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Abstract
The production of pharmaceutical compounds in plants is attracting increasing attention, as plant-based systems can be less 
expensive, safer, and more scalable than mammalian, yeast, bacterial, and insect cell expression systems. Here, we review 
the history and current status of plant-made pharmaceuticals. Producing pharmaceuticals in plants requires pairing the 
appropriate plant species with suitable transformation technology. Pharmaceuticals have been produced in tobacco, cereals, 
legumes, fruits, and vegetables via nuclear transformation, chloroplast transformation, transient expression, and transforma-
tion of suspension cell cultures. Despite this wide range of species and methods used, most such efforts have involved the 
nuclear transformation of tobacco. Tobacco readily generates large amounts of biomass, easily accepts foreign genes, and is 
amenable to stable gene expression via nuclear transformation. Although vaccines, antibodies, and therapeutic proteins have 
been produced in plants, such pharmaceuticals are not readily utilized by humans due to differences in glycosylation, and 
few such compounds have been approved due to a lack of clinical data. In addition, achieving an adequate immune response 
using plant-made pharmaceuticals can be difficult due to low rates of production compared to other expression systems. 
Various technologies have recently been developed to help overcome these limitations; however, plant systems are expected 
to increasingly become widely used expression systems for recombinant protein production.

Keywords Biopharmaceuticals · Plant production system · Plant-made pharmaceuticals · Molecular farming · Recombinant 
protein · Transgenic plant · Transient expression

Introduction

Recombinant therapeutic proteins are transgenic proteins 
that are produced in a heterologous organism and are used 
to prevent or treat a human or animal disease. The first com-
mercially available recombinant therapeutic protein was 
human insulin produced in Escherichia coli (Goeddel et al. 
1979). Since then, as the technology has developed, other 
therapeutics, vaccines, and cytokines have been produced 
to protect people from infectious diseases and as cures for 
previously incurable diseases (Meyer et al. 2008). Unlike 
traditional pharmaceuticals produced by chemical synthesis, 
recombinant proteins are larger, with more complex struc-
tures. For example, aspirin (acetylsalicylic acid) is composed 

of 21 atoms, whereas a monoclonal antibody used as an anti-
cancer agent is composed of 25,000 atoms and exhibits a 
complex structure (Otto et al. 2014). Given this complexity, 
systems to produce such recombinant proteins generally use 
living cells, including E. coli, yeast, insect, and mammalian 
cells (Thomas et al. 2002).

The production system is chosen based on the type of 
drug being produced. Prokaryotic production systems are 
used to produce proteins that have simple structures and lack 
post-translational modifications such as N-glycosylation, 
whereas eukaryotic production systems are used to produce 
proteins that have complex structures (such as antibodies) 
and post-translational modifications (Ferrer-Miralles et al. 
2009). Bacterial expression systems were the first systems 
utilized to produce recombinant proteins, and they remain in 
use because bacterial cells are easy to handle and grow rap-
idly (Redwan 2007). However, bacterial systems also have 
significant disadvantages, including the presence of endo-
toxin and the production of proteins lacking glycosylation. 
For these reasons, and because most biopharmaceuticals 
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require post-translational protein processing for function, 
eukaryotic yeast and mammalian cell expression systems 
have accounted for the majority of biopharmaceutical pro-
duction (Butler 2003). Like bacteria, yeast cells are inex-
pensive to produce and grow quickly. In addition, they can 
produce glycosylated proteins (Gellison et al. 1992; Choi 
et al. 2003; Demain and Vaishnav 2009). Yeast cell disrup-
tion is difficult, however, due to the presence of the cell wall 
(Çelik and Çalık 2012). Recombinant proteins produced in 
insect cells can undergo proper folding and post-translational 
modification; however, insect cell systems are expensive and 
time-consuming to use (Fernandes et al. 2012). Because the 
mammalian cell culture system has the same advantages 
as the insect cell system and is optimized for human pro-
tein production, most recombinant protein production plat-
forms are based on mammalian cells. Such systems have 
been approved for the production of a number of drugs 
(O'Flaherty et al. 2020). However, these systems are highly 
vulnerable to infection by animal pathogens, are difficult to 
scale up and require expensive culture conditions (Butler 
2003).

To overcome these disadvantages, plant production sys-
tems for biopharmaceuticals have been developed (Fig. 1) 
(Shanmugaraj et al. 2020). Plants are generally suitable 
for recombinant protein production. Recombinant proteins 
can be rapidly produced in plants via transient expression 
(Kapila et al. 1997). In addition, plant production sys-
tems cannot be infected by mammalian pathogens during 
protein production and are easy to scale up (Yusibov and 
Rabindran 2008). The production cost when using plant 
production system is estimated to be only 0.1% and 2–10% 
that when using mammalian cell culture and microbial fer-
mentation systems, respectively (Giddings 2001). Moreo-
ver, their culture conditions are simple, and since plants 
are eukaryotic, the recombinant proteins undergo post-
translational modification (Fischer et al. 1999a). How-
ever, the glycosylation process in plants is different from 
that in animal cell systems (Bosch et al. 2013). Although 
few plant-made recombinant proteins have been approved 
to date for use as therapeutic agents, these problems are 
being resolved with advances in biotechnology (Schill-
berg et al. 2019). The production of biopharmaceuticals in 
plants—known as molecular farming, a term introduced by 
Fischer et al. (1999a, b)—offers benefits such as scalabil-
ity, speed, and improved safety compared with insect and 

mammalian cell expression systems. These features are 
desirable when resources are limited and could be help-
ful for the rapid production of vaccines against pandemic 
disease outbreaks or biochemical terrorism (Fischer et al. 
1999a, b).

The US Food and Drug Administration approved the first 
vaccine produced in Nicotiana tabacum cell suspension cul-
ture expression system in 2006; this vaccine protects New-
castle disease virus in poultry (Vermij and Waltz 2006). In 
2012, the first plant-made pharmaceutical (PMP) for humans 
was approved: a recombinant human glucocerebrosidase 
produced in a carrot (Daucus carota) cell suspension cul-
ture system. This enzyme is used to treat Gaucher’s disease, 
a hereditary lysosomal storage disorder caused by a muta-
tion of the β-glucocerebrosidase gene (Fox 2012; Rosales-
Mendoza and Tello-Olea 2015). The disease is characterized 
by enlargement of the liver and spleen, fatigue, and anemia 
(Tekoah et al. 2015). Since then, PMPs have been devel-
oped using various technologies, and the demand for these 
products is growing. The US Defense Advanced Research 
Projects Agency (DARPA), which is interested in the poten-
tial use of plant-derived vaccine production technology, has 
invested in both proof-of-concept operations and the devel-
opment of commercial-scale facilities for plant-derived 
vaccine manufacturing. In particular, DARPA announced 
the design and operation of a facility that can produce tens 
of millions of doses of plant-derived vaccines via transient 
expression in Nicotiana benthamiana (Holtz et al. 2015). 
These vaccines can be ready for use within 1 month after 
the plants are treated with an appropriate vector, showing 
how quickly the production of “green vaccines” can be 
established using transient expression. By emphasizing how 
easily the upstream process could be expanded, the authors 
demonstrated the suitability of plant-derived vaccine pro-
duction as a means to rapidly protect the population against 
new infectious diseases.

In this review, we discuss pharmaceutical proteins pro-
duced in plants. First, we look at the types of recombinant 
pharmaceutical proteins developed so far, including vac-
cines, antibodies, and therapeutic proteins. Next, we dis-
cuss tools and technologies for producing these proteins 
in plants, including production methods in various plant 
systems. Finally, we discuss the limitations of recombinant 
protein production using plant systems compared to mam-
malian, insect, yeast, and E. coli systems, as well as the 
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Fig. 1  Schematic diagram of plant-made pharmaceuticals production
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current state of research and development aimed at solving 
these problems.

Three types of PMPs

High-value-added PMPs produced from plants include vac-
cines, antibodies, and therapeutic proteins. Clinical trials 
have been conducted on various PMPs, which are listed in 
Table 1 (https:// clini caltr ials. gov, accessed on December 
2022).

Vaccines

Vaccines confer acquired immunity against specific dis-
eases or pathogens in animals, including humans. Vaccines 
are similar in structure to the antigen recognition sites of 
microbial pathogens that cause disease, but unlike patho-
gens, they are not pathogenic. Thus, vaccines activate the 
immune system, allowing it to quickly respond to subse-
quent infections with the same pathogen. The demand for 
plant-based vaccines has continuously increasing since the 

development of a vaccine against Newcastle virus in 2006 
(Yusibov and Rabindran 2008; Shim et al. 2019). Research 
on various pathogens is being actively conducted, and some 
vaccines are currently being evaluated for safety and effi-
cacy. In addition to general vaccines, which have attenuated 
pathogenicity, other types of vaccines are available, such 
as those made from inactivated viruses, recombinant pro-
tein subunits, and nucleic acids (Ellis 1999). In particular, 
a vaccine made from virus-like particles (VLPs; a type of 
recombinant protein subunit) is attracting attention (Noad 
and Roy 2003).

A VLP that is similar to a virus shape is not infectious 
because it does not contain viral genetic materials. Although 
VLPs lack pathogenicity, they contain the viral antigen(s) 
found on the outside of the capsid and are immunogenic 
(Murray 1988; Pumpens and Grens 2002). Representa-
tive plant-produced vaccines include vaccines against the 
hepatitis B virus (Huang et al. 2008), Newcastle disease 
virus (Guerrero-Andrade et al. 2006), influenza (D’Aoust 
et al. 2008; Kalthoff et al. 2010; Kanagarajan et al. 2012; 
Shoji et al. 2012; Firsov et al. 2015; Mbewana et al. 2015; 
Smith et al. 2020), porcine circovirus (Gunter et al. 2019), 

Table 1  Plant-made pharmaceuticals in clinical trials

Product Expression platform Disease/pathogen Clinical trial status Company ClinicalTrials.
gov Identifier

P2G12 antibody Nicotiana tabacum Human immunodefi-
ciency virus (HIV)

Phase I completed 
(2011)

University of Surrey, 
Guildford, UK

NCT01403792

HAI-05 vaccine Nicotiana benthamiana H5N1 Phase I completed 
(2011)

Fraunhofer, Center for 
Molecular Biotechnol-
ogy, USA

NCT01250795

Plant cell-expressed 
recombinant glucocer-
ebrosidase (prGCD)

Carrot cell culture Gaucher's disease Phase III completed and 
FDA approved (2012)

Protalix, Karmiel, Israel NCT00376168

H5-VLP + GLA-AF 
vaccine

Nicotiana benthamiana H5N1 Phase I completed 
(2014)

Infectious Disease 
Research Institute, 
Seattle, WA, USA

NCT01657929

Autologous FL vaccine Nicotiana benthamiana Lymphoma follicular Phase I completed 
(2015)

Icon Genetics, Munchen, 
Germany

NCT01022255

Pfs25 VLP-FhCMB Nicotiana benthamiana Malaria Phase I completed 
(2015)

Center for Molecular 
Biotechnology, Plym-
outh, MI, USA

NCT02013687

PA83-FhCMB Nicotiana benthamiana Anthrax Phase I completed 
(2015)

Center for Molecular 
Biotechnology, Plym-
outh, MI, USA

NCT02239172

PRX-102 Tobacco cell culture
(BY2 Cell)

Fabry disease Phase II completed 
(2016)

Protalix, Karmiel, Israel NCT01769001

ZMApp Nicotiana benthamiana Ebola virus Phase II completed 
(2017)

National Institute of 
Allergy and Infectious 
Disease (NIAID), 
Bethesda, MD, USA

NCT02363322

CP-PRO-CoVLP-024 Nicotiana benthamiana COVID-19 Approved (Canada, 
2022)

Medicago, Quebec, QC, 
Canada

NCT05040789

KBP-201 Nicotiana benthamiana COVID-19 Phase II (2021) Kentucky BioProcessing, 
Owensboro, KY, USA

NCT04473690

https://clinicaltrials.gov
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Zika virus (Yang et al. 2018), and poliovirus (Marsian et al. 
2017). Recently, two types of plant-made COVID-19 vac-
cines were rapidly developed. Medicago's coronavirus VLP 
(CoVLP) is a vaccine that mimics the surface structure of 
the SARS-CoV-2 virus. Using a transient expression system 
in N. benthamiana, after the nucleotide sequence of the virus 
is obtained, a vaccine can be successfully produced within 
8 weeks (Nosaki et al. 2021). This process is four- to eight-
fold faster than the currently used egg-production system for 
the influenza vaccine. Based on the promising results of the 
phase 1 clinical trial, phase 2/3 clinical trials were conducted 
and it was approved in Canada in 2022 (Ward et al. 2021; 
https:// www. canada. ca/ en/ servi ces/ drugs- health- produ cts. 
html, accessed on December 2022). Kentucky Bioprocessing 
(KBP) also produced a VLP-based vaccine in N. benthami-
ana. This vaccine candidate, KBP-201, is a chimeric VLP 
(cVLP) comprising the expressed SARS-CoV-2 receptor-
binding domain (RBD) and a modified tobacco mosaic 
virus (TMV) (Maharjan et al. 2021). Since cVLPs consist 
of viruses that are not related to the antigens, they function 
as heterologous antigens; such molecules can induce a robust 
antibody response (Kushnir et al. 2012).

Antibodies

Antibodies are substances produced by the immune system 
in response to stimulation by antigens. Their basic structure 
comprises two light chains and two heavy chains, which 
form a Y shape through disulfide bonds. The amino acid 
sequences of antibodies vary depending on the type of anti-
gen, allowing countless types of antibodies to be produced. 
In 1989, the production of single gamma or kappa immu-
noglobulin chains in tobacco was made possible for the first 
time (Hiatt et al. 1989); since then, numerous plant-made 
antibody therapeutics have been researched and developed. 
The plant-produced antibody drug ZMapp was developed 
by Mapp Pharmaceutical to treat Ebola virus (Pettitt et al. 
2013). In addition, antibodies against cancer (So et al. 2013; 
Rattanapisit et al. 2019), human immunodeficiency virus 
(Floss et al. 2008; Sainsbury and Lomonossoff 2008; Hol-
land et al. 2010), Zika, herpes (Diamos et al. 2020), and 
dengue (Dent et al. 2016) are currently being developed.

Therapeutic proteins

Cytokines are small glycoproteins involved in a variety of 
processes in the cell, including cell proliferation, differen-
tiation, and migration. As cytokines are components of the 
human immune system, their most widely known role is 
to mediate signal transduction between adjacent or distant 
cells, causing positive or negative feedback cascades (Arai 
et al. 1990). The more than 100 cytokines identified to date 
are divided into several families, including hematopoietins, 

interferons, platelet-derived growth factors, tumor necrosis 
factors, tumor growth factors, and chemokines (Liles and 
Van Voorhis 1995). Cytokines can also be produced in ani-
mal cells, but due to the potential for contamination, efforts 
are focused on producing these molecules in plant systems. 
Using a coat protein (CP)-deficient bamboo mosaic virus 
(BaMV) vector, the expression level of human interferon-γ 
was higher compared to that of other viral vectors in N. 
benthamiana (Jiang et al. 2019). Moreover, the efficient 
removal of the affinity tag after purification during the pro-
duction of human interleukin-6 reduced production costs.

The bleeding disorder hemophilia affects a small per-
centage of the world’s population, but it imposes a great 
burden on those who have it. In particular, more than 
half of hemophilia patients do not receive adequate treat-
ment. Hemophilia is caused by a deficiency of factor VIII 
(FVIII), a blood coagulation factor (Mannucci and Tudden-
ham 2001). Because FVIII is known to undergo complex 
post-translational modification, research has focused on 
producing a therapeutic agent in eukaryotes. In plants, the 
FVIII domain was produced in N. tabacum chloroplasts and 
bioencapsulated in plant cells up to 0.4 mg/g in fresh leaves 
(Verma et al. 2010; Sherman et al. 2014). Furthermore, the 
entire FVIII factor was produced in the chloroplasts of let-
tuce (Lactuca sativa) at a level of 852 µg/g (Kwon et al. 
2018). Another blood coagulation factor, a serine protease 
a-thrombin precursor (pFIIa) involved in fibrin formation, 
was co-expressed in N. benthamiana with Turnip Crinkle 
Virus coat protein (TCV-CP), which is known to interfere 
with post-transcriptional gene silencing (Laguia-Becher 
et al. 2019).

Human serum albumin (HSA), an abundant protein in the 
human body, accounts for more than half of the total protein 
content in plasma. Due to its strong binding properties, HSA 
acts as a carrier for hormones and metabolites and is also 
used to treat diseases or injuries such as hypovolemia, burns, 
and bleeding. HSA can be extracted from blood, but there 
has been considerable effort made to diversify its produc-
tion due to the limited availability of donor human blood 
and the potential for blood-based infection. Studies to pro-
duce HSA using tobacco and rice (Oryza sativa) plants have 
been attempted (He et al. 2011). HSA expression in rice was 
successfully increased by knock-in of an HSA expression 
cassette at the locus encoding GluA1, a rice storage protein 
(Sedaghati et al. 2020).

Tools and techniques for PMP expression

Two major methods are used to produce recombinant pro-
teins in plant systems: stable genetic transformation and 
transient gene expression (Table 2) (Potrykus 1991; Paul 
and Ma 2011). The method chosen depends on the plant 
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species, target genome (nuclear or plastid), and gene char-
acteristics (Christou 1996). Stable genetic transformation 
involves the stable production of proteins via the insertion of 
recombinant genes into the plant cell genomes (Horsch et al. 
1985). This method has several advantages. In particular, it 
enables the stable, large-scale production of recombinant 
proteins, and allows for the production of multiple recombi-
nant proteins. However, this method also has disadvantages: 
it is time-consuming and must be modified to ensure mass 
expression. Moreover, in nuclear transformation, since genes 
are randomly inserted into the nucleus, unstable expression 
or silencing of genes could occur due to positional effects 
(Fischer et al. 2004).

Transient gene expression can be used to produce a tar-
get protein more rapidly than stable genetic transformation. 
There are two major methods for transient gene expression: 
Agrobacterium-mediated infiltration and viral vector-based 
transient expression (Scholthof et al. 1996; Kapila et al. 
1997). In both cases, stable integration of the transgene is 
not required.

Nuclear transformation

Among several methods for nuclear transformation, the most 
widely used nuclear transformation method is Agrobacte-
rium-mediated plant transformation. In the case of plants 
which cannot be transformed with Agrobacterium, polyeth-
ylene glycol-mediated protoplast transformation method or 
biolistic transformation method can be used (Hayashimoto 
et al. 1990; Altpeter et al. 2005). Most recombinant pro-
teins in plants generated to date have been produced through 
nuclear transformation, in which a gene of interest (GOI) is 
stably integrated into a chromosome in the nucleus of a plant 
cell. The natural plant pathogens Agrobacterium tumefaciens 
and Agrobacterium rhizogenes, which produce crown gall 
disease and hairy root disease, respectively, mediate indirect 
gene transfer during nuclear transformation (Anderson and 

Moore 1979). Agrobacterium tumefaciens carries a tumor-
inducing (Ti) plasmid comprising a transfer DNA (T-DNA) 
region, a virulence (vir) gene, and an origin of replication. 
The T-DNA region contains auxin, cytokinin, and opine 
biosynthesis genes between the left border (LB) and right 
border (RB). Auxin and cytokinin are phytohormones that 
increase the size of plant cells and promote division. Opines, 
such as octopine and nopaline, are derivatives of various 
amino acids or sugar phosphates produced in host plants 
that serve as nutrients for Agrobacterium after infection. 
When an infection begins, the T-DNA region of the Ti-
plasmid is transferred to the nucleus of the plant cell and 
then fuses with the plant genome. At this time, the vir genes 
are expressed to facilitate the transfer and integration of the 
T-DNA (Birch 1997).

Based on these mechanisms by which Agrobacterium 
tumefaciens mediates plant transformation, a T-DNA binary 
vector system was developed consisting of two autonomous-
replicating disarmed Ti-plasmids working as helpers for 
T-DNA processing and transfer and a T-region-containing 
binary vector for cloning the GOI (Hoekema et al. 1983). 
The binary vector also contains multiple cloning sites, ori-
gins of replication that operate in both E. coli and Agrobacte-
rium, and antibiotic selection markers that function in plants 
and E. coli. The helper plasmid contains vir genes that pro-
mote gene transfer and integration into plant cells (Özyiğit 
2012). After Agrobacterium infection of plants, callus for-
mation occurs, callus differentiation is induced, and shoots 
and roots are generated. The resulting transgenic plant thus 
becomes a host for recombinant protein production (De La 
Riva et al. 1998; Gelvin 2003; Van Montagu 2003). In many 
cases, the GOI is expressed under the control of a constitu-
tive strong promoter such as the cauliflower mosaic virus 
(CaMV) 35S promoter to ensure copious production of the 
protein (Kay et al. 1987; Ma et al. 2003). In some cases, the 
GOI is expressed under the control of a seed-specific pro-
moter, and the target protein accumulates in mature seeds. 

Table 2  Advantages and 
disadvantages of the techniques 
for PMP expression

Technique Advantages Disadvantages

Stable transformation Low cost at large-scale production
Accumulation of the protein in spe-

cific organs (tubers, seeds)
High yields (chloroplast transforma-

tion)

Long selection procedures
Environmental concerns
Low yields (nuclear transforma-

tion)
No glycosylation of proteins 

(chloroplast transformation)
Transient transformation Rapid production

Easy to scale up
High yields
Minor environmental issues

Difficult to scale up (high cost)

Suspension cell culture Little pathogen contamination (using 
bioreactor)

Easy to facilitate downstream pro-
cessing (secretion in the medium)

Difficult to scale up (High cost)
Low yields
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The advantage of this feature is that it is possible to obtain 
transgenic plants immediately by planting seeds that stably 
express the target gene (Twyman et al. 2003). The protein of 
interest could also be targeted to subcellular organelles such 
as plastids, the endoplasmic reticulum, or the vacuole. There 
are also various choices for post-translational modifications, 
as the proteins are retained in the endoplasmic reticulum or 
secreted into the apoplast (Schillberg et al. 2002).

Chloroplast transformation

In addition to inserting a GOI into the nucleus, the GOI can 
also be introduced into chloroplast chromosomes to express 
the recombinant protein in leaf tissue. The chloroplast is 
a membrane-bound organelle whose genetic characteristics 
closely resemble those of prokaryotes since chloroplasts are 
thought to have originated from cyanobacteria (Martin et al. 
2002). Each mature leaf cell contains up to 100 chloroplasts, 
and each chloroplast contains ~ 100 copies of chloroplast 
genomic DNA. Thus, it provides a high gene copy number 
and leads to result in high expression of recombinant pro-
tein from integrated GOI in the chloroplast genome (Dan-
iell et al. 2002). Chloroplast transformation is achieved by 
bombarding the leaf with gold particles coated with plastid 
DNA fragments containing the GOI and allowing the DNA 
to be integrated into the plastid genome via homologous 
recombination (Daniell et al. 1990). Homologous recombi-
nation allows the GOI to be inserted into a specific position 
in the chloroplast genome, and no post-transcriptional gene 
silencing has been observed (Daniell et al. 2005). In addition 
to bombardment, polyethylene glycol can be used to insert a 
GOI into the chloroplast genome (O'Neill et al. 1993; Díaz 
and Koop 2014). This simple, efficient method allows the 
simultaneous transformation of many samples, and the plant 
tissue shows a high survival rate, but the success rate is low 
compared to other methods.

Although transgenes are expressed at high levels in the 
chloroplast, a chloroplast-specific promoter is often used 
for optimization. For example, the psbA promoter exhibits 
higher translational activity than other promoters. Codon 
optimization of the target gene is also performed using the 
sequence of psbA to increase the translation rate (Kwon et al. 
2016). However, plastids do not provide post-translational 
modification pathways such as glycosylation, making them 
unsuitable for the production of glycoproteins.

Transient expression

Unlike stably expressed transgenes, transiently expressed 
transgenes do not undergo chromosomal integration and are 
not affected by positional effects. Therefore, protein expres-
sion peaks within 18–48 h and is maintained for approxi-
mately 10 days (Kapila et al. 1997). Two major methods are 

used for transient expression: infiltration using A. tumefa-
ciens or plant viral infection. Agro-infiltration is a simple 
method performed using the same binary vector used for 
stable transformation (Komori et al. 2007). The Agrobacte-
rium culture is infiltrated in leaves using a needleless syringe 
or vacuum (Lee and Yang 2006; Simmons et al. 2009), and 
the leaves are harvested within 3–4 days post infiltration to 
extract proteins. However, agro-infiltrated leaves express low 
amounts of recombinant protein, and the use of this technol-
ogy is limited to mass production platforms. Therefore, sev-
eral methods have been used to increase protein expression 
following agro-infiltration. The expression level of a GOI 
increased up to sevenfold after the addition of 5-azacytidine 
(5AzaC), antioxidants, and surfactants to the system in N. 
benthamiana (Zhao et al. 2017). 5AzaC increases transgene 
expression by reducing DNA methylation, and antioxidants 
such as ascorbic acid, lipoic acid, and polyvinylpyrrolidone 
reduce the levels of reactive oxygen species generated dur-
ing Agrobacterium infection and increase the efficiency of 
transformation. In addition, surfactants such as Tween-20, 
Triton X-100, and Silwet L-77 reduce the surface tension of 
plant cells to facilitate the invasion of Agrobacterium (Kuta 
and Tripathi 2005; Dan 2008).

Plant viruses such as TMV, potato virus X (PVX), 
BaMV, and cowpea mosaic virus (CPMV) are used to pro-
duce recombinant proteins because viruses express large 
amounts of specific proteins to ensure infection. Plant virus 
expression systems offer the advantage of rapid and high-
level transgene expression (Lico et al. 2008). To construct 
a viral vector with high transgene expression, the coat and 
movement protein genes are removed from the viral genome 
and replaced with a target gene expression cassette. Because 
viral vectors produce large amounts of proteins under 
extreme conditions, it is possible to produce proteins at lev-
els exceeding hundreds of mg/kg plant biomass using these 
vectors (Balke and Zeltins 2019).

Expression in suspension cell cultures

Plant suspension cell cultures are generated by growing indi-
vidual cells or small aggregates derived from the breakdown 
of brittle callus pieces. Suspension cell culture is usually 
carried out in shaker flasks, and a bioreactor is used for 
subsequent scale-up. For recombinant protein production 
using suspension cells, tissues of cells co-cultured with A. 
tumefaciens or transgenic explants are used. Tobacco is one 
of the most widely used plant tissue sources due to its rapid 
division and easy transformation. For example, N. tabacum 
cv. Bright Yellow 2 (BY-2) cells derived from embryogenic 
root meristem cells are often used for suspension cell culture 
(Winicur et al. 1998). In addition to tobacco, alfalfa (Med-
icago sativa) (Pires et al. 2012), Arabidopsis thaliana (Plas-
son et al. 2009), soybean (Glycine max) (Ganapathi et al. 
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2007), tomato (Solanum lycopersicum) (Kwon et al. 2003), 
and carrot cells (Mikschofsky et al. 2009) are also used. The 
Israeli company Protalix BioTherapeutics used carrot sus-
pension cells to produce the treatment for Gaucher’s disease 
mentioned previously, which represented the first approved 
PMP used to treat human disease.

The advantages of plant suspension cell culture systems 
for recombinant protein production are as follows. First, 
plant cells grow rapidly. For example, one batch culture 
of N. tabacum BY-2 cells takes approximately 1–2 weeks 
to generate, whereas the process from seeding to harvest 
of transgenic plants takes several months (Plasson et al. 
2009). Second, scale-up is relatively simple because only 
the amounts of pre-culture and culture media need to be 
increased (Twyman et al. 2003). Third, recovery and puri-
fication of the product are simple. If the recombinant pro-
tein is secreted outside the cells, plant cell debris and by-
products can easily be removed by filtration. In addition, 
since the recombinant protein is in a dissolved state in the 
medium, a separate extraction process is not required. Most 
products remain in the medium following filtration, and the 
subsequent purification yield is also high. However, scaling 
up a plant suspension cell culture system requires a com-
plex process design, and recombinant protein production is 
expensive compared to that in stable or transient expression 
systems (Hellwig et al. 2004; Schillberg et al. 2013).

Host plants for PMP expression

Arabidopsis is an excellent model for plant science research 
due to its short generation time, high-density growth, and 
easy transformation (Meinke et al. 1998). However, Arabi-
dopsis is not suitable for protein production due to its low 
biomass. Higher biomass and protein content of plants is 
advantageous for recombinant protein production since the 
relatively lower content of growth inhibitory factors and 
secondary metabolites (Fischer et al. 2004). Representa-
tive plants include tobacco, cereals, legumes, fruits, and 
vegetables.

Nicotiana spp.

N. benthamiana and N. tabacum have many desirable char-
acteristics for the production of recombinant proteins, such 
as a fast growth rate, high biomass, and easy acceptance of 
foreign genes. Thus, the levels of recombinant proteins pro-
duced in tobacco are higher than in other crops (Fischer et al. 
2004). For example, the expression level of green fluorescent 
protein in transformed tobacco exceeded 50% of total solu-
ble proteins when a viral vector was used (Marillonnet et al. 
2004). Also, because tobacco is not a food or feed crop, it is 
free from food- or feed-related contamination problems. Of 

course, many tobacco varieties contain high levels of toxic 
alkaloids, but low-alkaloid varieties exist that are used for 
the production of pharmaceutical proteins. When 52 Nico-
tiana varieties were evaluated, N. tabacum cv. I 64 showed 
the highest protein concentration, large amount of biomass, 
and small amount of alkaloids (Conley et al. 2011).

Cereals

Unlike leaf crops, protein expression in seeds has the advan-
tage that it can be stored for a long time even at room tem-
perature because proteins are stably accumulated (Lau and 
Sun 2009). In addition, since cereal seeds contain almost 
no phenolic compounds, the efficiency of downstream pro-
cesses such as refining and analysis is high. These prop-
erties allow cereals containing therapeutics or vaccines to 
be administered orally with minimal processing. (Margolin 
et al. 2018). However, it is difficult to develop a suitable 
recombinant protein production system in the seeds of cereal 
plants because it is time-consuming to obtain seeds.

Legumes

Legumes such as alfalfa and soybeans have an advantage for 
protein production because their ability to fix atmospheric 
nitrogen lowers the need for chemical fertilizer (D'Aoust 
et al. 2004). Many studies have been conducted to produce 
recombinant proteins in alfalfa because it has a large dry bio-
mass yield per area and can be harvested up to nine times per 
year (Ding et al. 2006; Joensuu et al. 2006; Aguirreburualde 
et al. 2013). For example, lactoferrin has been produced in 
alfalfa (Stefanova et al. 2013). In addition, soybean has a 
high protein content in seeds (> 40%) as compared to other 
crops, which is beneficial for recombinant protein produc-
tion (Hudson et al. 2011). In addition, soybeans have an 
excellent ability to stably store protein. For example, the 
recombinant protein remained stable in soybean seeds at 
room temperature even after 7 years (Cunha et al. 2010). 
However, since soybean seeds contain large amounts of oil, 
the efficiency of downstream processes such as refining and 
analysis is not high (Stoger et al. 2005).

Fruits and vegetables

The greatest advantage of using fruits and vegetables for pro-
tein expression is that the tissue can be consumed uncooked, 
unprocessed, or partially processed. This is very important 
for the production of recombinant proteins such as vaccines, 
antibodies, and nutraceuticals. Potato (Solanum tuberosum) 
represents a major system for vaccine production; studies 
have been conducted on vaccine production for infectious 
bronchitis virus and hepatitis B virus in potatoes (Zhou 
et al. 2004; Thanavala et al. 2005). Tomatoes, bananas, and 
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strawberries could also be used for recombinant protein pro-
duction; unlike potatoes, tomatoes, bananas, and strawber-
ries that produce recombinant protein can be eaten raw and 
used as 'edible vaccines'. Tomatoes also are delicious and 
have a higher biomass yield than potatoes. A recent study 
highlighted the possibility of generating a colorectal can-
cer vaccine by producing an rGAA-733 antigen in tomatoes 
(Park et al. 2022). Bananas are another attractive edible vac-
cine production platform, because they can be grown in wide 
areas and are enjoyed by most people. For example, bananas 
producing hepatitis B surface antigen and cholera toxin B 
subunit have been reported (Kumar et al. 2005; Renuga 
et al. 2010). In addition, strawberries that produce canine 
interferon-α were developed in Japan and commercialized in 
2014, proving their effectiveness in preventing periodontal 
disease in dogs (Tabayashi and Matsumura 2014).

Duckweed

Duckweed is a perennial monocotyledonous plant belong-
ing to the Lemnaceae that lives on the water surface in rice 
fields or ponds. A small oval winter bud from the mother 
plant sinks into the water in the autumn, stays dormant in 
the water in the winter, and rises to the water surface in the 
spring of the following year to undergo asexual reproduction 
(Landolt and Kandeler 1987). Duckweed grows rapidly and 
can double in one day, and its culture and propagation are 
simple (Vunsh et al. 2007; Firsov et al. 2015). In addition, 
up to 45% of the plant body is made up of protein, and it is 
relatively resistant to contamination (Escobar and Escobar 
2017). Duckweed has several advantages as a PMP platform: 
First, scale-up is easy due to the low cost of culture medium 
for duckweed. Second, since it does not produce pollen, 
duckweed is safe from concerns about gene transfer into the 
ecosystem. Finally, duckweed is edible. These advantages 
make duckweed an ideal protein production platform for oral 
delivery (Popov et al. 2006; Rival et al. 2008).

Moss

Physcomitrium patens (spreading earthmoss) can grow rap-
idly in an inorganic medium without phytohormones or vita-
mins. Genetic studies have revealed that most mosses exist 
as haploids during the growing season, pointing to their ease 
of transformation (Reski and Cove 2004). P. patens shows 
high stability as a protein production platform because it 
undergoes a complex post-translational modification pro-
cess during protein expression. This can be an advantage for 
the production of exogenous recombinant proteins because 
it allows stable protein production (von Stackelberg et al. 
2006; Parsons et al. 2013).

Conclusions and future perspectives

Plant expression systems for recombinant protein production 
have several specific advantages. However, their applica-
tion in recombinant protein production must overcome major 
barriers such as a lack of regulatory approval. PMPs are 
currently used primarily for diagnostic purposes and as vet-
erinary medicines. Although it is difficult to obtain approval 
for PMP as a human medical protein, it will be necessary to 
secure a basis for approval for the production of recombinant 
human medical protein in the future. These systems also 
have some disadvantages, such as plant-specific glycosyla-
tion patterns differing from those in animal cells, low yields 
for recombinant protein production, and complex transgenic 
plant management practices, but solutions to these problems 
are possible with the development of new technologies.

Protein glycosylation is an essential post-translational 
modification that occurs in all eukaryotes. The early steps 
of this process are well conserved in plants, animals, and 
yeast, but late N-glycan maturation in the Golgi appara-
tus varies considerably. Therefore, it will be important to 
control the glycosylation of target proteins in plants (Kop-
rivova et al. 2004; Strasser et al. 2004). Indeed, Protalix 
BioTherapeutics increased the therapeutic efficacy of ELE-
LYSO™ by adding mannose to N-glycan (Tekoah et al. 
2015). A recent study demonstrated a technique for remov-
ing xylose and fucose from N-glycan in plants (Jansing 
et al. 2019). In the future, we expect that this technol-
ogy will be further developed to freely control whether 
N-glycan residues are attached to target proteins in plants.

A recently developed type of N. tabacum does not pro-
duce alkaloid nicotine (Schachtsiek and Stehle 2019); this 
advance is expected to help increase the yield of recombi-
nant proteins in this system. Other studies have been con-
ducted to overcome the yield-related difficulties in inducing 
immunogenicity. For example, a split-intein SpyTag/Spy-
Catcher (ST/SC) conjugation system is a complementary 
peptide that can bind over a wide range of temperatures and 
pH values, allowing it to be used for the efficient binding 
of two proteins (Zakeri et al. 2012). VLPs from West Nile 
virus were efficiently formed using this system (Stander 
et al. 2021). In addition, several antigen-display technolo-
gies, such as bacteria-like particles (BLPs) have been devel-
oped (van Roosmalen et al. 2006; Bosma et al. 2006; Buist 
et al. 2008). The BLP system is used for antigen display 
by inactivating Lactococcus bacteria, which are generally 
recognized as safe. The display capacity was improved by 
binding mCor1 homotrimer and lysM to the antigen protein. 
In a recent study, the immunogenicity of a vaccine for avian 
influenza virus was significantly improved using this tech-
nology (Song et al. 2021). Such improvements should lead 
to the widespread adoption of PMPs in the future.
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