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Single-cell spatial landscapes of the lung 
tumour immune microenvironment

Mark Sorin1,2,13, Morteza Rezanejad3,4,13, Elham Karimi1,13, Benoit Fiset1, Lysanne Desharnais1,2, 
Lucas J. M. Perus1,5, Simon Milette1,5, Miranda W. Yu1,5, Sarah M. Maritan1,6, Samuel Doré1,2, 
Émilie Pichette7, William Enlow8, Andréanne Gagné8, Yuhong Wei1, Michele Orain8, 
Venkata S. K. Manem8,9, Roni Rayes1, Peter M. Siegel1,6,10, Sophie Camilleri-Broët11, 
Pierre Olivier Fiset11, Patrice Desmeules8, Jonathan D. Spicer1,6,12, Daniela F. Quail1,5,6 ✉, 
Philippe Joubert8 ✉ & Logan A. Walsh1,2 ✉

Single-cell technologies have revealed the complexity of the tumour immune 
microenvironment with unparalleled resolution1–9. Most clinical strategies rely on 
histopathological stratification of tumour subtypes, yet the spatial context of 
single-cell phenotypes within these stratified subgroups is poorly understood. Here 
we apply imaging mass cytometry to characterize the tumour and immunological 
landscape of samples from 416 patients with lung adenocarcinoma across five 
histological patterns. We resolve more than 1.6 million cells, enabling spatial 
analysis of immune lineages and activation states with distinct clinical correlates, 
including survival. Using deep learning, we can predict with high accuracy those 
patients who will progress after surgery using a single 1-mm2 tumour core, which 
could be informative for clinical management following surgical resection. Our 
dataset represents a valuable resource for the non-small cell lung cancer research 
community and exemplifies the utility of spatial resolution within single-cell 
analyses. This study also highlights how artificial intelligence can improve our 
understanding of microenvironmental features that underlie cancer progression 
and may influence future clinical practice.

Lung cancer remains the leading cause of cancer-related death, account-
ing for greater than 20% of all cancer mortalities10. Lung adenocarcinoma 
(LUAD), a type of non-small cell lung cancer (NSCLC), is the most com-
mon subtype and is characterized by distinct cellular and molecular 
features11. The tumour immune microenvironment (TIME) is a major 
source of LUAD heterogeneity and influences both disease progression 
and response to therapy1,3,5. The positioning of immune cells within 
tumours is known to dictate their function12–14; therefore, understand-
ing the spatial landscape of the lung TIME would provide mechanistic 
insights into disease progression, reveal novel therapeutic vulnerabilities 
and unveil biomarkers of response to existing treatments. Here, using 
highly multiplexed imaging mass cytometry (IMC), we interrogated 
spatially resolved features of the TIME that are associated with clinical 
outcomes in patients with LUAD. Using a deep neural network model, 
we demonstrated that various clinical outcomes, such as progression, 
can be predicted using features that an artificial intelligence-based sys-
tem can extract from raw IMC images. The ability to identify patients 
who will progress with a high degree of certainty could guide future 
post-surgical management.

 
LUAD tumour immune microenvironment
To spatially characterize the cellular landscape of the lung TIME, we 
applied IMC to samples from 416 patients with LUAD (Fig. 1a, Extended 
Data Fig. 1a and Supplementary Table 1). We optimized a 35-plex anti-
body panel to identify cancer cells, stromal cells, and innate and adap-
tive immune lineages with diverse functional substates (Extended Data 
Figs. 1b–d and 2–4 and Supplementary Table 2). In total, we detected 
1,644,178 cells and used a supervised lineage assignment approach to 
classify 14 distinct immune cell populations, along with tumour cells 
and endothelial cells using canonical lineage markers (Fig. 1b–f and 
Extended Data Figs. 1c and 5a).

Consistent with previous work15, high-grade solid tumours had the 
greatest immune infiltrate (44.6%) compared with micropapillary, 
acinar, papillary and lepidic architectures (37.0%, 39.7%, 32.8% and 
32.7% respectively; Fig. 1g). This was driven by shifts within the myeloid 
compartment, as there were no significant differences in the average 
frequency of total lymphoid cells across histological patterns (Fig. 1h,i). 
In particular, macrophages were the most frequent cell population 
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within the lung TIME, representing 12.3% of total cells (Fig. 1e) and 34.1% 
of immune cells (Fig. 1f), consistent with their critical role in the NSCLC 
niche16. We found the highest enrichment of CD163+ macrophages 
(putative ‘M2-like’ or protumorigenic) in solid tumours, which are one 
of the most aggressive architectures (Extended Data Fig. 5b, Supple-
mentary Table 3, Supplementary Fig. 1, xii). The prevalence of CD163+ 
macrophages was strongly correlated with FOXP3+ immunoregulatory 
T cells (Treg cells) in the solid pattern (Extended Data Fig. 5c, box 1). 
This relationship was much less pronounced in low-grade lepidic and 
papillary architectures, which had a strong correlation between CD163+ 
macrophages and cytotoxic CD8+ T cells (Extended Data Fig. 5c, box 2). 
These associations suggest a potential interplay between macrophage 
and T cell populations in the TIME across LUAD patterns. Of note, solid 
tumours were also enriched for additional myeloid components, includ-
ing neutrophils, non-classical monocytes and intermediate monocytes 

(Supplementary Fig. 1, ii, xiv and xv). Similarly to macrophages, these 
myeloid populations all exhibit diverse functional states in NSCLC 
biology4 and exemplify the complex heterogeneity that exists in the 
lung TIME.

LUAD multicellular spatial interactions
We next assessed the relationship between immune populations and 
clinical or pathological variables by interrogating the frequency of 
individual cell types as a percentage of total cells within each image 
(Fig. 2a,b, Supplementary Tables 1 and 4 and Supplementary Fig. 1). Each 
image was cross-referenced with clinical data from patients, including 
sex, age, body mass index (BMI), smoking status, stage, progression, 
survival and histological subtype. Although we discovered established 
survival associations for several cell types17,18, most were driven by an 
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Fig. 1 | IMC defines the spatial landscape of LUAD. a, Schematic depicting IMC 
acquisition of multiplexed images from 416 patients with LUAD, single-cell 
phenotyping, survival and machine learning prediction of clinical outcomes. 
CyTOF, cytometry by time of flight. Images were created with BioRender.  
b, Average expression of lineage markers across cell types in the LUAD tissue 
using the panel of isotope-conjugated antibodies. Cl Mo, classical monocyte;  
Int Mo, intermediate monocyte; Mac, macrophage; NK, natural killer; non-Cl Mo, 
non-classical monocyte; Tc, cytotoxic T cell; TH, helper T cell. c, Waterfall  
plot depicting the distribution of 16 stromal and immune cell types across 
histological subgroups. d, Representative images of antibody staining and 
corresponding single-cell segmented images across histological subgroups. 

Scale bars, 100 μm. e,f, Prevalence of 17 cell types, including 14 immune cell 
types, across 416 patients with LUAD as a proportion of total cells (e) and 
immune cells (f). g–i, Prevalence of all immune (g), myeloid (h) and lymphoid (i) 
cells across lepidic (n = 40), papillary (n = 33), acinar (n = 190), micropapillary 
(n = 35) and solid (n = 118) architectural patterns as a proportion of total cells. 
Comparison between lepidic and solid (immune cells): **P = 0.0013. Comparison 
between papillary and solid (immune cells): **P = 0.0039. Comparison between 
lepidic and solid (myeloid cells): ****P ≤ 0.0001. Comparison between papillary 
and solid (myeloid cells): *P = 0.0474. Comparison between acinar and solid 
(myeloid cells): **P = 0.0072. Data shown as mean ± s.e.m. (e–i). One-way ANOVA 
with Tukey multiple comparison test was used for statistical analysis (g–i).
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enrichment in specific clinical or pathological groups. For example, 
although mast cells were associated with prolonged survival, they 
were overrepresented in non-smokers, early-stage patients and those 
with lepidic tumours (Fig. 2b, box 1)—all clinical variables associated 
with good outcomes. Similarly, CD163+ macrophages, non-classical 
monocytes and intermediate monocytes were enriched in solid 
tumours, which have poor outcomes (Fig. 2b, box 2). By contrast, B cell  
frequency was most significantly associated with better overall 
survival, independent of any confounding clinical or pathological  
variables (Fig. 2b, box 3).

Beyond survival associations, we found additional relationships 
between cell frequencies and specific clinical subgroups. For example, 
T cell subsets exhibited specific enrichment based on sex and age. Con-
sistent with previous reports19, CD4+ helper T cells were significantly 
enriched in female patients (Fig. 2b, box 4), who have better overall 
survival than male patients20,21—an association also observed in our 
dataset (Extended Data Fig. 5d). Moreover, older patients (more than 
75 years of age) had fewer intratumoural CD8+ T cells (Fig. 2b, box 5), 
reminiscent of immune ageing that is linked to reduced expression of 
co-stimulatory molecules, antigen receptor diversity and immuno
therapy response22–25. Overall, these data reveal new relationships 

and add biological insight into established associations between cell  
frequencies and clinical outcomes within the TIME.

To gain insight into the cellular architecture and spatial organi-
zation of the LUAD TIME, we characterized direct interactions and 
communication patterns between single cells by quantifying cell–cell 
spatial relationships. Using permutation testing, we assigned the likeli-
hood of interaction or avoidance behaviours between cell pairs across 
LUAD architectures ranging from least to most aggressive (Fig. 2c,d). 
Tumour cells had a universal tendency towards homotypic interactions 
and a relative avoidance with other cell types (Fig. 2d), consistent 
with spatial analyses in breast cancer12. Homotypic interactions were 
high across several immune cell populations, suggestive of a spatially 
coordinated TIME. Many of these interactions were discordant with 
the pattern of cell frequencies, revealing that the spatial relationship 
of cell–cell interactions may hold greater prognostic value than fre-
quency alone. In higher-grade histological patterns (solid and micro-
papillary), both neutrophils and endothelial cells had an increased 
tendency for interactions with cancer cells compared with lower-grade 
subtypes (Fig. 2d, box 1a,b). These relationships are consistent with 
the ability of neutrophils to facilitate tumour cell extravasation into 
blood vessels, thereby promoting haematogenic metastasis26,27,  
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Fig. 2 | Variability in single-cell distributions across clinical variables and 
in cell–cell interaction profiles across histological patterns in LUAD.  
a, Prevalence of Tc cells (CD8+ T cells) across sex (female n = 233, male n = 183), 
age (younger than 75 years of age n = 369, 75 years of age or older n = 47), BMI 
(less than 30 n = 346, 30 or higher n = 70), smoking status (smoker n = 376, 
non-smoker n = 38), pack-years (1–30 n = 89, 30 or more n = 256), stage  
(I-II n = 365, III–IV n = 50), progression status (progression n = 64, no progression 
n = 340) and histological subgroup (lepidic n = 40, papillary n = 33, acinar 
n = 190, micropapillary n = 35, solid n = 118). Comparison between papillary and 
solid: **P = 0.0070, and acinar and solid: **P = 0.0076. Data shown as mean ± s.e.m. 
b, Bubble plot in which the circle size represents the level of significance and 
the circle colour indicates which of the two comparisons on the y axis has 

higher levels of the cell type on the x axis. Survivallow, survival in the context of 
low (z-score < 0) cell prevalence. For P values, see Supplementary Table 4.  
c, Segmented images showing increased interaction of cancer and Tc cells in 
lepidic versus solid predominant LUAD. Scale bars, 100 μm. d, Heat map 
depicting significant pairwise cell–cell interaction (red) or avoidance (blue) 
across the five histological subgroups (lepidic n = 40 images, papillary n = 33 
images, acinar n = 190 images, micropapillary n = 35 images, solid n = 118 
images; 1,000 permutations each). The black boxes depict associations 
referenced in the text. FDR-corrected two-tailed Student’s t-test for sex, age, 
BMI, smoking status, pack-years, stage and progression status; one-way ANOVA 
with Tukey multiple comparison test for histological subgroup; and log-rank 
test for survival were used for statistical analysis (a,b).
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and solid-predominant LUAD has the highest rate of metastasis com-
pared with other histologies28.

In low-grade lepidic and papillary tumours, CD8+ and CD4+ T cells had 
a stronger tendency for interaction with cancer cells than high-grade 
solid LUAD (Fig. 2c,d, box 2), despite the fact that overall CD8+ and CD4+ 
T cell frequencies were not associated with progression (Fig. 2b, box 6). 
This relationship echoes previous findings that the spatial interaction 
of T cells and tumour cells is a stronger indicator of non-recurrence 
than T cell density alone29. Moreover, despite the co-occurrence of 
CD163+ macrophages and CD8+ T cells in low-grade tumours (Extended 
Data Fig. 5c, box 2), their tendency to directly interact was strongest 
in high-grade tumours and decreased as tumors became lower grade 
(Fig. 2d, box 3). This is consistent with the role for CD163+ macrophages 
in suppressing CD8+ T cell function within the TIME30. Similarly, B cells 
exhibited a greater tendency to interact with CD163+ macrophages in 
high-grade tumours (Fig. 2d, box 4), despite the observation that high 
B cell frequency was indicative of prolonged survival (Fig. 2b, box 3). 
In patient tumours specifically enriched in mature antigen-presenting 
CD40+ B cells31, these cells became generally more interactive across 
TIME populations (Extended Data Fig. 5e). Finally, endothelial cells 
tended to interact with many immune populations in high-grade 
tumours compared with low-grade tumours, including CD163+ macro
phages and monocytes (Fig. 2d, box 5); these interactions may be  
reminiscent of innate regulation of vascular inflammation, consistent 
with our observation that immune infiltration was highest in the solid 
pattern (Fig. 1g), driven largely by differences within the myeloid com-
partment (Fig. 1h). Together, these analyses paint an overall picture 
of how stromal interactions shift among histological patterns and 
exemplify how spatial relationships, rather than cell frequency alone, 
are important to understand TIME biology.

LUAD architecture and survival outcomes
To complement our analyses of cell frequencies and interactions, we 
next explored how cellular phenotypes within the microenvironment 
relate to survival. We extracted all microenvironmental populations 
represented in our dataset (including endothelial, myeloid or lymphoid 
compartments) and performed t-distributed stochastic neighbour 
embedding (t-SNE) based on functional markers in our antibody panel 
(Extended Data Fig. 6a–c). First, outside the immune compartment, 
we observed a distinct population of proliferative Ki-67+ endothe-
lial cells, whose frequency was associated with poor overall survival 
(Fig. 3a and Supplementary Table 5) and high-grade solid tumours 
(Extended Data Fig. 6d). Proliferation of the endothelium underlies 
angiogenesis in response to hypoxia, a common feature of aggressive 
tumours32. We therefore explored vascular interactions in high-grade 
patterns and found an enrichment in endothelial cell interactions with 
neutrophils (Fig. 2d, box 6), leading us to question how specific neutro-
phil subsets may respond to hypoxic conditions. We observed several 
neutrophil states based on the expression pattern of three markers: 
HIF1α+, ARG1+ and MMP9+ (Fig. 3b and Extended Data Fig. 6b). Despite 
a high frequency of total neutrophils not being correlated with sur-
vival in our cohort (Fig. 2b, box 7), an increase in the proportion of the 
HIF1α+ subset was significantly associated with worse overall survival 
(Fig. 3b and Supplementary Table 5), which may reflect cases in which 
angiogenesis is insufficient to alleviate hypoxia. Neutrophils and other 
granulocytes are sensitive to low-oxygen conditions, and can adopt 
immunosuppressive behaviours against T cells in this setting33. Indeed, 
we observed that neutrophils exhibit a higher tendency to interact 
with immunosuppressive Treg cells in high-grade tumours (Fig. 2d, box 
7). Phenotypic analysis within the lymphoid compartment revealed 
active ERK signalling within a subset of CD4+ T cells associated with 
prolonged survival (Fig. 3c and Supplementary Table 5), which is known 
to suppress differentiation into Treg cells34. Consistently, pERK+CD4+ 
T cells were enriched in low-grade lepidic tumours (Extended Data 

Fig. 6e) where neutrophil–Treg cell interactions were the lowest (Fig. 2d,  
box 7), and reduced in high-grade solid tumours (Extended Data Fig. 6e) 
where Treg cells were most abundant (Fig. 2b, box 8). Together, these 
findings provide a snapshot of spatially resolved phenotypic programs 
associated with more aggressive tumours, as they relate to tumour 
hypoxia and an immunosuppressive niche.

Beyond pairwise interactions, our data hint at the existence of larger 
cellular communities that are distinctively organized within the TIME 
across LUAD subtypes. To assess this, we followed a canonical approach 
to establish cellular neighbourhoods by first identifying the ten nearest 
spatial neighbours for each individual cell12,14. We then reclassified cells 
on the basis of their spatially defined cellular neighbourhood (CN). Using 
this approach, we discovered ten CNs that recapitulated both new and 
known tissue architectures, which we named: tumour boundary (CN1), 
undefined (CN2), pan-immune hotspot 1 (CN3), lymphoid enriched 
(CN4), tumour core (CN5), macrophage enriched (CN6), neutrophil 
enriched (CN7), pan-immune hotspot 2 (CN8), B cell enriched (CN9) 
and vascular niche (CN10) (Extended Data Fig. 7a,b). To identify CNs 
associated with survival, we performed Kaplan–Meier analysis by desig-
nating the frequency of CNs for each patient as high (CNhigh; z-score ≥ 0) 
or low (CNlow; z-score < 0). Consistent with our findings related to  
B cell frequency (Fig. 2b, box 3, and Supplementary Table 4), CN9high  
(B cell-enriched) was significantly associated with increased overall 
survival (Extended Data Fig. 7a and Supplementary Table 6), despite 
minimal differences in CN9 representation across histological pat-
terns (Extended Data Fig. 7c, box 1). CN3high (pan-immune hotspot 1) 
and CN4high (lymphoid enriched) were also significantly correlated 
with increased overall survival across LUAD histologies (Extended Data 
Fig. 7a,c, box 2). When survival was analysed within histological patterns, 
associations with increased survival were noted for CN4low (lymphoid 
enriched) within the lepidic pattern, CN9high (B cell enriched) in the 
acinar pattern and CN2low (undefined) and CN4high (lymphoid enriched) 
in the solid pattern (Supplementary Fig. 2).

We were particularly interested in dissecting B cell neighbourhoods in 
greater detail, given the prognostic value of B cells in our dataset (Fig. 2b, 
box 3). Two variables that affect CN analysis include the number of inter-
acting cells within a neighbourhood (denoted as n) and the number of 
total neighbourhoods (denoted as tCN). To further explore the spatial 
relationship between CNs and survival, we first altered the number of 
nearest spatial neighbours for each individual cell (n) while maintaining 
a constant number of neighbourhoods (tCN = 10). Across a wide range of 
n values (n = 3–30), CNs enriched in B cells were significantly associated 
with survival (Extended Data Fig. 8a), with the most significant associa-
tion resulting from n = 10 and tCN = 10 (Extended Data Fig. 7a). To resolve 
B cell interactions that drive this survival advantage, we increased the tCN 
to 30. Using this approach, we were able to resolve four B cell-enriched 
neighbourhoods (CN7, CN11, CN21 and CN25) (Fig. 3d). Across these 
neighbourhoods, the survival advantage associated with B cells was 
negated when CNs concurrently displayed an enrichment in Treg cells 
(CN7 and CN21), whereas the survival advantage was maintained for CN11 
(P = 0.0389) and CN25 (P = 0.0034) where Treg cells were lower (Fig. 3e and 
Supplementary Table 7). When comparing these two neighbourhoods, 
we noted a greater survival advantage for CN25, which was also enriched 
for CD4+ helper T cells (by contrast, CN11 was enriched for B cells alone). 
To determine whether the improved survival benefit associated with 
CN25 was related to the interaction of B cells and CD4+ helper T cells or 
to the prevalence of both cell types independent of their interaction, we 
plotted the survival association of patients who were B cell-high and CD4+ 
helper T cell-high versus patients who were B cell-high and CD4+ helper 
T cell-low and observed no significant difference (P = 0.644; Extended 
Data Fig. 8b). Moreover, the correlation between T cells and B cells in 
our cohort was low with an R2 of 0.210, thus making it less likely that 
CD4+ helper T cells and B cells are interacting as a result of a strong cor-
relation in the prevalence of both cell types (Extended Data Fig. 8c,d). 
These data suggest that the improved survival association for CN25 is 
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related to the interaction of B cells and CD4+ helper T cells beyond the 
prevalence of both cell types alone. However, an enrichment in Treg cells 
was still sufficient to negate this survival benefit (CN21), emphasizing  
the importance of multicellular B cell interactions within the TIME. 
Finally, there was no significant association between these B cell-enriched 
CNs and any other clinical variable, including histological subtype 
(Extended Data Fig. 9a,b and Supplementary Table 7). Together, these 
findings suggest that the spatial organization of TIME interactions 
may provide additional insight into individual patient survival beyond  
histological subtype classifications and cell prevalence.

Predicting outcomes using deep learning
Given our finding that spatial neighbourhoods are predictive of survival 
regardless of LUAD architectures, we wondered whether we could lever-
age spatial data to predict clinical outcomes by using a deep-learning 
approach (Fig. 4a). We took advantage of transfer learning by using a 
pretrained convolutional neural network model. We chose the deep 
residual networks35 architecture pretrained on the ImageNet data-
set36. Using the k-fold cross-validation method, we split the data into 
five folds, with 20% of the data for each fold. In our experiments, we 
considered four of the folds (80% of the patients) as the training data 
and the remaining fold (20%) for testing to evaluate the prediction 
accuracy. We repeated this for all possible combinations. For proof of 
principle, we first assessed whether the frequency of cells alone within 
each image would be sufficient to predict clinical variables. We tested 
routine clinical variables that demonstrated some variation in cell-type 
frequencies including histological subtype, sex, survival, BMI, cancer 
progression, cancer stage, age and smoking. Our goal was to increase 
the ability to predict clinical outcomes above the baseline prediction 
score, which reflects the chance of predicting the major class over the 
total number of examples involved for that specific variable. However, 
we saw negligible increases in prediction score above baseline for most 
of the clinical variables, suggesting that cell frequency alone does not 
capture the tumour architecture with enough resolution to predict clini-
cal variables with high confidence (Fig. 4b and Supplementary Table 8).

We next investigated whether the integration of spatial informa-
tion, obtained by inputting all the raw lineage marker images into our 
model, would help recognition performance. Using this approach, we 
observed a significant boost in performance for all clinical variables 
tested compared with cell frequency alone, suggesting that single-cell 
positional information that is encoded in each of the multiplex image 
scans is critical to interpreting the complex TIME that underlies clini-
cal correlates (Fig. 4c and Supplementary Table 9). Spatial informa-
tion did not confer an increase above baseline for sex, indicating that 
the TIME that underlies tumours from male individuals versus female 
individuals is indistinguishable using our model. Finally, to compare 
whether additional channels from our IMC images would lead to bet-
ter recognition performance (that is, integration of spatially resolved 
immune functional substates), we used all the markers in our panel 
and repeated the predictions. The additional channels did not boost 
performance, suggesting that there is a certain threshold beyond which 
additional markers do not add value to clinical predictions based on 
our model (Fig. 4d and Supplementary Table 10).

We next sought to leverage our deep-learning approach to address 
a clinically meaningful problem. Although adjuvant chemotherapy 
has long been demonstrated to improve overall survival in patients 
with NSCLC who have stage IIA to IIIA disease, patients with stage I 
tumours smaller than 4 cm currently do not receive adjuvant chemo-
therapy37,38, despite that many of these patients are at increased risk for 
progression39. In fact, these patients currently have minimal approved 
peri-adjuvant therapeutic options37. Even with complete lung tumour 
resection, a significant proportion of these patients will relapse39. 
Therefore, we next assessed whether we could predict progression 
in patients with stage IA–IB lung cancer. The use of standard clinical 
information in our model (sex, age, BMI, smoking status, pack-years, 
surgery type, maximum tumour size, tumour grade, predominant his-
tological pattern and stage) was insufficient to predict progression over 
baseline (Fig. 4e, Extended Data Fig. 10a and Supplementary Table 11). 
Consistent with our previous results, the frequency of cells alone was 
also insufficient to significantly predict progression (Fig. 4e, Extended 
Data Fig. 10b and Supplementary Table 11). When we included spatial 
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information, however, our model predicted progression with 95.9% 
accuracy from a single 1-mm2 tumour core, smaller than most standard 
needle biopsies used to establish a diagnosis of lung cancer (Fig. 4e, 
Extended Data Fig. 10c and Supplementary Table 11). Additional mark-
ers, again, did not boost the prediction accuracy (Fig. 4e, Extended 
Data Fig. 10d and Supplementary Table 11), indicating that there is a 
minimum threshold of markers required to ascertain accurate predic-
tions, a promising finding for translational practicality.

To validate our findings and to assess how heterogeneity within the 
lung TIME may affect our predictions, we performed IMC on an inde-
pendent validation cohort consisting of 60 patients with primary LUAD 
that included two spatially distinct cores per tumour (Supplementary 
Table 12). In this new dataset, after training on our discovery cohort, 
the use of raw images from our lineage markers was able to predict 
progression with high accuracy (94.2% accuracy; Fig. 4f and Supple-
mentary Table 13), with no added benefit from integrating the entire 
panel (93.3% accuracy). Of note, our validation cohort was more bal-
anced, with a lower baseline prediction score (75.0%), confirming that 
there are spatially defined features within these images that probably 
reflect clinical outcomes. When assessing intratumour heterogeneity, 
we found substantial agreement in the predictions between two distinct 

cores from the same tumour (91.7%, lineage markers model). Despite 
these promising results, we acknowledge that tumour heterogeneity 
remains a challenge for accurate clinical and pathological diagnosis, 
an area of research that may benefit greatly from the application of 
artificial intelligence approaches.

One limitation of highly multiplexed imaging is the impracticality of 
translating discoveries into a clinically actionable assay that is broadly 
accessible. We thus sought to determine the minimum threshold of 
markers that could be used to predict progression without compro-
mising prediction accuracy, with the goal of reducing our panel to 
approximately five markers (which is more likely to be amenable to clini-
cal pathology practice). We first assessed the predictive performance 
of the spatial information derived from each individual marker in our 
antibody panel. Not surprisingly, we found that CD20 (a B cell marker) 
was most associated with an improved prediction of progression in our 
discovery cohort (Supplementary Table 14). Next, on the basis of the 
ranking of individual prediction scores, we combined the top two, three, 
four or five markers and tested whether combinations could predict 
progression in our validation dataset with high accuracy. Using this 
approach, we did not reach the level of accuracy that was achieved when 
all lineage markers were used (Fig. 4g and Supplementary Table 15). As 
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channels. b–d, Fivefold cross-validation across clinical outcomes: histological 
patterns, sex (male or female), BMI (less than 30 or 30 or higher) and 
age (younger than 75 years of age or 75 years of age or older) n = 416; survival  
(less than 3 years, 3 years or longer) n = 407; progression status (progression 
or no progression) n = 404; stage (I–II or III–IV) n = 415; smoking status (smoker 
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lineage markers (c) and spatial distribution of all markers (d). The size of the 
bubble represents deviation from baseline, with blue and grey indicating an 
improvement or worsening in predictive performance, respectively. The line in 
the bar plot represents the baseline. Schematics in a–d were created with 
BioRender. e, Accuracy of clinical progression prediction in patients with stage I 
LUAD (n = 286) using clinical variables, cell frequency, lineage marker and  
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used for statistical analysis (e).



554  |  Nature  |  Vol 614  |  16 February 2023

Article
an alternative approach, we took advantage of the spatial information 
embedded within our dataset, by using our CN analysis as a guide to 
identify rational combinations of markers whose spatial distribution are 
strongly correlated with survival (Fig. 3d and Supplementary Table 7). 
We reasoned that specific interactions may have prognostic value and 
would therefore be informative in predicting progression. Using this 
approach, we discovered that the combination of five markers—CD14, 
CD16, CD94, αSMA and CD117 (enriched in CN23, the neighbourhood 
most significantly associated with overall survival)—resulted in 90.8% 
accuracy (Fig. 4g and Supplementary Table 15). When we added CD20 
(the individual marker demonstrating the highest predictive potential 
for progression), we increased accuracy to 93.3%, with 95.6% precision 
and recall. Overall, these data suggest that spatially resolved single-cell 
datasets may be highly valuable in the future to help to inform personal-
ized peri-operative care plans to minimize toxicity for those destined 
to be cured, or to increase cure rates for those destined to recur.

Discussion
Here we applied highly multiplexed IMC to characterize the cellular 
landscape of the LUAD TIME. We identified cellular dynamics and spatial 
features that correlate with distinct clinical outcomes including patient 
survival. Our data represent a valuable resource that adds to a quickly 
evolving body of literature supporting the importance of spatially 
resolved single-cell datasets in understanding how the TIME architec-
ture relates to tumour biology. As lung cancer remains by far the largest 
cause of cancer-related death, there is untapped value in combining 
single-cell technology with deep-learning approaches to develop intel-
ligent predictive algorithms to help to triage patients onto the thera-
peutic regimens that are best suited for their individual cancer. Our 
findings utilize a 5-µm section of a single 1-mm2 core of formalin-fixed 
paraffin-embedded tumour tissue to predict recurrence with high 
accuracy, which can be obtained from surgical resection or a biopsy. 
Nevertheless, clinical sampling bias remains a challenge in studies in 
which small regions of tumours are captured within a small amount of 
material. Future work will focus on using lower-plex technologies while 
attempting to maintain predictive accuracy to achieve translational 
feasibility. Our findings represent an important advance over exist-
ing prediction tools that use clinical and pathological variables and 
may enable more effective utilization of a growing armamentarium 
of peri-adjuvant systemic therapies to improve cancer outcomes40,41.
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Methods

Clinical cohort
A cohort of 416 patients with LUAD were included in this study with 
follow-up time ranging from February 1996 to July 2020. For the valida-
tion cohort, 60 patients with LUAD with follow-up time ranging from 
February 2012 to May 2022 were included with two distinct cores per 
patient. All samples obtained were primary treatment-naive LUADs 
diagnosed by a board-certified pathologist following surgical resection 
or biopsy. Clinical information on all patients included can be found in 
Supplementary Tables 1 and 12. Tissue microarrays were constructed by 
selecting one 1-mm2 core from the surgical tumour specimen. Patient 
samples and clinical information were obtained following written 
informed patient consent. The protocols for human sample biobank-
ing were approved (ethics, scientific and final) through the IUCPQ 
Biobank, protocol number IRB #2022-3474, 22090, and the MUHC 
protocol numbers IRB #2014-1119 and 2019-5253.

Sample staining and IMC
Formalin-fixed paraffin-embedded (FFPE) slides were deparaffinized at 
70 °C by incubation in EZ Prep solution (Roche Diagnostics) followed by 
antigen retrieval at 95 °C in standard cell conditioning 1 solution (Roche 
Diagnostics). The Ventana Discovery Ultra auto-stainer platform (Roche 
Diagnostics) was used for antigen retrieval. Slides were rinsed with  
1× PBS and incubated for 45 min in Dako serum-free protein block 
solution (Agilent). Slides were stained with a cocktail containing 
metal-tagged antibodies at optimized dilutions overnight at 4 °C. All con-
jugations were performed by the Single Cell and Imaging Mass Cytom-
etry Platform at the Goodman Cancer Institute (McGill University),  
using Maxpar Conjugation Kits (Fluidigm). Information on the anti-
bodies used can be found in Supplementary Table 2. Slides were then 
washed with 0.2% Triton X and 1× PBS. An optimized dilution of the 
secondary antibody cocktail containing metal-conjugated anti-biotin 
was prepared in Dako antibody diluent. After a 1-h incubation, slides were 
washed with 0.2% Triton X and 1× PBS. Before IMC acquisition, Cell-ID 
Intercalator-Ir (Fluidigm) at a dilution of 1:400 was used to counterstain 
slides in 1× PBS for 30 min at room temperature. Slides were then rinsed 
for 5 min with distilled water and air-dried. IMC images were acquired 
at a resolution of roughly 1 μm. Cores were laser-ablated at a frequency 
of 200 Hz using the Hyperion Imaging System (Fluidigm) and raw data 
were compiled using the Fluidigm commercial acquisition software.  
Of note, in our validation cohort, we stained with alpha cleaved H3 
(176Yb) instead of histone H3 (176Yb). Accordingly, this marker was 
excluded from validating our deep-learning predictions of progression.

Antibody optimization
Antibodies were optimized on control tissues including the spleen, 
tonsil, appendix, placenta, thymus, normal lung and LUAD. Multiplex 
quality-control staining of positive and negative control tissue can 
be seen in Extended Data Figs. 2–4, with four representative images 
staining for each of the 35 markers in our panel.

Data transformation and normalization
Data presented were not transformed. All analyses were based on raw 
IMC measurements. For heatmap visualization, expression data were 
normalized to the 95th percentile and z-scored cluster means were 
plotted. Single-cell marker expressions were summarized by mean 
pixel values for each channel.

Cell segmentation and lineage assignment
All markers underwent a staining quality check before cell segmenta-
tion (Extended Data Figs. 2–4). A small number of markers did not 
consistently stain every sample in our cohort, so we chose not to make 
any conclusions based on those markers (GM-CSFR, PD-1, PD-L1 and 
B7-H3). Note that CD163 (a putative ‘M2-like’ marker) was chosen to 

subdivide macrophage populations on the basis that this marker is 
often upregulated in tumour-associated macrophages and has been 
used to categorize macrophages in multiplex imaging studies14,42,43. 
Although the terms ‘M1/pro-inflammatory’ and ‘M2/anti-inflammatory’ 
have traditionally been used to classify macrophage activation states, 
these terms are outdated and were therefore avoided44,45. Using a 
novel cell segmentation pipeline that combines classical and modern 
machine-learning-based computer vision algorithms, we segmented 
all cells contained within the IMC images. The model used is a fully 
automated hybrid cell detection model that eliminates subjective 
bias and enables high-throughput image segmentation. It allows us 
to accurately distinguish cells across diverse tissue microenviron-
ments and resolve low-resolution structures. The details of our image 
segmentation approach can be found here: https://biorxiv.org/cgi/
content/short/2022.02.27.482183v1. Owing to existing phenotyping 
challenges for highly multiplexed imaging, we created a cell phenotyp-
ing pipeline to assign cell phenotypes. Our strategy relies on canonical 
lineage markers and uses a supervised hierarchal approach that inte-
grates the staining quality, the expected population abundance and 
cell lineage maturation to assign cells. We used k-means clustering46 
and a mixture of generalized Gaussian models47 to generate a mask or 
level for each marker within a multi-level image stack created based on 
staining intensity. This allowed us to evaluate the existence of a marker 
at a particular location. Each marker in our panel was assessed using six 
levels and the appropriate mask was subsequently manually curated 
for each marker. Each mask is produced using the following procedure:

(1) �The greyscale image channel is convolved with a median filter with 
a particular window size (3 × 3).

(2) �Each pixel in the image is clustered into six groups of intensity levels 
using the k-means algorithm.

(3) �For each channel, we then selected all groups up to a particular level 
as foreground (1) and the rest as background (0).

(4) �To obtain smoother binary masks, we also applied a morphological 
blob removal process in which binary blobs of a particular area are 
removed from masks to avoid noisy regions.

(5) �To further refine the accuracy of select markers, additional 
channel-specific morphological operations were applied by com-
puting an additional binary mask obtained using the adaptive bi-
narization method with a sensitivity of 0.4. This mask is then amal-
gamated with the mask obtained in step 4.

As a formula, for each cell ci, we consider the curated mask for each 
lineage marker Mk, where k n= 1, …,  and n is the number of lineage mark-
ers. Let us assume pc

j
i
 be the jth pixel that lies in the surrounding of ci and 

each pixel has the following presence vector based on the lineage markers:
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for a particular marker. Next, to determine whether each pixel within 
a cell is positive or negative for a given marker, we determined the 
majority vector by summing the presence of all vectors as:
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where Nci
 is the number of pixels in the cell ci. The maximum value in 

vector Mci
 determines the cell-type assignment. Cell lineages were 

assigned in rank priority order (Extended Data Fig. 1c). See the ‘Code 
availability’ section for additional details.

Cell–cell pairwise interaction
We performed a permutation-test-based analysis of spatial single-cell 
interactions to identify significant pairwise interaction–avoidance
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between cells12. Interacting cells were defined as those within six pixels. 
P values less than 0.01 were deemed significant.

Neighbourhood identification
To generate CNs, we used a ‘window’ capture strategy consisting of 
the number of cells (n) in closest proximity to a given cell as previously 
described14. Each window is a frequency vector consisting of the types 
of X (as indicated) closest cells to a given cell. Obtaining all the window 
vectors for each cell, initial cells (Extended Data Fig. 7a) were clustered 
using Scikit-learn, a software machine-learning library for Python, and 
MiniBatchKMeans clustering algorithm version 0.24.2 with default 
batch size = 100 and random_state = 0. Subsequent CN analysis was 
performed using the MiniBatchKMeans clustering algorithm version 
1.1.2 with default batch size = 1,024 and random_state = 0. Every cell 
was subsequently allocated to a CN based on their defining window. 
The prevalence of each neighbourhood in each core was normalized 
so that the sum of neighbourhood prevalence for that core was 100%. 
Values were then z-scored and cores with a z-score above or equal to 0 
and below 0 were compared for survival outcomes.

t-SNE
All t-SNE plots were generated in MATLAB (version 2019b) using default 
parameters. For visualization, expression data were normalized to the 
95th percentile.

Deep learning
All deep-learning analysis steps were performed in Python (version 
3.7.12). We used the TensorFlow (version 2.8.0) framework along-
side Keras, which now acts as an interface for the TensorFlow library.  
We have two modes of data for our experiments: (1) raw IMC images, and 
(2) cell frequencies obtained from cell phenotyping. For raw IMC images, 
the pretrained ResNet-50 model with weights pretrained on ImageNet 
is first utilized to extract embeddings from each channel within the 
multiplex IMC channels. Each channel is fed to the three-channels of 
ResNet-50 and the embeddings are computed before the classification 
layers are obtained. Each channel produces an embedding vector size of 
2,048 and then these are all concatenated into a single vector of features 
representing that specific core. We then reduced the dimensional-
ity of the extracted feature vectors using mini-batch sparse principal 
components analysis to a specific number of principal components 
(for most applications we tried nine principal components). Principal 
components were later used to train a support vector machine with a 
radial basis function kernel with the parameters specified in our code-
base. For the imbalanced datasets, we used a random oversampling to 
achieve an equal number of samples for each class during the training. 
The function used is RandomOverSampler (version 0.9.1) and it is avail-
able at: https://imbalanced-learn.org/stable/references/generated/
imblearn.over_sampling.RandomOverSampler.html. To compare with 
cell frequencies, we imagined that cell-frequency vectors also repre-
sent a core (in which each vector is simply a vector of cell prevalence 
of each type). Similar to images, we reduced the dimensionality of 
the extracted feature vectors to nine principal components and then 
trained a support vector machine with a radial basis function kernel 
with the same parameters. Various classes of Scikit-learn (version 1.0.2) 
machine-learning libraries have been utilized for the tasks of splitting 
the dataset, dimensionality reduction and training support vector 
machines for the prediction tasks. All feature extraction and training 
steps were performed on Google Cloud GPU/TPU servers. See the ‘Code 
availability’ section for additional details.

Statistical analysis and workflow
All image analysis steps were performed in MATLAB (version 2019b) 
and Python (version 3.7.12). Statistical analyses were performed using 

RStudio version 4.2.2 and GraphPad Prism 9 statistical software. Data 
are expressed as mean ± s.e.m. or mean ± s.d.; P < 0.05 was considered 
significant unless otherwise indicated. All statistical tests are indi-
cated in the figure legends. Survival data were analysed by log-rank 
(Mantel–Cox) test.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data supporting the findings in this study, including high-dimensional 
TIFF images, are available at https://doi.org/10.5281/zenodo.7383627. 
Raw primary imaging data can be obtained from the authors directly 
on reasonable request.

Code availability
The original code used to produce the results of this study is available 
at https://github.com/walsh-quail-labs/IMC-Lung. 
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Extended Data Fig. 1 | Imaging mass cytometry segmentation pipeline  
and antibody panel. a, Flowchart for inclusion and exclusion criteria of  
576 lung adenocarcinoma cores. b, Schematic of IMC segmentation pipeline 
representing antibody conjugation of metal isotopes, labeling, laser ablation, 
CyTOF acquisition, image tiling, structure tensor response, scale selection and 
final output. c, Schematic depiction of the workflow and specific markers used 
for lineage assignment. Panels a–c were created with BioRender. d, Average 

expression of non-lineage markers across cell types in lung adenocarcinoma 
tissue stained with the panel of isotope-conjugated antibodies; CD163−Mac, 
CD163− macrophage; CD163+ Mac, CD163+ macrophage; Tc, CD8+ T cell;  
Treg, regulatory T cell, TH, CD4+ T cell; Cl Mo, classical monocyte; Int Mo, 
intermediate monocyte; Non-Cl Mo, non-classical monocyte; NK Cell, natural 
killer cell.
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Extended Data Fig. 2 | Antibody panel validation 1. Validation of 18 antibodies used for multiplex IMC across positive and negative controls. Scale bars represent 
50 μm.



Extended Data Fig. 3 | Antibody panel validation 2. Validation of 17 antibodies used for multiplex IMC across positive and negative controls. Scale bars 
represent 50 μm.
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Extended Data Fig. 4 | Antibody panel validation 3. Lineage marker staining and corresponding cell segmentation in control tissue. Colour code for cell 
segmentation is provided. Scale bars represent 100 μm.



Extended Data Fig. 5 | Survival analysis of distinct clinical variables. a, Pie 
chart depicting the proportion of undefined cells that are CD45+ across 416 
lung adenocarcinoma patients. b, Kaplan–Meier curves of overall survival for 
416 lung adenocarcinoma patients based on histological subgroup (Lepidic 
n = 40, Papillary n = 33, Acinar n = 190, Micropapillary n = 35, Solid n = 118.  
For P values, see Supplementary Table 3. c, Heatmap depicting the Spearman’s 
rank correlation coefficient with high coefficients in red and low coefficients 
in blue between indicated cell types across the five histological subgroups 
(Lepidic n = 40 images, Papillary n = 33 images, Acinar n = 190 images, 

Micropapillary n = 35 images, Solid n = 118 images). d, Kaplan–Meier curves of 
overall survival for 416 lung adenocarcinoma patients based on sex (Female 
n = 233, Male n = 183). e, Heatmap depicting cell-cell interaction/avoidance 
among B cells in the CD40+ B cell high (z score ≥0; %total B cells) and CD40+ B 
cell low (z score <0; %total B cells) groups. Each rectangle depicts significant 
pairwise cell-type interaction (red) or avoidance (blue) between indicated cell 
types (n = 186 images for the CD40+ B cell high group; n = 230 images for the 
CD40+ B cell low group; 1,000 permutations each). Statistical analysis (b, d: 
log-rank test).
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Activation markers and single-cell phenotypes in 
lung adenocarcinoma. a, T-distributed stochastic neighbour embedding 
(t-SNE) of 108,387 endothelial cells. pSTAT3, Ki-67, CD39 and pERK expression 
within the endothelial cluster is shown. b, t-SNE plots of 9,480 mast cells, 42,427 
neutrophils, 1,407 dendritic cells, 10,000 subsampled CD163- macrophages, 
39,502 CD163+ macrophages, 37,653 classical monocytes, 8,330 intermediate 
monocytes and 17,029 non-classical monocytes. Ki-67, HIF1α, MMP9, ARG1, 
pERK, MCSFR, PD-1, B7-H3, BCL2, B7-H4, CD40, CC3, CD39, PD-L1 and pSTAT3 
expression in the myeloid compartment is shown. c, t-SNE plots of 62,941 B 
cells, 98,396 Tc, 147,980 TH, 19,839 Treg and 23,995 T other cells. Ki-67, FOXP3, 
pERK, CD40, CD39, BCL2, PD-1 and pSTAT3 expression in the lymphoid 

compartment is shown. d-e, Prevalence of Ki-67+ endothelial cells (Comparison 
between Lepidic and Solid: * P = 0.0362. Comparison between Acinar and Solid: 
* P = 0.0185) and pERK+ TH cells (Comparison between Lepidic and Solid:  
**** P = <0.0001. Comparison between Lepidic and Micropapillary: *** P = 0.0004. 
Comparison between Lepidic and Acinar: *** P = 0.0003. Comparison between 
Lepidic and Papillary: * P = 0.0102. Comparison between Acinar and Solid:  
* P = 0.0288) as a proportion of endothelial and TH cells respectively, across 
histological subgroups in 416 lung adenocarcinoma patients (Lepidic n = 40, 
Papillary n = 33, Acinar n = 190, Micropapillary n = 35, Solid n = 118). Mean ± SEM. 
Statistical analysis (d-e: one-way ANOVA with Tukey multiple comparison test).
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | Variability in 10 cellular neighbourhoods across 
clinical variables in lung adenocarcinoma. a, Heatmap of 10 cellular 
neighbourhoods discovered in 416 lung adenocarcinoma patients.  
b, Representative images of 10 cellular neighbourhoods using Voronoi diagrams. 
c, Bubble plot where circle colour indicates which of the two comparisons on 
the y-axis has higher levels of the cell type on the x-axis (Female n = 233,  
Male n = 183), age (<75 yo n = 369, ≥75 yo n = 47), BMI (<30 n = 346, ≥30 n = 70), 
smoking status (Smoker n = 376, Non-smoker n = 38), pack-years (1—30 n = 89, 
≥30 n = 256), stage (I-II n = 365, III-IV n = 50), progression status (Progression 

n = 64, No progression n = 340) and histological subgroup (Lepidic n = 40, 
Papillary n = 33, Acinar n = 190, Micropapillary n = 35, Solid n = 118). The size of 
the circle represents the level of significance. Survivallow refers to survival in the 
context of low (z score <0) prevalence of depicted 10 cellular neighbourhoods. 
The black boxes depict associations referenced in the text. For exact P values, 
see Supplementary Table 6. Statistical analysis (a: log-rank test, c: FDR-
corrected two-tailed Student t-test for sex, age, BMI, smoking status, pack-
years, stage, progression status; one-way ANOVA with Tukey multiple 
comparison test for histological subgroup; log-rank test for survival).
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Extended Data Fig. 8 | Heatmaps of 10 cellular neighbourhoods with 3, 5,  
20 and 30 closest cells (n) discovered in 416 lung adenocarcinoma patients.  
a, Tables depict result of log-rank test of the overall survival for 416 lung 
adenocarcinoma patients based on low (z score <0) and high (z score ≥0) 
prevalence. Black p values indicate no significant difference (p ≥ 0.05) in 
survival between the two groups. Blue p values indicate better survival 

(p < 0.05) with high prevalence and red p values indicate better survival (p < 0.05) 
with low prevalence of the depicted groups. b, Kaplan–Meier curves of overall 
survival for lung adenocarcinoma patients based on low (z score <0) and high  
(z score ≥0) prevalence of TH cells and high (z score ≥0) prevalence of B cells.  
c, Correlation of T cell and B cell prevalence. d, Correlation of immune infiltrate 
and B cell prevalence. Statistical analysis (b: Log-rank test).



Extended Data Fig. 9 | Variability in 30 cellular neighbourhoods across 
clinical variables in lung adenocarcinoma. a, Bubble plot where circle colour 
indicates which of the two comparisons on the y-axis has higher levels of the 
cell type on the x-axis (Female n = 233, Male n = 183), age (<75 yo n = 369, ≥75 yo 
n = 47), BMI (<30 n = 346, ≥30 n = 70), smoking status (Smoker n = 376, 
Non-smoker n = 38), pack-years (1-30 n = 89, ≥30 n = 256), stage (I-II n = 365,  
III-IV n = 50), progression status (Progression n = 64, No progression n = 340) 
and histological subgroup (Lepidic n = 40, Papillary n = 33, Acinar n = 190, 
Micropapillary n = 35, Solid n = 118). The size of the circle represents the level of 

significance. Survivallow refers to survival in the context of low (z score <0) 
prevalence of depicted 30 cellular neighbourhoods. For exact P values, see 
Supplementary Table 7. The black boxes depict associations referenced in  
the text. b, Prevalence of 30 cellular neighbourhoods across 5 histological 
subtypes (Lepidic n = 40, Papillary n = 33, Acinar n = 190, Micropapillary n = 35, 
Solid n = 118). Mean ± SEM. Statistical analysis (a: FDR-corrected two-tailed 
Student t-test for sex, age, BMI, smoking status, pack-years, stage, progression 
status; one-way ANOVA with Tukey multiple comparison test for histological 
subgroup; log-rank test for survival).
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Extended Data Fig. 10 | Machine learning of imaging mass cytometry data 
improves prediction of progression. Accuracy of clinical progression 
prediction in stage I lung adenocarcinoma patients (n = 286) in the a, clinical 
variables; b, cell frequency; c, lineage markers and d, “all markers” models. 

Comparison between baseline and the lineage marker model: * P = 0.0343. 
Comparison between baseline and the “all marker” model : * P = 0.0355.  
Mean ± SEM. Statistical analysis (a—d: two-tailed Student t-test).
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