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Single-cell technologies have revealed the complexity of the tumour immune
microenvironment with unparalleled resolution'®. Most clinical strategies rely on
histopathological stratification of tumour subtypes, yet the spatial context of
single-cell phenotypes within these stratified subgroups is poorly understood. Here
we apply imaging mass cytometry to characterize the tumour and immunological
landscape of samples from 416 patients with lung adenocarcinoma across five
histological patterns. We resolve more than 1.6 million cells, enabling spatial
analysis ofimmune lineages and activation states with distinct clinical correlates,
including survival. Using deep learning, we can predict with high accuracy those
patients who will progress after surgery using a single 1-mm? tumour core, which
could be informative for clinical management following surgical resection. Our
dataset represents a valuable resource for the non-small cell lung cancer research
community and exemplifies the utility of spatial resolution within single-cell
analyses. This study also highlights how artificial intelligence canimprove our
understanding of microenvironmental features that underlie cancer progression
and may influence future clinical practice.

Lung cancer remains the leading cause of cancer-related death, account-
ing for greater than 20% of all cancer mortalities'®. Lung adenocarcinoma
(LUAD), atype of non-small cell lung cancer (NSCLC), is the most com-
mon subtype and is characterized by distinct cellular and molecular
features™. The tumour immune microenvironment (TIME) is a major
source of LUAD heterogeneity and influences both disease progression
and response to therapy">*. The positioning of immune cells within
tumours is known to dictate their function*; therefore, understand-
ing the spatial landscape of the lung TIME would provide mechanistic
insightsinto disease progression, reveal novel therapeutic vulnerabilities
and unveil biomarkers of response to existing treatments. Here, using
highly multiplexed imaging mass cytometry (IMC), we interrogated
spatially resolved features of the TIME that are associated with clinical
outcomes in patients with LUAD. Using a deep neural network model,
we demonstrated that various clinical outcomes, such as progression,
canbe predicted using features that anartificial intelligence-based sys-
tem can extract from raw IMC images. The ability to identify patients
who will progress with a high degree of certainty could guide future
post-surgical management.

LUAD tumour immune microenvironment

To spatially characterize the cellular landscape of the lung TIME, we
applied IMCto samples from 416 patients with LUAD (Fig. 1a, Extended
DataFig.1a and Supplementary Table 1). We optimized a 35-plex anti-
body paneltoidentify cancer cells, stromal cells, and innate and adap-
tiveimmune lineages with diverse functional substates (Extended Data
Figs.1b-d and 2-4 and Supplementary Table 2). In total, we detected
1,644,178 cellsand used asupervised lineage assignment approach to
classify 14 distinct immune cell populations, along with tumour cells
and endothelial cells using canonical lineage markers (Fig. 1b-fand
Extended Data Figs. 1cand 5a).

Consistent with previous work®, high-grade solid tumours had the
greatestimmune infiltrate (44.6%) compared with micropapillary,
acinar, papillary and lepidic architectures (37.0%, 39.7%, 32.8% and
32.7%respectively; Fig.1g). This was driven by shifts within the myeloid
compartment, as there were no significant differences in the average
frequency of total lymphoid cells across histological patterns (Fig.1h,i).
In particular, macrophages were the most frequent cell population
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Fig.1|IMCdefinesthespatiallandscape of LUAD. a, Schematic depicting IMC
acquisition of multiplexed images from 416 patients with LUAD, single-cell
phenotyping, survivaland machine learning prediction of clinical outcomes.
CyTOF, cytometry by time of flight. Images were created with BioRender.

b, Average expression of lineage markers across cell typesin the LUAD tissue
using the panel ofisotope-conjugated antibodies. CIMo, classical monocyte;
IntMo, intermediate monocyte; Mac, macrophage; NK, naturalkiller; non-CI Mo,
non-classical monocyte; T, cytotoxic T cell; T, helper T cell. ¢, Waterfall
plotdepicting the distribution of 16 stromaland immune cell types across
histological subgroups. d, Representative images of antibody staining and
corresponding single-cell segmented images across histological subgroups.

within the lung TIME, representing 12.3% of total cells (Fig. 1e) and 34.1%
ofimmune cells (Fig. 1f), consistent with their critical role in the NSCLC
niche'. We found the highest enrichment of CD163" macrophages
(putative ‘M2-like’ or protumorigenic) in solid tumours, which are one
of the most aggressive architectures (Extended Data Fig. 5b, Supple-
mentary Table 3, Supplementary Fig. 1, xii). The prevalence of CD163"
macrophages was strongly correlated with FOXP3*immunoregulatory
T cells (T, cells) in the solid pattern (Extended Data Fig. 5c, box 1).
This relationship was much less pronounced in low-grade lepidic and
papillary architectures, which had astrong correlation between CD163*
macrophages and cytotoxic CD8" T cells (Extended DataFig. 5¢c, box 2).
These associations suggest a potential interplay between macrophage
andT cell populationsin the TIME across LUAD patterns. Of note, solid
tumours were also enriched for additionalmyeloid components, includ-
ing neutrophils, non-classicalmonocytes and intermediate monocytes

Scalebars,100 um. e,f, Prevalence of 17 cell types, including 14 immune cell
types, across 416 patients with LUAD as a proportion of total cells (e) and
immune cells (f). g-i, Prevalence of allimmune (g), myeloid (h) and lymphoid (i)
cellsacross lepidic (n=40), papillary (n=33), acinar (n =190), micropapillary
(n=35)and solid (n=118) architectural patterns asa proportion of total cells.
Comparisonbetween lepidic and solid (immune cells): **P=0.0013. Comparison
between papillary and solid (immune cells): **P = 0.0039. Comparison between
lepidic and solid (myeloid cells): ****P < 0.0001. Comparison between papillary
and solid (myeloid cells): *P = 0.0474. Comparison between acinar and solid
(myeloid cells):**P=0.0072. Datashown as mean +s.e.m. (e-i). One-way ANOVA
with Tukey multiple comparison test was used for statistical analysis (g-i).

(Supplementary Fig.1, i, xivand xv). Similarly to macrophages, these
myeloid populations all exhibit diverse functional states in NSCLC
biology* and exemplify the complex heterogeneity that exists in the
lung TIME.

LUAD multicellular spatial interactions

We next assessed the relationship between immune populations and
clinical or pathological variables by interrogating the frequency of
individual cell types as a percentage of total cells within each image
(Fig.2a,b, Supplementary Tables1and 4 and Supplementary Fig.1). Each
image was cross-referenced with clinical data from patients, including
sex, age, body mass index (BMI), smoking status, stage, progression,
survival and histological subtype. Although we discovered established
survival associations for several cell types'”'®, most were driven by an
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Fig.2|Variability in single-cell distributions across clinical variables and
incell-cellinteraction profiles across histological patternsin LUAD.

a, Prevalence of T, cells (CD8" T cells) across sex (female n =233, male n =183),
age (younger than 75years of age n =369, 75 years of age or older n =47), BMI
(lessthan30n=346,30 or higher n =70), smoking status (smoker n =376,
non-smoker n =38), pack-years (1-30 n=89,30 or more n = 256), stage
(I-1ln=365,11I-1V n=50), progression status (progression n = 64, no progression
n=340) and histological subgroup (lepidic n =40, papillary n=33, acinar
n=190, micropapillary n =35, solid n =118). Comparison between papillary and
solid:**P=0.0070, and acinar and solid: **P=0.0076. Datashownasmean +s.e.m.
b, Bubble plotinwhich thecircle size represents the level of significance and
thecircle colour indicates which of the two comparisons on they axis has

enrichment in specific clinical or pathological groups. For example,
although mast cells were associated with prolonged survival, they
were overrepresented in non-smokers, early-stage patients and those
with lepidic tumours (Fig. 2b, box 1)—all clinical variables associated
with good outcomes. Similarly, CD163" macrophages, non-classical
monocytes and intermediate monocytes were enriched in solid
tumours, which have poor outcomes (Fig. 2b, box 2). By contrast, B cell
frequency was most significantly associated with better overall
survival, independent of any confounding clinical or pathological
variables (Fig. 2b, box 3).

Beyond survival associations, we found additional relationships
between cell frequencies and specific clinical subgroups. For example,
T cell subsets exhibited specific enrichment based on sex and age. Con-
sistent with previous reports’®, CD4" helper T cells were significantly
enriched in female patients (Fig. 2b, box 4), who have better overall
survival than male patients?>?'—an association also observed in our
dataset (Extended Data Fig. 5d). Moreover, older patients (more than
75 years of age) had fewer intratumoural CD8" T cells (Fig. 2b, box 5),
reminiscent ofimmune ageing thatis linked to reduced expression of
co-stimulatory molecules, antigen receptor diversity and immuno-
therapy response* %, Overall, these data reveal new relationships
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higher levels of the cell type on the x axis. Survival, survival in the context of
low (z-score < 0) cell prevalence. For Pvalues, see Supplementary Table 4.
c,Segmented images showingincreased interactionof cancerand T.cellsin
lepidic versus solid predominant LUAD. Scale bars,100 pm.d, Heat map
depictingsignificant pairwise cell-cellinteraction (red) or avoidance (blue)
across thefive histological subgroups (lepidic n = 40 images, papillaryn=33
images, acinar n=190images, micropapillary n=35images, solid n =118
images; 1,000 permutations each). The black boxes depict associations
referencedinthe text. FDR-corrected two-tailed Student’s t-test for sex, age,
BMI, smoking status, pack-years, stage and progression status; one-way ANOVA
with Tukey multiple comparison test for histological subgroup; and log-rank
test for survival were used for statistical analysis (a,b).

and add biological insight into established associations between cell
frequencies and clinical outcomes within the TIME.

To gain insight into the cellular architecture and spatial organi-
zation of the LUAD TIME, we characterized direct interactions and
communication patterns between single cells by quantifying cell-cell
spatial relationships. Using permutation testing, we assigned the likeli-
hood of interaction or avoidance behaviours between cell pairs across
LUAD architectures ranging from least to most aggressive (Fig. 2c,d).
Tumour cells had auniversal tendency towards homotypicinteractions
and arelative avoidance with other cell types (Fig. 2d), consistent
with spatial analyses in breast cancer’2. Homotypicinteractions were
high across severalimmune cell populations, suggestive of a spatially
coordinated TIME. Many of these interactions were discordant with
the pattern of cell frequencies, revealing that the spatial relationship
of cell-cell interactions may hold greater prognostic value than fre-
quency alone. In higher-grade histological patterns (solid and micro-
papillary), both neutrophils and endothelial cells had an increased
tendency for interactions with cancer cells compared with lower-grade
subtypes (Fig. 2d, box 1a,b). These relationships are consistent with
the ability of neutrophils to facilitate tumour cell extravasation into
blood vessels, thereby promoting haematogenic metastasis®*?,



and solid-predominant LUAD has the highest rate of metastasis com-
pared with other histologies?®.

Inlow-gradelepidic and papillary tumours, CD8" and CD4" T cells had
astronger tendency for interaction with cancer cells than high-grade
solid LUAD (Fig. 2c,d, box 2), despite the fact that overall CD8*and CD4*
T cell frequencies were not associated with progression (Fig.2b, box 6).
Thisrelationship echoes previous findings that the spatial interaction
of T cells and tumour cells is a stronger indicator of non-recurrence
than T cell density alone®. Moreover, despite the co-occurrence of
CD163" macrophages and CD8' T cells inlow-grade tumours (Extended
DataFig. 5¢, box 2), their tendency to directly interact was strongest
in high-grade tumours and decreased as tumors became lower grade
(Fig.2d, box 3). Thisis consistent with the role for CD163" macrophages
insuppressing CD8' T cell function within the TIME®*. Similarly, B cells
exhibited a greater tendency to interact with CD163" macrophagesin
high-grade tumours (Fig. 2d, box 4), despite the observation that high
B cell frequency was indicative of prolonged survival (Fig. 2b, box 3).
In patient tumours specifically enriched in mature antigen-presenting
CD40" B cells®, these cells became generally more interactive across
TIME populations (Extended Data Fig. 5e). Finally, endothelial cells
tended to interact with many immune populations in high-grade
tumours compared with low-grade tumours, including CD163* macro-
phages and monocytes (Fig. 2d, box 5); these interactions may be
reminiscent ofinnate regulation of vascular inflammation, consistent
with our observation thatimmune infiltration was highestin the solid
pattern (Fig.1g), driven largely by differences within the myeloid com-
partment (Fig. 1h). Together, these analyses paint an overall picture
of how stromal interactions shift among histological patterns and
exemplify how spatial relationships, rather than cell frequency alone,
are important to understand TIME biology.

LUAD architecture and survival outcomes

To complement our analyses of cell frequencies and interactions, we
next explored how cellular phenotypes within the microenvironment
relate to survival. We extracted all microenvironmental populations
represented inour dataset (including endothelial, myeloid or [ymphoid
compartments) and performed ¢-distributed stochastic neighbour
embedding (¢-SNE) based on functional markers in our antibody panel
(Extended Data Fig. 6a-c). First, outside the immune compartment,
we observed a distinct population of proliferative Ki-67* endothe-
lial cells, whose frequency was associated with poor overall survival
(Fig. 3a and Supplementary Table 5) and high-grade solid tumours
(Extended Data Fig. 6d). Proliferation of the endothelium underlies
angiogenesis inresponse to hypoxia,acommon feature of aggressive
tumours®. We therefore explored vascular interactionsin high-grade
patterns and found an enrichmentin endothelial cellinteractions with
neutrophils (Fig.2d, box 6), leading us to question how specific neutro-
philsubsets may respond to hypoxic conditions. We observed several
neutrophil states based on the expression pattern of three markers:
HIF1a*, ARGI*and MMP9* (Fig. 3b and Extended Data Fig. 6b). Despite
a high frequency of total neutrophils not being correlated with sur-
vivalinour cohort (Fig.2b,box 7), anincrease in the proportion of the
HIF1a" subset was significantly associated with worse overall survival
(Fig.3band Supplementary Table 5), which may reflect cases in which
angiogenesisisinsufficient to alleviate hypoxia. Neutrophils and other
granulocytes are sensitive to low-oxygen conditions, and can adopt
immunosuppressive behaviours against T cells in this setting®. Indeed,
we observed that neutrophils exhibit a higher tendency to interact
withimmunosuppressive T, cellsin high-grade tumours (Fig. 2d, box
7). Phenotypic analysis within the lymphoid compartment revealed
active ERK signalling within a subset of CD4" T cells associated with
prolonged survival (Fig. 3c and Supplementary Table 5), which is known
to suppress differentiation into T, cells*. Consistently, pERK'CD4"
T cells were enriched in low-grade lepidic tumours (Extended Data

Fig. 6e) where neutrophil-T, cell interactions were the lowest (Fig. 2d,
box7),andreduced in high-grade solid tumours (Extended Data Fig. 6e)
where T, cells were most abundant (Fig. 2b, box 8). Together, these
findings provide asnapshot of spatially resolved phenotypic programs
associated with more aggressive tumours, as they relate to tumour
hypoxia and animmunosuppressive niche.

Beyond pairwise interactions, our datahint at the existence of larger
cellular communities that are distinctively organized within the TIME
across LUAD subtypes. To assess this, we followed acanonical approach
toestablish cellular neighbourhoods by firstidentifying the ten nearest
spatial neighbours for eachindividual cell***. We thenreclassified cells
onthebasis of their spatially defined cellular neighbourhood (CN). Using
thisapproach, we discovered ten CNs that recapitulated both new and
knowntissue architectures, whichwe named: tumour boundary (CN1),
undefined (CN2), pan-immune hotspot 1 (CN3), lymphoid enriched
(CN4), tumour core (CN5), macrophage enriched (CN6), neutrophil
enriched (CN7), pan-immune hotspot 2 (CN8), B cell enriched (CN9)
and vascular niche (CN10) (Extended Data Fig. 7a,b). To identify CNs
associated with survival, we performed Kaplan-Meier analysis by desig-
nating the frequency of CNs for each patient as high (CN"&"; z-score > 0)
or low (CN""; z-score < 0). Consistent with our findings related to
B cell frequency (Fig. 2b, box 3, and Supplementary Table 4), CN9"e"
(B cell-enriched) was significantly associated with increased overall
survival (Extended Data Fig. 7a and Supplementary Table 6), despite
minimal differences in CN9 representation across histological pat-
terns (Extended Data Fig. 7c, box 1). CN3"&" (pan-immune hotspot 1)
and CN4"e" (lymphoid enriched) were also significantly correlated
withincreased overall survivalacross LUAD histologies (Extended Data
Fig.7a,c,box2). Whensurvival was analysed within histological patterns,
associations with increased survival were noted for CN4"°" (lymphoid
enriched) within the lepidic pattern, CN9"" (B cell enriched) in the
acinar pattern and CN2"°" (undefined) and CN4"¢" (lymphoid enriched)
inthe solid pattern (Supplementary Fig. 2).

Wewere particularly interestedin dissecting B cellneighbourhoodsin
greater detail, given the prognostic value of B cells in our dataset (Fig. 2b,
box 3). Two variables that affect CN analysis include the number of inter-
acting cells within a neighbourhood (denoted as n) and the number of
total neighbourhoods (denoted as tCN). To further explore the spatial
relationship between CNs and survival, we first altered the number of
nearest spatial neighbours for eachindividual cell (n) while maintaining
aconstantnumber of neighbourhoods (tCN =10). Across awide range of
nvalues (n=3-30), CNsenriched in B cells were significantly associated
with survival (Extended DataFig. 8a), with the most significant associa-
tionresulting fromn=10and tCN =10 (Extended Data Fig. 7a). Toresolve
Bcellinteractions that drive this survival advantage, we increased the tCN
to 30. Using this approach, we were able to resolve four B cell-enriched
neighbourhoods (CN7, CN11, CN21 and CN25) (Fig. 3d). Across these
neighbourhoods, the survival advantage associated with B cells was
negated when CNs concurrently displayed an enrichment in T, cells
(CN7and CN21), whereas the survival advantage was maintained for CN11
(P=0.0389) and CN25(P=0.0034) where T, cells were lower (Fig. 3e and
Supplementary Table 7). When comparing these two neighbourhoods,
wenoted agreater survival advantage for CN25, which was also enriched
for CD4"helper T cells (by contrast, CN11was enriched for B cells alone).
To determine whether the improved survival benefit associated with
CN25 wasrelated to the interaction of B cellsand CD4" helper T cells or
tothe prevalence of both cell typesindependent of their interaction, we
plotted the survival association of patients who were B cell-highand CD4*
helper T cell-high versus patients who were B cell-highand CD4 " helper
T cell-low and observed no significant difference (P = 0.644; Extended
Data Fig. 8b). Moreover, the correlation between T cells and B cells in
our cohort was low with an R? of 0.210, thus making it less likely that
CD4"helper T cellsand B cells are interacting as a result of astrong cor-
relation in the prevalence of both cell types (Extended Data Fig. 8c,d).
These data suggest that the improved survival association for CN25 is
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Fig.3|Single-cell populations and neighbourhoods are associated with
distinct outcomesin LUAD. a-c, t-SNE of endothelial, myeloid and lymphoid
cell populations highlighting the distribution 0f108,387 endothelial cells (a),
42,427 neutrophils (b) and 147,980 CD4" T, cells (c), and the positivity of the Ki-67
(endothelial cells), HIF1a (neutrophils) and pERK (T,, cells) markers. Kaplan-Meier
curves of overall survival for 416 patients with LUAD based on low (z-score < 0)

related to the interaction of B cells and CD4" helper T cells beyond the
prevalence of both celltypes alone. However, anenrichmentin T, cells
was still sufficient to negate this survival benefit (CN21), emphasizing
the importance of multicellular B cell interactions within the TIME.
Finally, there was nosignificant association between these B cell-enriched
CNs and any other clinical variable, including histological subtype
(Extended Data Fig. 9a,b and Supplementary Table 7). Together, these
findings suggest that the spatial organization of TIME interactions
may provide additional insight into individual patient survival beyond
histological subtype classifications and cell prevalence.

Predicting outcomes using deep learning

Givenour finding that spatial neighbourhoods are predictive of survival
regardless of LUAD architectures, we wondered whether we could lever-
age spatial data to predict clinical outcomes by using a deep-learning
approach (Fig. 4a). We took advantage of transfer learning by using a
pretrained convolutional neural network model. We chose the deep
residual networks® architecture pretrained on the ImageNet data-
set®. Using the k-fold cross-validation method, we split the data into
five folds, with 20% of the data for each fold. In our experiments, we
considered four of the folds (80% of the patients) as the training data
and the remaining fold (20%) for testing to evaluate the prediction
accuracy. We repeated this for all possible combinations. For proof of
principle, wefirst assessed whether the frequency of cells alone within
each image would be sufficient to predict clinical variables. We tested
routineclinical variables that demonstrated some variationincell-type
frequencies including histological subtype, sex, survival, BMI, cancer
progression, cancer stage, age and smoking. Our goal was to increase
the ability to predict clinical outcomes above the baseline prediction
score, which reflects the chance of predicting the major class over the
total number of examplesinvolved for that specific variable. However,
we saw negligible increases in prediction score above baseline for most
of the clinical variables, suggesting that cell frequency alone does not
capture the tumour architecture with enough resolutionto predict clini-
calvariables with high confidence (Fig.4b and Supplementary Table 8).
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and high (z-score > 0) prevalence of the indicated cell types are also shown.

d, Heatmap of 30 CNs discovered in 416 patients with LUAD. The CNs highlighted
ingreyrefer toB-cell-enriched neighbourhoods. e, Kaplan-Meier curves of
overall survival for 416 patients with LUAD based on low (z-score < 0) and high
(z-score > 0) prevalence of B cell CN11 (left) and CN25 (right). log-rank test was
used for statistical analysis (a-c,e).

We next investigated whether the integration of spatial informa-
tion, obtained by inputting all the raw lineage marker images into our
model, would help recognition performance. Using this approach, we
observed a significant boost in performance for all clinical variables
tested compared with cell frequency alone, suggesting that single-cell
positional information that is encoded in each of the multiplex image
scansis critical to interpreting the complex TIME that underlies clini-
cal correlates (Fig. 4c and Supplementary Table 9). Spatial informa-
tion did not confer anincrease above baseline for sex, indicating that
the TIME that underlies tumours from male individuals versus female
individuals is indistinguishable using our model. Finally, to compare
whether additional channels from our IMC images would lead to bet-
ter recognition performance (that s, integration of spatially resolved
immune functional substates), we used all the markers in our panel
and repeated the predictions. The additional channels did not boost
performance, suggesting that thereis a certain threshold beyond which
additional markers do not add value to clinical predictions based on
our model (Fig. 4d and Supplementary Table 10).

We next sought to leverage our deep-learning approach to address
a clinically meaningful problem. Although adjuvant chemotherapy
has long been demonstrated to improve overall survival in patients
with NSCLC who have stage lIA to IlIA disease, patients with stage |
tumours smaller than 4 cm currently do not receive adjuvant chemo-
therapy®, despite that many of these patients are atincreased risk for
progression®. Infact, these patients currently have minimal approved
peri-adjuvant therapeutic options¥. Even with complete lung tumour
resection, a significant proportion of these patients will relapse®.
Therefore, we next assessed whether we could predict progression
in patients with stage IA-IB lung cancer. The use of standard clinical
information in our model (sex, age, BMI, smoking status, pack-years,
surgery type, maximum tumour size, tumour grade, predominant his-
tological patternand stage) was insufficient to predict progression over
baseline (Fig. 4e, Extended DataFig.10a and Supplementary Table 11).
Consistent with our previous results, the frequency of cells alone was
alsoinsufficient to significantly predict progression (Fig. 4e, Extended
Data Fig.10b and Supplementary Table 11). When we included spatial
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Fig.4|Machinelearning of IMC data predicts clinical outcomes. a, Schematic
ofthe deep-learning-based strategy involving deep residual networks (Resnet50)
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age (younger than 75 years of age or 75 years of age or older) n = 416; survival
(lessthan3years, 3 yearsorlonger) n=407; progression status (progression
orno progression) n=404; stage (I-11 or [lI-1V) n = 415; smoking status (smoker
or non-smoker) n =414 using frequency of cell types (b); spatial distribution of
lineage markers (c) and spatial distribution of all markers (d). The size of the
bubblerepresents deviation frombaseline, with blue and grey indicating an
improvement or worsening in predictive performance, respectively. Thelinein
thebar plotrepresentsthe baseline. Schematicsin a-d were created with
BioRender. e, Accuracy of clinical progression predictionin patients with stagel
LUAD (n=286) usingclinical variables, cell frequency, lineage marker and

information, however, our model predicted progression with 95.9%
accuracy fromasingle 1-mm?tumour core, smaller than most standard
needle biopsies used to establish a diagnosis of lung cancer (Fig. 4e,
Extended Data Fig.10c and Supplementary Table 11). Additional mark-
ers, again, did not boost the prediction accuracy (Fig. 4e, Extended
DataFig.10d and Supplementary Table 11), indicating that there is a
minimum threshold of markers required to ascertain accurate predic-
tions, a promising finding for translational practicality.

Tovalidate our findings and to assess how heterogeneity within the
lung TIME may affect our predictions, we performed IMC on aninde-
pendentvalidation cohort consisting of 60 patients with primary LUAD
thatincluded two spatially distinct cores per tumour (Supplementary
Table 12). In this new dataset, after training on our discovery cohort,
the use of raw images from our lineage markers was able to predict
progression with high accuracy (94.2% accuracy; Fig. 4f and Supple-
mentary Table 13), with no added benefit from integrating the entire
panel (93.3% accuracy). Of note, our validation cohort was more bal-
anced, with alower baseline predictionscore (75.0%), confirming that
there are spatially defined features within theseimages that probably
reflect clinical outcomes. When assessing intratumour heterogeneity,
we found substantial agreementin the predictions between two distinct
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predictive performance, respectively. g, Accuracy of clinical progression
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using combinations of top-ranked (left) and neighbourhood-derived (right)
lineage markers. For all combinations, see Supplementary Table 15. Datashown
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used for statistical analysis (e).

cores from the same tumour (91.7%, lineage markers model). Despite
these promising results, we acknowledge that tumour heterogeneity
remains a challenge for accurate clinical and pathological diagnosis,
an area of research that may benefit greatly from the application of
artificial intelligence approaches.

Onelimitation of highly multiplexed imaging is the impracticality of
translating discoveriesinto a clinically actionable assay that is broadly
accessible. We thus sought to determine the minimum threshold of
markers that could be used to predict progression without compro-
mising prediction accuracy, with the goal of reducing our panel to
approximately five markers (whichis more likely to be amenable to clini-
cal pathology practice). We first assessed the predictive performance
of the spatial information derived from each individual marker in our
antibody panel. Not surprisingly, we found that CD20 (a B cell marker)
was most associated with animproved prediction of progressionin our
discovery cohort (Supplementary Table 14). Next, on the basis of the
ranking of individual prediction scores, we combined the top two, three,
four or five markers and tested whether combinations could predict
progression in our validation dataset with high accuracy. Using this
approach, we did not reachthe level of accuracy that was achieved when
alllineage markers were used (Fig.4g and Supplementary Table 15). As
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analternative approach, we took advantage of the spatial information
embedded within our dataset, by using our CN analysis as a guide to
identify rational combinations of markers whose spatial distribution are
strongly correlated with survival (Fig. 3d and Supplementary Table 7).
Wereasoned that specificinteractions may have prognostic value and
would therefore be informative in predicting progression. Using this
approach, we discovered that the combination of five markers—CD14,
CD16,CD94, aSMA and CD117 (enriched in CN23, the neighbourhood
most significantly associated with overall survival)—resulted in 90.8%
accuracy (Fig.4gand Supplementary Table15). When we added CD20
(theindividual marker demonstrating the highest predictive potential
for progression), weincreased accuracy to 93.3%, with 95.6% precision
andrecall. Overall, these data suggest that spatially resolved single-cell
datasets may be highly valuableinthe future to help toinform personal-
ized peri-operative care plans to minimize toxicity for those destined
tobe cured, or to increase cure rates for those destined to recur.

Discussion

Here we applied highly multiplexed IMC to characterize the cellular
landscape of the LUAD TIME. We identified cellular dynamics and spatial
features that correlate with distinct clinical outcomesincluding patient
survival. Our datarepresent a valuable resource that adds to a quickly
evolving body of literature supporting the importance of spatially
resolved single-cell datasets in understanding how the TIME architec-
turerelates to tumour biology. As lung cancer remains by far the largest
cause of cancer-related death, there is untapped value in combining
single-cell technology with deep-learning approaches to developintel-
ligent predictive algorithms to help to triage patients onto the thera-
peutic regimens that are best suited for their individual cancer. Our
findings utilize a5-um section of asingle 1-mm? core of formalin-fixed
paraffin-embedded tumour tissue to predict recurrence with high
accuracy, which can be obtained from surgical resection or a biopsy.
Nevertheless, clinical sampling bias remains a challenge in studies in
which smallregions of tumours are captured within asmall amount of
material. Future work will focus on using lower-plex technologies while
attempting to maintain predictive accuracy to achieve translational
feasibility. Our findings represent an important advance over exist-
ing prediction tools that use clinical and pathological variables and
may enable more effective utilization of a growing armamentarium
of peri-adjuvant systemic therapies to improve cancer outcomes***!,
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Methods

Clinical cohort

A cohort of 416 patients with LUAD were included in this study with
follow-up timeranging from February 1996 to July 2020. For the valida-
tion cohort, 60 patients with LUAD with follow-up time ranging from
February 2012 to May 2022 were included with two distinct cores per
patient. All samples obtained were primary treatment-naive LUADs
diagnosed by aboard-certified pathologist following surgical resection
orbiopsy. Clinicalinformation onall patientsincluded canbe foundin
Supplementary Tables1and 12. Tissue microarrays were constructed by
selecting one 1-mm? core from the surgical tumour specimen. Patient
samples and clinical information were obtained following written
informed patient consent. The protocols for human sample biobank-
ing were approved (ethics, scientific and final) through the IUCPQ
Biobank, protocol number IRB #2022-3474, 22090, and the MUHC
protocol numbers IRB #2014-1119 and 2019-5253.

Sample staining and IMC

Formalin-fixed paraffin-embedded (FFPE) slides were deparaffinized at
70 °Cby incubationin EZ Prep solution (Roche Diagnostics) followed by
antigenretrieval at 95 °Cinstandard cell conditioning 1solution (Roche
Diagnostics). The Ventana Discovery Ultra auto-stainer platform (Roche
Diagnostics) was used for antigen retrieval. Slides were rinsed with
1x PBS and incubated for 45 min in Dako serum-free protein block
solution (Agilent). Slides were stained with a cocktail containing
metal-tagged antibodies at optimized dilutions overnightat4 °C. All con-
jugations were performed by the Single Cell and Imaging Mass Cytom-
etry Platform at the Goodman Cancer Institute (McGill University),
using Maxpar Conjugation Kits (Fluidigm). Information on the anti-
bodies used can be found in Supplementary Table 2. Slides were then
washed with 0.2% Triton X and 1x PBS. An optimized dilution of the
secondary antibody cocktail containing metal-conjugated anti-biotin
was preparedin Dako antibody diluent. After al-hincubation, slides were
washed with 0.2% Triton X and 1x PBS. Before IMC acquisition, Cell-ID
Intercalator-Ir (Fluidigm) at adilution of 1:400 was used to counterstain
slidesin1x PBS for 30 minatroom temperature. Slides were thenrinsed
for 5 min with distilled water and air-dried. IMC images were acquired
ataresolution of roughly 1 pm. Cores were laser-ablated at afrequency
0f200 Hz using the Hyperion Imaging System (Fluidigm) and raw data
were compiled using the Fluidigm commercial acquisition software.
Of note, in our validation cohort, we stained with alpha cleaved H3
(176YDb) instead of histone H3 (176 Yb). Accordingly, this marker was
excluded fromvalidating our deep-learning predictions of progression.

Antibody optimization

Antibodies were optimized on control tissues including the spleen,
tonsil, appendix, placenta, thymus, normal lung and LUAD. Multiplex
quality-control staining of positive and negative control tissue can
be seenin Extended Data Figs. 2-4, with four representative images
staining for each of the 35 markers in our panel.

Data transformation and normalization

Data presented were not transformed. All analyses were based on raw
IMC measurements. For heatmap visualization, expression data were
normalized to the 95th percentile and z-scored cluster means were
plotted. Single-cell marker expressions were summarized by mean
pixel values for each channel.

Cell segmentation and lineage assignment

Allmarkers underwent a staining quality check before cell segmenta-
tion (Extended Data Figs. 2-4). A small number of markers did not
consistently stain every sample in our cohort, so we chose not to make
any conclusions based on those markers (GM-CSFR, PD-1, PD-L1and
B7-H3). Note that CD163 (a putative ‘M2-like’ marker) was chosen to

subdivide macrophage populations on the basis that this marker is
often upregulated in tumour-associated macrophages and has been
used to categorize macrophages in multiplex imaging studies™***,
Although the terms ‘M1/pro-inflammatory’ and ‘M2/anti-inflammatory’
have traditionally been used to classify macrophage activation states,
these terms are outdated and were therefore avoided***. Using a
novel cell segmentation pipeline that combines classical and modern
machine-learning-based computer vision algorithms, we segmented
all cells contained within the IMC images. The model used is a fully
automated hybrid cell detection model that eliminates subjective
bias and enables high-throughput image segmentation. It allows us
to accurately distinguish cells across diverse tissue microenviron-
ments and resolve low-resolution structures. The details of ourimage
segmentation approach can be found here: https://biorxiv.org/cgi/
content/short/2022.02.27.482183v1. Owing to existing phenotyping
challenges for highly multiplexed imaging, we created a cell phenotyp-
ing pipeline to assign cell phenotypes. Our strategy relies on canonical
lineage markers and uses a supervised hierarchal approach that inte-
grates the staining quality, the expected population abundance and
cell lineage maturation to assign cells. We used k-means clustering*®
and amixture of generalized Gaussian models* to generate a mask or
level for each marker within amulti-levelimage stack created based on
stainingintensity. This allowed us to evaluate the existence of amarker
ataparticularlocation. Eachmarkerin our panel was assessed using six
levels and the appropriate mask was subsequently manually curated
for eachmarker. Each maskis produced using the following procedure:

(1) The greyscale image channelis convolved with amedian filter with
aparticular window size (3 x 3).

(2) Each pixelin theimage is clustered into six groups of intensity levels
using the k-means algorithm.

(3) Foreach channel, we then selected allgroups up to a particular level
asforeground (1) and the rest as background (0).

(4) Toobtainsmoother binary masks, we also applied amorphological
blob removal processin which binary blobs of a particular areaare
removed from masks to avoid noisy regions.

(5) To further refine the accuracy of select markers, additional
channel-specific morphological operations were applied by com-
puting an additional binary mask obtained using the adaptive bi-
narization method with a sensitivity of 0.4. This mask is then amal-
gamated with the mask obtained in step 4.

Asaformula, for each cell ¢;, we consider the curated mask for each
lineage marker M, where k=1, ..., nand nis the number of lineage mark-
ers.Letusassume pf bethejth plxel thatliesin the surrounding of c;and
eachpixelhasthe followmg presence vector based onthelineage markers:

E(p’) {pM ,pM e Py}
where Py,= {0 or 1}, which determines whether the pixel pf ispositive
fora partlcular marker. Next, to determine whether each plxel within
acellis positive or negative for a given marker, we determined the
majority vector by summing the presence of all vectors as:

Ny
{Z Pir ) %}
1 j=1

where N, is the number of pixels in the cell ¢;. The maximum value in
vector M, determines the cell-type assignment. Cell lineages were
assigned in rank priority order (Extended Data Fig. 1c). See the ‘Code
availability’ section for additional details.

Zp

Cell-cell pairwise interaction
We performed a permutation-test-based analysis of spatial single-cell
interactions to identify significant pairwise interaction-avoidance
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between cells. Interacting cells were defined as those within six pixels.
Pvalues less than 0.01 were deemed significant.

Neighbourhood identification

To generate CNs, we used a ‘window’ capture strategy consisting of
the number of cells (n) in closest proximity to a given cell as previously
described™. Eachwindow is afrequency vector consisting of the types
of X (asindicated) closest cells toagiven cell. Obtaining all the window
vectorsforeach cell, initial cells (Extended Data Fig. 7a) were clustered
using Scikit-learn, a software machine-learninglibrary for Python, and
MiniBatchKMeans clustering algorithm version 0.24.2 with default
batch size =100 and random_state = 0. Subsequent CN analysis was
performed using the MiniBatchKMeans clustering algorithm version
1.1.2 with default batch size =1,024 and random_state = O. Every cell
was subsequently allocated to a CN based on their defining window.
The prevalence of each neighbourhood in each core was normalized
so that the sum of neighbourhood prevalence for that core was 100%.
Values were then z-scored and cores with az-score above or equal to O
and below O were compared for survival outcomes.

t-SNE

Allt-SNE plots were generated in MATLAB (version2019b) using default
parameters. For visualization, expression datawere normalized to the
95th percentile.

Deep learning

All deep-learning analysis steps were performed in Python (version
3.7.12). We used the TensorFlow (version 2.8.0) framework along-
side Keras, which now acts as an interface for the TensorFlow library.
We have two modes of data for our experiments: (1) raw IMC images, and
(2) cellfrequencies obtained from cell phenotyping. For rawIMCimages,
the pretrained ResNet-50 model with weights pretrained on ImageNet
is first utilized to extract embeddings from each channel within the
multiplex IMC channels. Each channel is fed to the three-channels of
ResNet-50 and the embeddings are computed before the classification
layers are obtained. Each channel produces an embedding vector size of
2,048 and thenthese are all concatenated into asingle vector of features
representing that specific core. We then reduced the dimensional-
ity of the extracted feature vectors using mini-batch sparse principal
components analysis to a specific number of principal components
(for most applications we tried nine principal components). Principal
components were later used to train a support vector machine with a
radial basis function kernel with the parameters specified in our code-
base. For theimbalanced datasets, we used arandom oversampling to
achieve an equal number of samples for each class during the training.
The functionused isRandomOverSampler (version 0.9.1) and itis avail-
able at: https://imbalanced-learn.org/stable/references/generated/
imblearn.over_sampling.RandomOverSampler.html. To compare with
cell frequencies, we imagined that cell-frequency vectors also repre-
sent a core (in which each vector is simply a vector of cell prevalence
of each type). Similar to images, we reduced the dimensionality of
the extracted feature vectors to nine principal components and then
trained a support vector machine with a radial basis function kernel
with the same parameters. Various classes of Scikit-learn (version 1.0.2)
machine-learning libraries have been utilized for the tasks of splitting
the dataset, dimensionality reduction and training support vector
machines for the prediction tasks. All feature extraction and training
stepswere performed on Google Cloud GPU/TPU servers. See the ‘Code
availability’ section for additional details.

Statistical analysis and workflow
Allimage analysis steps were performed in MATLAB (version 2019b)
and Python (version 3.7.12). Statistical analyses were performed using

RStudio version 4.2.2 and GraphPad Prism 9 statistical software. Data
areexpressed asmean+s.e.m.ormean +s.d.; P< 0.05was considered
significant unless otherwise indicated. All statistical tests are indi-
cated in the figure legends. Survival data were analysed by log-rank
(Mantel-Cox) test.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Datasupporting the findingsin this study, including high-dimensional
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CyTOF acquisition, image tiling, structure tensor response, scale selection and
final output. ¢, Schematic depiction of the workflow and specific markers used
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Extended DataFig. 6 | Activation markers and single-cell phenotypesin
lung adenocarcinoma. a, T-distributed stochastic neighbour embedding
(t-SNE) 0f108,387 endothelial cells. pSTAT3, Ki-67,CD39 and pERK expression
within the endothelial cluster is shown. b, t-SNE plots 0f 9,480 mast cells, 42,427
neutrophils, 1,407 dendritic cells, 10,000 subsampled CD163- macrophages,
39,502 CD163" macrophages, 37,653 classical monocytes, 8,330 intermediate
monocytesand 17,029 non-classical monocytes. Ki-67, HIF1a, MMP9, ARG1,
pERK, MCSFR, PD-1,B7-H3,BCL2, B7-H4,CD40, CC3,CD39, PD-L1and pSTAT3
expressionin the myeloid compartmentis shown. ¢, t-SNE plots of 62,941 B
cells, 98,396 T, 147,980 T,,19,839 T,.,and 23,995 T other cells. Ki-67, FOXP3,
pERK, CD40,CD39,BCL2,PD-1and pSTAT3 expressionin the lymphoid

compartmentisshown.d-e, Prevalence of Ki-67* endothelial cells (Comparison
between Lepidic and Solid: *P = 0.0362. Comparison between Acinar and Solid:
*P =0.0185) and pERK+ T}, cells (Comparison between Lepidic and Solid:

***+*P =<0.0001. Comparison between Lepidic and Micropapillary: ***P = 0.0004.
Comparisonbetween Lepidicand Acinar: ***P = 0.0003. Comparison between
Lepidic and Papillary:*P =0.0102. Comparison between Acinar and Solid:
*P=0.0288) as aproportion of endothelial and T, cells respectively, across
histological subgroupsin 416 lung adenocarcinoma patients (Lepidicn =40,
Papillaryn=33, Acinar n =190, Micropapillary n =35, Solid n =118). Mean + SEM.
Statistical analysis (d-e: one-way ANOVA with Tukey multiple comparison test).



Article

a

Tumour Boundary
Undefined
Pan-immune hotspot 1
Lymphoid enriched
Tumour Core
Macrophage enriched
Neutrophil enriched
Pan-immune hotspot 2
B cell enriched

Vascular niche|

Te
T other-

Ty
Mast Cell -

Undefined-
NK Cell-
Non-Cl Mo-

Neutrophil
Endothelial Cell

CD163- Mac

@ CN3

Q
z
a

o000 -

. Y
e o O
0.0.
® - .
e - - - e - e

Extended DataFig.7|See next page for caption.

Treg-

Dendritic Cell-

CD163+ Mac-

Cl Mo-
Int Mo-

P value (Log-rank b
test)

-1
CN enrichment
score

O Female @ Male
- O<75y/lo @=75y/o
-« OBMI<30 ©BMI =30
o O Non-smoker @ Smoker
« O1-30PY @ =30 PY
@ Stage I-lI @ Stage llI-IV
» O No progression @ Progression
@ Survivalow @ Survivalhioh
O Lepidic O Papillary
o O Lepidic @ Acinar
O Lepidic @ Micropapillary
@ O Lepidic @®Sold
QO Papillary @ Acinar
O Papillary @ Micropapillary
® O Papillary @® Solid
@ Acinar @ Micropapillary
® O Acinar @ solid ‘ P=0.001
o @ Micropapillary @ Solid : Ezgg;

9 g
z
@

CN5



Extended DataFig.7|Variability in10 cellular neighbourhoods across
clinical variablesinlung adenocarcinoma. a, Heatmap of 10 cellular
neighbourhoods discovered in 416 lung adenocarcinoma patients.

b, Representative images of 10 cellular neighbourhoods using Voronoi diagrams.

¢, Bubble plot where circle colourindicates which of the two comparisons on
they-axis has higher levels of the cell type on the x-axis (Femalen =233,

Male n=183),age (<75yon=369,>75yon=47),BMI(<30n=346,>30n=70),

smoking status (Smoker n =376, Non-smoker n = 38), pack-years (1-30n =89,
>30n=256),stage (I-1lln =365, 11I-IV n = 50), progression status (Progression

n=64,No progression n=340) and histological subgroup (Lepidicn =40,
Papillary n =33, Acinar n =190, Micropapillary n =35, Solid n =118). The size of
thecirclerepresents thelevel of significance. Survival" refers tosurvivalin the
context oflow (zscore <0) prevalence of depicted 10 cellular neighbourhoods.
Theblack boxes depictassociations referenced in the text. For exact P values,
see Supplementary Table 6. Statistical analysis (a: log-rank test, c: FDR-
corrected two-tailed Student t-test for sex, age, BMI, smoking status, pack-
years, stage, progression status; one-way ANOVA with Tukey multiple
comparison test for histological subgroup; log-rank test for survival).
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|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX O O OX OOOS

|Z| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used.

Data analysis All custom code used for this study is available in the linked github repository https://github.com/walsh-quail-labs/IMC-Lung. Code for IMC
cell segmentation was written in Matlab v2019b and Python (version 3.7.12). All deep learning analysis steps were performed in Python
(version 3.7.12) and the TensorFlow (version 2.8.0) framework alongside Keras (2.11.0), RandomOverSampler (Version: 0.9.1) and Scikit-learn
(version 1.0.2). Prism 9.1.0 (GraphPad) and RStudio version 4.2.2 were used for statistical analyses.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The source data supporting findings in this study, including high-dimensional TIFF images, and associated clinical data have been deposited at https://
doi.org/10.5281/zenodo.7383627. Raw primary imaging data can be obtained from the authors directly upon reasonable request.
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Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Lung cancer is the leading cause of cancer death for both males and females. Our study has equal representation of both
male and female patient samples. Additionally, sex as a biological variable was accounted for in our analysis and subsequent
correlations (Figure 2a-b; Extended Figure 3a,d; Extended Figure 5c; Extended Figure 8a). Our study examined fundamental
biological variables without consideration of socio-cultural factors so gender was not considered.

Population characteristics Population characteristics can be found in Supplementary Table 1 & 12. We obtained treatment-naive biobanked surgical
resection and biopsy lung adenocarcinoma tumor specimens. All biobanked primary lung tumor surgical specimens and
biopsies of patients that had an assessment of the primary histological subtype of their tumor as well as appropriate consent
were included.

Recruitment Primary lung adenocarcinoma patients that underwent surgical resection or biopsy at Laval University from February 1996 till
July 2020 were retrospectively contacted to sign a consent form for research through the IUCPQ institutional biobank. All
participants who agreed to the consent form were recruited. This cohort was enriched for early-stage patients, therefore our
findings may be biased towards these groups. Almost half of lung cancer patients are diagnosed at stage IV. The enrichment
for early-stage patients in our cohort reflects the inability to collect surgical resection samples from primary lung
adenocarcinoma of advanced stage as surgery is not an available treatment modality for these patients. For the validation
cohort, stage 1 primary lung adenocarcinoma patients that underwent surgical resection or biopsy at the McGill University
Health Centre between February 2012 and May 2022 were retrospectively contacted to sign a consent form for research.

Ethics oversight The protocol for human sample biobanking was approved (ethics, scientific and final) by the IUCPQ, Protocol Number: IRB
#2022-3474, 22090. For the McGill University Health Centre cohort, the protocol was approved with IRB # 2014-1119 and
2019-5253.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size For our study, 416 primary lung adenocarcinomas were included. A second cohort containing 120 images from 60 stage 1 patients was also
analyzed as a validation cohort. We included all samples we had access to and as such sample size was not specified.

Data exclusions  All patients were included in this study.
Replication The k-fold cross validation method was used, where the data was split into 5 folds, with 20% of the data for each fold. In our experiments, we

considered 4 of the folds (80% of the patients) as the training data and the remaining fold (20%) for testing to evaluate the prediction
accuracy. An independent dataset was used as the validation cohort.
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Randomization  Patients were randomly assigned to each fold for the k-fold cross validation methods for both the training and testing data.

Blinding TMA construction, slide staining and image acquisition were all blinded to clinical and pathological data.




Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
] Antibodies [ ] chip-seq

Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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Antibodies

Antibodies used All antibodies used in this study were titrated for each lot. Information about all antibodies can be found in Supplementary Table 2.

Validation All antibodies were tested on multiple control tissues including spleen, tonsil, placenta, appendix, thymus, lung and tumor tissue for
accuracy and cell type specificity.
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