended to various 

microorganisms, for their identification and classification using ML tools. DNA-based 

identification is the most accurate method of classification of various microorganisms, as 

in the identification of DNA from bacteria, which can also be distinguished based on 

the specialized metabolites they produce. In the past, the ability to correlate microbial 

identity with signature metabolites was limited, even with access to the vast amount of 

data generated by mass spectrometry. However, recently, researchers developed a technique 

termed IDBac with the help of ML to classify microbes based on their proteins and 

specialized metabolites using matrix-assisted laser desorption/ionization time-of-flight mass 

spectrometry (MALDI-TOF MS).23 Using this approach, those authors could discriminate 

Bacillus subtilis at the strain level based on its ability to produce cyclic peptide antibiotics 

and a group of Micromonospora with 99% sequence similarity with high confidence. 

Another algorithm called SPeDE also facilitates the identification of microbes at taxonomic 

resolution from a mass spectral dataset of both culture-dependent and -independent 

samples.24 MALDI-TOF is a powerful tool that is known for its versatility and is used 

in various fields with the advantage of being relatively easy to operate, fast, and accurate. 

The high-throughput capacity of MALDI-TOF combined with ML tools allows the rapid 

identification of microbial communities compared with traditional biochemical or molecular 

biology techniques.25 Hence, in the future, rare and underexplored microbes can be 

identified directly from samples with the help of ML-assisted MALDI-TOF, which will 

accelerate the process of candidate selection for NP screening and isolation. Another 

interesting application of MALDI is imaging MS (IMS), which has been used to map the 

spatial distribution of various secondary metabolites.26–29

2.2 Genome mining with the aid of AI/ML

The use of genome mining for secondary metabolite identification has been rapidly 

increasing in recent years with the advent of next-generation sequencing techniques, 

followed by bioinformatics pipelines.30 Although NPs are highly diverse in structure, 

their biosynthetic machinery, which is known as biosynthetic gene clusters (BGCs), 
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is highly conserved in the microbes that fall under the class of polyketide synthases 

(PKSs),31 nonribosomally synthesized peptides (NRPs),32 ribosomally synthesized and 

post-translationally modified peptides, alkaloids,33 and terpenes.34 The technique begins 

with the identification of existing and novel BGCs from the genome sequences and 

further characterization of novel gene clusters, to complete the analysis. To perform this 

type of complex analysis using big data, ML algorithms are widely used to predict the 

BGC assembly lines and predict the putative encoded structure from the sequence.35 

With the help of BGC databases36–41 and computational tools,42–49 NPs can be predicted 

based on previously characterized pathways (Table 1). Using one such tool, antiSMASH, 

which employs profile hidden Markov models (pHMMs) to identify the BGC, a novel 

polyketide named formicamycin (Figure 3) has been isolated.50 In another study, a potent 

antituberculous compound, gladiolin (Figure 3), was isolated with the help of genome 

mining from Burkholderia gladioli, which is a previously unknown source of NPs, in a 

patient with cystic fibrosis.52 More recently, a new class of previously unknown cryptic 

BGCs, i.e., lanthipeptides,51 was identified with the help of ML and deep learning (DL) 

strategies.

Conventionally, the process of NP isolation uses a “grind and find” approach, which involves 

culturing the microorganism followed by purification and structure elucidation; however, 

with the advent of genome mining and ML/DL-based approaches, novel metabolites have 

been isolated from uncultured organisms.52 For instance, the combination of the two 

strategies has led to the discovery of the antibiotic malacidin from the global microbiome 

using heterologous expression without culturing the organism.53 A computational algorithm 

based on hidden Markov models (HMMs) is available for BGC identification from 

metagenomic samples, which allows the identification of interesting molecules from 

the human microbiome.54,55 In many cases, most of the BGCs remain silent, without 

expression, which hinders the production of secondary metabolites; nevertheless, using 

elicitors (e.g., small molecules and coculture), it is possible to predict the biosynthetic genes 

and express them with the help of ML tools.56 One of the major obstacles to NP discovery is 

the identification of secondary metabolites from unconventional sources because of the lack 

of cultivation of the microbes. However, with the emergence of metagenomics and ML, it 

is now possible to predict NPs in environmental or biological niches using specialized ML 

tools.54,57

2.3 AI/ML tools for Metabolite production and expression

Many microorganisms, such as those in the genera Streptomyces and Myxococcus, have 

been predicted to have large secondary metabolite BGCs with the advent of genome 

sequencing and bioinformatics. However, they usually do not code for NPs and remain as 

silent gene clusters.58 Therefore, various genome engineering techniques have been applied 

to activate those silent gene clusters, such as cocultivation,59 one strain many compounds,60 

elicitors,61 ribosome engineering,62 chemical epigenetics,63 epigenetic modification,64 

overexpression of transcription factors,65 and heterologous expression,66 which have had 

huge success in identifying new compounds. Despite the success in the control of parameters 

such as growth and strain engineering, media optimization remains challenging.67 To 

overcome this hurdle, various AI/ML techniques have been developed to control and 
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monitor the production of metabolites. A study reported by Neythen et al. has used deep 

reinforcement learning, an approach from AI, for the control of cocultures in a continuous 

bioreactor.68 Using this approach, those authors were able to optimize the output of the 

coculture bioprocess by controlling various parameters. This type of study can be considered 

for controlling various factors in the production of NPs. Another study reported by Fei 

et al. used a high-throughput method to activate the silent BGCs in various organisms.69 

The authors screened elicitors to induce secondary metabolite production with the help 

of IMS in nearly 500 conditions. Using this approach, they identified a new glycopeptide 

from Amycolatopsis keratiniphila, NRRL B24117, with the help of laser-ablation-coupled 

electrospray ionization MS. Although this approach can perform HTS to overcome the 

drawback of IMS and to analyze complex datasets, Brett et al. have developed a work tool 

for Metabolomics Explorer (MetEx)that enables users quickly and intuitively to analyze 

complex liquid chromatography (LC)-MS and metabolomics datasets.70

2.4 Dereplication of NPs with AI/ML techniques

During the golden era of NP development, several drug candidates were identified, most 

of which are still widely used for treating various diseases and infections.71 However, in 

the late 20th century, NP discovery started slowing down because of the repeated isolation 

of known compounds.72 To overcome this issue, fast identification of the known secondary 

metabolites is necessary, to reduce the analytical time and resources.73 Dereplication is 

a key process in the quick identification of previously known compounds in microbial 

extracts.74 Microbial extracts contain various compounds; therefore, the use of dereplication 

techniques helps eliminate redundancy and provides knowledge regarding novel compounds. 

To perform this highly efficient and robust task, ML tools with high accuracy are 

required. Previously, the dereplication techniques were carried out using high-performance 

liquid chromatography connected with a UV or photodiode array (PDA) detector with 

an automated bioassay and inbuilt library databases.75 However, structural information is 

lacking when using UV/PDA-based detection, and a more powerful instrument is required to 

capture additional spectral properties of the compounds.

2.4.1 Mass spectrometry-based dereplication using AI/ML—MS is a technique 

that has been widely used recently for dereplication in NPs because of its sensitivity, 

accuracy, and rapidity. Another major advantage of MS is its ability to gain a large amount 

of structural information from a trace amount of sample using an untargeted approach.14 

The combination of mass information with UV/PDA can readily identify compounds with 

the help of databases such as Dictionary of Natural Products76 (http://dnp.chemnetbase.com/

intro/), MarinLit77 (https://marinlit.rsc.org/), StreptomeDB78 (http://www.pharmbioinf.uni-

freiburg.de/streptomedb), NPEdia79 (http://www.cbrg.riken.jp/npedia/), and The Natural 

Products Atlas80 (https://www.npatlas.org/). Using this approach, secondary metabolites 

from various actinomycetes have been dereplicated.81 LC coupled with MS can achieve 

high-throughput screening of metabolites; however, the analysis of the data in an efficient 

way remains challenging. Moreover, this requires researchers manually to search various 

datasets, such as UV signatures, mass spectra, and microorganisms in different databases, 

which are far from comprehensive.14 ML-based approaches could be a good solution for the 
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in-line identification of NPs using spectral information without manual support against the 

available databases.

Although MS plays an important role in the identification and dereplication of NPs, it has 

several drawbacks and major problems arise regarding the overlapping parent molecular 

masses of various metabolites based on MS spectra alone.82,83 Therefore, a more efficient 

MS-based dereplication technique, such as tandem MS, is required and can increase the 

sensitivity of the detection of compounds based on MS/MS fragmentation.84 However, the 

analysis of MS/MS data is a cumbersome and intensive manual task, and an automated 

untargeted metabolomics pipeline is thus warranted to identify the metabolites efficiently. 

Recently, using various ML tools and algorithms, it was possible to interpret high-resolution 

mass spectra with reduced noise.85 Several AI/ML-based tool has been developed for 

mass spectral data processing and analysis such as MZmine86, Metaboanlayst87, MS-

Dial88, Decon2LS89, XCMS90,THRASH91 and some are available as part of commercial 

vendor packages such as XCalibur (Thermo Fisher), MassHunter (Agilent), and using 

those metabolites has been predicted with high confidence manually.92 Metabolomics 

databases that are available based on MS/MS patterns are Massbank93, Metlin94, LMSD95, 

MoNA (https://mona.fiehnlab.ucdavis.edu/), Massbank (https://massbank.eu/MassBank/) 

and GNPS96, But in terms of microbial NPs identification, these are not widely used due to 

the scarcity of spectral data of natural products with the exception of GNPS96.

Recently, molecular networking (MN) has received widespread attention in the NP 

community for the dereplication and delineation of novel secondary metabolites from 

various sources with minimal manual interference. This approach was first introduced in 

2012 for metabolite analysis from a set of living microbial colonies,97 yielding results 

that were comparable to the DNA sequencing of environmental samples to study microbial 

communities.98 MN is a computational technique that interprets the complex dataset that 

arises from MS analysis and visualizes it in the form of a network.99 To enable the analysis 

of MN, a crowdsourced library of reference spectra from a large number of compounds has 

been deposited from various communities and is available for analysis in GNPS96 (Global 

Natural Products Social Molecular Networking (http://gnps.ucsd.edu)). MN can identify 

compounds based on MS/MS spectral similarities and can also link the unknown molecules 

with related ones by exploiting similar fragmentation patterns. MN has been recognized for 

its high success rate and is becoming a routine tool for dereplication. For example, using 

MN and indexing 260 strains with ecologically diverse origins, the Pseudomonas-specialized 

metabolome led to the discovery of poaeamide B and bananamides (Figure 3).100 In another 

study, two novel chlorinated metabolites, isoconulothiazole B and conulothiazole C, were 

isolated from cyanobacteria using the MN strategy.101

Moreover, based on MN, further developments have been made to render the road toward 

the identification of NPs more straightforward. Using classical MN, various features have 

been incorporated with MS/MS, and feature-based MN (FBMN) has been introduced.102 

It can efficiently distinguish isomers based on chromatography and ion mobility, while 

also facilitating spectral annotations and quantifications, thereby enabling robust analyses. 

Further, during ionization molecules form different adduct which limits the library 

annotation in MN to overcome this bottleneck Ion Identity Molecular Networking (IIMN) 
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was developed.103 This feature improved the network connectivity for structurally related 

molecule and can be used to reveal unknown ion-ligand complexes. Very recently to identify 

bioactive compounds a scalable native metabolomics approach integrating non-targeted 

liquid chromatography tandem mass spectrometry, and simultaneous detection of protein 

binding via native mass spectrometry was developed.104 Using this integrated technique, 

rivulariapeptolides a family of serine protease inhibitors with nanomolar potency was 

identified and such approach could be central importance for drug discovery in future.

Hosein et al. have developed DEREPLICATOR+, an algorithm that can aid in the 

identification of NP classes such as NRPs, polyketides, terpenes, benzenoids, alkaloids, and 

flavonoids.105 A common problem in NP identification is the isolation of active compounds 

during bioassay-guided purification from the extract. To overcome this hurdle, bioactivity-

based MN, which integrates bioinformatics workflow to map the bioactive score using MN, 

was developed.106 Using this approach, antiviral compounds were isolated from extracts of 

Euphorbia dendroides, for which a classical bioassay-guided fractionation procedure had 

previously failed.106 Further, a versatile, open-access platform NP Analyst was developed 

as a user friendly web-based infrastructure enabling NP community to analyze without 

the need for intense data processing.107 Although in the past MN could only be done 

via the web with GNPS, now many off-line tools such as MZmine3.086, MS-DIAL88, 

Metaboseek108, NetID109 and commercial software like Compound Discoverer (Thermo 

Scientific) have the ability to perform MN without the online platform making it easier.

Although mass spectral analytical tools are available for the identification of known 

compounds from databases, predicting the structure of unknown metabolites is a very 

challenging task. However, with the advent of ML, it is improving fast. Bocker et al. 

developed a tool (SIRIUS 4) that can identify the structure based on MS/MS datasets using 

a support vector machine.110 Further, advancing SIRIUS 4, ZODIAC, a network-based 

algorithm for the de novo annotation of database-independent molecular formulas was 

developed by the same group.111 Employing Bayesian statistics and Gibbs sampling it 

ensures fast processing in practice and is found to be better than SIRIUS by 16.5 fold. 

Using such ML tools novel molecular formula can be annotated. In another study that 

used a Deep Neural Network (DNN), a computational tool (class assignment and ontology 

prediction using MS, CANOPUS) was developed that could predict unknown metabolites 

for which spectral and structural reference data were not available.112 Similar to CANOPUS, 

a high-confidence structural annotation tool COSMIC based on SVM was developed.119 

MS2DeepScore, which is an ML- supported mass spectral similarity-predicting algorithm 

was developed that allowed clustering, to identify metabolites similar to GNPS.96,141 

Further, FALCON116 a density-based clustering of MS/MS spectra116, MS2LDA combined 

with Mass2Motif142 an unsupervised substructure discovery platform143 and Significant 

Interrelation of MS/MS Ions via Laplacian Embedding (SIMILE)117 are also available to 

predict the structural relationships of compounds. MN-based approaches for dereplication 

can be carried out with high success and can be further employed for the structural 

elucidation of novel compounds in the future with the support of the ML approaches 

developed recently.112–115,119
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2.4.2 AI for the NMR-based structure elucidation/dereplication of NPs—The 

structural elucidation of molecules is a challenging problem in NP research. Although 

X-ray crystallography provides unambiguous structural information, it is often impeded 

by the requirement of a single crystal, and the limited amount of the isolated molecule 

restricts its wide application.144 Nuclear magnetic resonance (NMR) is a universally 

employed spectroscopy method that allows NP chemists to deduce molecular structures 

from spectra.145 Computer-aided structural elucidation (CASE) still plays a marginal role 

in this setting, although it was one of the earlier applications of AI.146 Although databases 

for NMR are available (NAPROC-13,120 CH-NMR-NP (https://www.j-resonance.com/en/

nmrdb/), BMRB,147 and Spektraris NMR),148 they have several drawbacks and, thus, do not 

truly satisfy the requirements of NP communities.149. To overcome this issue, NP-MRD,121 

which is an NMR database including over 41,000 NP compounds from >7400 different 

living species with various features, was introduced very recently.121 This database is still 

under development; however in the future, it will allow automated dereplication and CASE 

to be performed much more efficiently.

To assist the structure elucidation and perform dereplication, ML tools and software, such 

as logic for structure elucidation,150 ACD/Structure elucidator,151 Mestrelab Mnova,152 

and Computer-aided Spectral Assignment,153 were developed and have aided NP 

identification.154,155 Recently, a robust AI-powered structure-prediction tool (DP4-AI)122 

was developed and allowed the successful assignment of the structure of complex 

NPs.156–158 Using the CNN-based based approach NMR-based machine learning tool 

“Small Molecule Accurate Recognition Technology” (SMART 2.0) for mixture analysis and 

characterization of new natural products were developed.127 This led to the identification 

of a new chimeric swinholide-like macrolide, symplocolide A, as well as the annotation of 

swinholide A, samholides A–I, and several new derivatives. In another study, SMART-Miner 

a metabolite identification tool from the 1H-13C HSQC NMR spectra with the support of 

CNN was developed. The model was trained on 657 chemical entities collected from HMDB 

and BMRB to subsequently identify those molecules in complex mixtures with an accuracy 

of 88%.

To analyze the two-dimensional NMR spectra, a DNN-based approach for peak picking 

and spectral deconvolution (DEEP Picker) was developed very recently.123 In another 

study, various classes of NPs were predicted using ML from 13C-NMR spectroscopic 

data.159 NMR is relatively less explored for dereplication compared with HRMS because 

of its sensitivity; nevertheless, it can offer high accuracy in terms of the prediction of 

stereoisomers and the detection of all organic compounds in a mixture.160 Recently, 

using 13C-NMR, a dereplication software (MixONat)124 was developed that allowed the 

distinction of structurally close NPs, including stereoisomers, and aided the identification of 

xanthones in Calophyllum brasiliense.124,161 In another study that used 1H-NMR, Grienke et 

al. developed a workflow ELINA (Eliciting Nature’s Activities) based on a heterocovariance 

analysis, which can detect chemical features that correlate with bioactivity before isolation; 

using this approach, the authors discovered lanostane triterpenes from the extract of the 

fungus Fomitopsis pinicola.125
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2.5 Integrated approach for NP discovery using AI/ML

Multiple strategies have been developed over the years for NP prioritization, and a 

combination of various approaches (e.g., genomic, metabolomic, taxonomic, spectral 

information, and bioactivity) can be used as a factor for ranking before the downstream 

process of purification and structure elucidation of NPs.162 More recently, Kim et al. 

developed NPClassifier,128 which is a tool that can classify NPs using a DL approach. 

They have been categorized into three hierarchical levels based on the pathway and chemical 

properties; moreover, structural details can be classified using this NP, which indicates its 

applicability for drug discovery and the elucidation of biological interactions. In another 

study, an automated genome-guided NP discovery tool, with the support of an LC-MS/MS 

dataset, was developed that could automatically predict, combinatorialize, and identify 

polyketides and NRPs from crude extracts.129 Hosein et al. developed NRPquest, which 

is an ML tool that integrates MS and Genome Mining for Nonribosomal Peptide (NRP) 

discovery.130 Similarly, another tool (NRPminer) was developed very recently that combined 

both genomics and metabolomics to identify novel NRPs; using this approach, four 

unknown NRP families were identified from microbes and human microbiota and shown 

to exhibit antiparasitic activity.131 By integrating genomics and metabolomics focusing on 

NRPs, several novel protegomycin derivatives from a previously unknown NP source (X. 
doucetiae and X. poinarii) were identified (Figure 3).131 A study reported by Kleigrewe 

et al. integrated metabolomics and genome analysis to discover NPs from cyanobacteria; 

using this innovative approach, the authors discovered a new class of di- and trichlorinated 

acyl amide columbamides with cannabinomimetic activity.163 Previously, we combined 

genome mining with MN and identified urdamycin E and a novel derivative, urdamycin 

V (Figure 3), from Streptomyces spp., which induce cell death by inhibiting mTOR 

in cancerous cells.164,165 Carlos et al. developed a database (DEREP-NP) to dereplicate 

metabolites efficiently by integrating MS and NMR spectra.132 Another study that combined 

NMR-based profiling with genome mining led to the discovery of the allenic macrolide 

Archangiumide (Figure 3) from Myxobacterium.166 Using MS-guided genome mining, 

which connects the chemotypes of peptide NPs with their BGCs by iteratively matching 

de novo tandem MS, a new NP peptidogenomics approach was developed.167 Using this 

combined approach, five new stendomycin analogues were identified that differed in the acyl 

chain and in valine or isoleucine substitutions at positions 5 and 13 from S. hygroscopicus 
ATCC 53653 (Figure 3).

3. Bioactivity and Target Identification of NPs with AI/ML techniques

One of the challenges in the development of NP-based drug candidates is the identification 

of their mechanism of action and side effects, which is a costly and lengthy process.168,169 

Because of the enormous structural diversity and broad chemical spaces, the bioactivity 

of NPs is discovered based on phenotypic effects or via high-throughput phenotypic 

screening.170,171 To identify the targets experimentally, chemical genomics172,173 and 

chemical proteomics174 approaches are generally used; however, although they can validate 

the targets they are often laborious and time-consuming processes.133 To overcome this, 

computational approaches can narrow down the large search space of the targets.175 There 

are three computational approaches and, in addition to the traditional structure-based176 
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and ligand-based target identification methods,177 ML-based approaches have numerous 

advantages and can be promising strategies for NP target identification.178 To identify drug 

targets, Madhukar et al. developed BANDIT,134 a Bayesian machine-learning approach that 

integrates multiple data types to predict drug binding targets.134 Using this approach, the 

authors predicted the targets of nearly 4,000 compounds with 90% accuracy and further 

validated 14 novel microtubule inhibitors. In another study aimed at identifying drug–target 

interactions (DTIs), a CNN-based tool, NeoDTI, was developed.179 NeoDTI mines large-

scale graph data and automatically learns the topology-preserving representations of drugs 

and targets, to facilitate DTI prediction with compound–protein binding affinity. Using 

such approaches, the drug targets of NPs can be identified, which can accelerate the 

drug-discovery platform. In another study, a DL toolkit, “Openchem,” which is based on 

the PyTorch framework, was developed for drug design and computational chemistry.139 

It can enable drug discovery and molecular modeling applications using DL algorithms. 

This DL-based approach can help in various tasks in NP discovery, such as their physical 

properties and structure–activity relation. A recent study reported by Walker and Clardy 

described an ML-based approach to predict the biological activity of NPs using genome 

mining without isolation.180 The authors used ML classifiers to predict antibacterial or 

antifungal activity based on known NP BGCs with an accuracy of 80%.

The SPiDER ML tool merges the concept of self-organizing maps, consensus scoring, 

and statistical analysis to successfully identify targets for both known drugs and computer-

generated molecular scaffolds; moreover, using this method, off-target fenofibrate-related 

compounds were identified.135 Furthermore, to increase the confidence, the Drug–Target 

Relationship Predictor (DEcRyPT) machine intelligence workflow, which uses regression 

random forest technology as an orthogonal learning approach to self-organizing maps, was 

developed.136 Using this ML tool, the targets of β-lapachone were identified and validated 

as potent modulators of 5-lipoxygenase.136 SuperPred137 provides drug classification and 

target prediction considering features such as 2-D, Fragment, and 3-D similarity and 

adapting concepts of the basic local alignment search tool (BLAST) algorithm.137,181 These 

ML approaches can innovate the drug target identification process and serve as an alternative 

powerful strategy to chemoproteomics. Another study reported by Carrella et al. developed 

MANTRA 2.0, which is a transcriptional profile-based drug target identification that uses 

a microarray dataset.138 By uploading the gene expression profile of the compound in 

cell lines, an ML-based automated pipeline revealed its mechanism of action based on the 

transcriptional signature of existing drugs.138 Despite the advantages of the ML tools, they 

can sometimes be inaccurate and only the previously studied targets can be predicted with 

further target validation.182,183 In the drug-discovery process, one of the key criteria for 

candidate molecules is that they have fewer adverse effects; however, numerous time- and 

cost-intensive in vitro and in vivo studies are required to assess toxicity.184 Computational 

toxicology can be effectively used to screen a large number of compounds without the use of 

time-consuming animal studies; nevertheless, this approach has severe drawbacks in terms 

of accuracy.185 To overcome this issue, a recent study reported a DL pipeline, “DeepTox,” 

which exhibited a high accuracy of toxicity prediction.140 Such a DL-based approach can be 

utilized in the future effectively to predict the toxicity of NPs and to tweak molecules with 

less adverse effects.
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4. Conclusions and future perspectives

NPs from microorganisms and their molecular frameworks have a long tradition for many 

drug leads and are still widely used for treating various diseases and infections.182,186,187 

The bioprospecting of the NP leads is challenging because of the amount of data generated 

and technical barriers, such as screening, isolation, characterization, and target identification. 

AI approaches can be used to address these problems and uncover hidden patterns by 

employing algorithms and decreasing the analytical time, resources, and costs required to 

identify NPs.188 As proof of concept, recently, a highly effective antibiotic (halicin) with 

an entirely new mechanism of action was identified from the ZINC15 database using a 

DL approach.10 AI can help prioritize the microbes for screening based on their taxonomic 

novelty and genomes regarding the ability to produce novel NPs. Furthermore, it can help 

rapid dereplication and assist in the identification of active compounds using LC-HRMS and 

NMR.

Several NPs were isolated during the golden age of NPs, but most of them have been 

neglected or are limited by specific bioactivity with the discovery of various lead compounds 

at similar times.1,189 However, the surge of antimicrobial resistance and technological 

advancements have rekindled the interest in NPs as drug leads and repurposing is being 

assessed.190 The cyclic peptide griselimycin was identified in 1960 from Streptomyces191 

and exhibited potent antituberculous activity, but was neglected; however, very recently, 

it was modified and introduced into the drug-development pipeline.192 Similarly, another 

NP, chrysomycin A, which is a rare C-aryl glycoside, was first discovered over 60 years 

ago and has anticancer activity193,194 with no further studies; however, recently, it was 

reported as inhibiting multidrug-resistant tuberculosis effectively (MDR-TB).195,196 Drug 

repurposing and alternate bioactivity prediction are cost-effective processes compared with 

drug discovery; nevertheless, they are quite challenging. To overcome this drawback, AI/ML 

can be used for candidate selection.197 Furthermore, AI can also assist in macromolecular 

target identification in a fast and effective manner.

A big obstacle in the full-fledged implementation of AI in NP research is the lack of 

integrated and curated databases.198 Most of the data, such as taxonomic, structural, 

genomic, and metabolomic data, for the specific compounds are not available compiled 

in the form of databases and presented in the form of scientific literature, which is very 

difficult to access and analyze manually.198,199 Hence, an integrated approach is required 

for the effective analysis of NPs, as is a single algorithm for the management of the entire 

process of NP discovery alone. By addressing these issues, the common problems associated 

with AI, such as errors and repeatability, can be controlled in the learning process from 

reliable datasets.200–202 With the worsening drug-resistance scenario and the increase in 

the number of new infections, the search for novel NPs is essential. Nature is extremely 

generous to mankind by providing diverse compounds over the centuries to cure diseases. 

With the advent of technological advancements and AI, can we expect a new golden era of 

NP drug discovery?
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Figure 1: 
Application of AI/ML to various areas of microbial natural product drug discovery.
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Figure 2: 
Various stages of natural product drug discovery with the corresponding available AI/ML 

tools.
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Figure 3: 
Novel natural products predicted with the support of AI/ML tools.
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