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Abstract

Background: Post-traumatic epilepsy (PTE) is a severe complication of traumatic brain injury 

(TBI). Electroencephalography aids early post-traumatic seizure diagnosis, but its optimal utility 
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for PTE prediction remains unknown. We aim to evaluate the contribution of quantitative 

electroencephalograms to predict first-year PTE (PTE1).

Methods: We performed a multicenter, retrospective case-control study of TBI patients. 63 PTE1 

patients were matched with 63 non-PTE1 patients by admission Glasgow Coma Scale score, age, 

and sex. We evaluated the association of quantitative electroencephalography features with PTE1 

using logistic regressions and examined their predictive value relative to TBI mechanism and 

Computed Tomography abnormalities.

Results: In the matched cohort (n=126), greater epileptiform burden, suppression burden 

and beta variability were associated with 4.6 times higher PTE1 risk based on multivariable 

logistic regression analysis (area under the receiver-operating-characteristic curve, AUC [95% 

CI], 0.69 [0.60–0.78]). Among 116 (92%) patients with available Computed Tomography reports, 

adding quantitative electroencephalography features to a combined mechanism and Computed 

Tomography model improved performance (AUC [95% CI], 0.71 [0.61–0.80] vs 0.61 [0.51–

0.72]).

Conclusions: Epileptiform and spectral characteristics enhance covariates identified on TBI 

admission and Computed Tomography abnormalities in PTE1 prediction. Future trials should 

incorporate quantitative electroencephalography features to validate this enhancement of PTE risk 

stratification models.

INTRODUCTION

Post-traumatic epilepsy (PTE) is a devastating consequence of traumatic brain injury (TBI). 

Early stratification of PTE risk in TBI patients would facilitate targeted enrollment into 

anti-epileptogenesis treatment trials.1

While electroencephalography (EEG) is recommended to detect early post-TBI 

electrographic seizures (ESZs),2 whether and how it benefits later PTE prediction remains 

unclear.1,3,4 Early investigations suggest that classifying post-TBI (<3 month) EEG into 

normal/abnormal may not differentiate PTE risk.3 Recently, we found that the presence 

of epileptiform abnormalities (EAs, i.e., ESZs, sporadic epileptiform discharges [EDs], 

lateralized or generalized periodic discharges [LPDs, GPDs], lateralized rhythmic delta 

activity [LRDA]) and focal polymorphic slowing <1 month post-TBI is associated with first-

year PTE (PTE1).1 Yet, accessible quantitative EEG (QEEG) tools5–8 remain unexplored in 

quantifying abnormalities1 relevant to PTE1.

Here, we propose a quantification scheme to automatically calculate QEEG characteristics 

≤14 days post-TBI. We aim to evaluate the contribution of quantitative epileptiform and 

spectral features to PTE1 prediction beyond covariates identifiable on TBI admission and 

initial Computed Tomography (CT) head abnormalities.1,9–11

METHODS

In this case-control study, we collected data from nine centers of the Critical Care EEG 

Monitoring Research Consortium: Yale School of Medicine (New Haven, CT), Brigham and 

Women’s Hospital (Boston, MA), Duke University Medical Center (Durham, NC), Emory 
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School of Medicine (Atlanta, GA), Henry Ford Health System (Detroit, MI), Massachusetts 

General Hospital (Boston, MA), University of Florida Health (Gainesville, FL), University 

of Miami School of Medicine/Jackson Memorial Health System (Miami, FL), and UT 

Southwestern Medical Center (Dallas, TX) between 2012 and 2019. The Institutional 

Review Board per center approved the study protocol (IRB#: 1405014045) and granted 

consent waivers because the study was retrospective.

Participants

TBI patients were included retrospectively if age ≥18 years, no seizure/epilepsy history, 

EEG monitoring data ≤14 days post-TBI, and ≥12-month follow-up or developed PTE1. 

Patients were excluded per signal quality inspection (Online Supplemental Methods I). 

Amongst included patients, one-to-one case-control (PTE1 vs non-PTE1) match was 

performed based on admission Glasgow Coma Scale (GCS) score, age, and sex (Online 

Supplemental Methods II).

Outcome and Exposures

We defined PTE1 according to our prior publication1 as an unprovoked seizure 1–12 months 

post-TBI. Eligible patients in this study commonly had protracted hospital courses. Hence 

a seizure >7 days post-TBI but during the acute hospitalization was likely provoked by 

subsequent complications.11 EEGs (21 channel, 10–20 system) were recorded for clinical 

indication.

Predictors

We recorded from CT reports the presence of intraparenchymal, subdural, subarachnoid, 

epidural hemorrhage (IPH, SDH, SAH, EDH), and skull fracture; and from EEG reports the 

presence of EA (i.e., ESZs, EDs, LPDs, GPDs, LRDA), generalized rhythmic delta activity 

(GRDA), suppression, focal slowing, and generalized slowing.

For QEEG analysis, we split each patient’s EEG into non-overlapping, one-hour windows 

of homogeneous duration (Online Supplemental Methods I). Each feature per patient was 

represented by the maximum (EA, GRDA burden) or median (spectra) values across all 

windows. We matched outputs from two algorithms for ESZ (“SPaRCNet”8, Persyst14®6) 

and ED (SpikeNet7, Persyst14®5) detection to reduce false-positive rates, and computed 

ESZ and ED presence.1,12 We analyzed EA burden (“SPaRCNet”8; hourly % EA presence), 

GRDA burden, suppression burden (hourly % signal with amplitude<3 μV lasting ≥0.5 

seconds), global delta (1–4Hz), theta (4–8Hz), alpha (8–13Hz), and beta (13–20Hz) powers, 

theta/alpha/beta-over-delta ratios, power asymmetry (absolute hemispheric difference over 

global power), and power variability (hourly interquartile range) (Persyst14®).

Statistical Analysis

Univariable and multivariable (forward-selection algorithm applied) logistic regressions 

were used to evaluate the association of unmatched covariates and QEEG features with 

PTE1. To combat overfitting, ridge logistic regressions trained and tested via 8-fold 

nested cross-validation were applied to compare predictive values of different feature 
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sets (Mechanism+CT, Mechanism+CT+QEEG, Mechanism+CT+EEG-report; Online 

Supplemental Methods III). Evaluation metrics were calculated by concatenating test sets.

Area Under the receiver-operating-characteristic Curve (AUC), accuracy (optimal operating 

point), odds ratio (OR), and calibration error were evaluated (Online Supplemental Methods 

IV). P=0.05 was the significance threshold. 95% confidence intervals (95% CIs) were 

generated by bootstrapping (n=1000). Analysis was performed using R3.6.1.

RESULTS

205 of 279 eligible patients with high-quality EEG were included. 63 PTE1 patients were 

matched with 63 non-PTE1 patients (Online Supplemental Table S1-2). 116 (90%) matched 

patients had CT reports.

TBI Mechanism, CT and QEEG Predictors of PTE1

We used univariable logistic regression to assess potential covariates, including QEEG 

features, that predict PTE1 risk independent of matched variables (Table 1; Figure 1A-B; 

Online Supplemental Figure S1). For TBI mechanism, penetrating injury was associated 

with an increased odd of PTE1 (OR=6.20, P=0.03) compared to acceleration/deceleration. 

For CT abnormalities, SDH (OR=3.34, P=0.01) and skull fracture (OR=2.48, P=0.03) 

were positively associated with PTE1 risk (n=116; Online Supplemental Table S3). For 

QEEG, ESZ presence (OR=2.79, P=0.02), greater EA burden (OR per 10%-increase 

[OR10%]=1.15, P=0.01; Figure 1A), LRDA burden (OR10%=1.13, P=0.02), and delta 

asymmetry (OR10%=1.29, P=0.047) were associated with increased odds of PTE1. Non-

epileptiform GRDA burden1,13 (OR10%=0.77, P=0.01) was negatively associated with PTE1. 

QEEG findings generally agreed with EEG-report results (EA, OR=2.29, P=0.03; focal 

slowing, OR=2.18, P=0.04) except for ED presence (significant in EEG-report1 [OR=2.91, 

P=0.02] but non-significant in QEEG analysis) (Online Supplemental Table S3).

To examine whether QEEG predicts PTE1 risk independent of significant covariates, we 

applied a forward-selection algorithm on QEEG features with P<0.1 in univariable analysis 

to construct a multivariable QEEG-only model, and then step-wise added penetrating 

injury, SDH, and skull fracture. EA burden (aOR10%=1.17, P<0.01), suppression burden 

(aOR10%=1.41, P=0.03), and beta variability (aOR=16.17, P=0.03) jointly predicted PTE1 

with an AUC of 0.69 (95% CI, 0.60–0.78; Figure 1C). The association of forward-selected 

QEEG features with PTE1 remained significant relative to penetrating (n=126), and 

more importantly, relative to all penetrating, SDH, and skull fracture (n=116; Online 

Supplemental Table S4).

Benefits of QEEG in PTE1 Prediction

To avoid overfitting in small-sample cohort, we leveraged nested cross-validation and 

regularization (e.g., ridge) techniques to evaluate the additive benefits of QEEG beyond 

TBI mechanism and CT abnormalities in PTE1 prediction (n=116). Compared to 

the Mechanism+CT ridge regression, Mechanism+CT+QEEG demonstrated improved 

discrimination (Test AUC, 0.71 [0.61–0.80] vs 0.61 [0.51–0.72]) with a comparable 

calibration error (0.08 [0.04–0.15] vs 0.06 [0.02–0.12]) (Figure 1C-D; Online Supplemental 
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Table S5). Per feature importance measures (Figure 1E), CT abnormalities (skull fracture, 

SDH) were the most important positive predictors, followed by QEEG epileptiform (ESZ 

presence, GPD burden, EA burden) and spectral (suppression burden, beta variability) 

features. Penetrating injury also had strong positive importance. Consistent with logistic 

regression, GRDA burden had strong negative importance. A ridge algorithm utilizing 

EEG-report abnormalities, instead of QEEG, (AUC [95% CI], 0.65 [0.54–0.75]; Online 

Supplemental Table S5) demonstrated modest, but less robust improvement upon the 

Mechanism+CT model.

DISCUSSION

We demonstrate that EA burden, suppression burden, and beta variability combined enhance 

PTE1 risk stratification in this case-control cohort. Furthermore, QEEG provides added 

benefit in PTE1 prediction beyond TBI mechanism and CT abnormalities, especially 

given our data suggesting potential collinearity between penetrating and skull fracture 

(Online Supplemental Table S4). Taking a PTE1 rate at 9.8% amongst moderate-to-severe 

TBI patients,10 our Mechanism+CT ridge model would identify patients with 15% 

PTE1, similar to the previously reported 1-year rates using clinical covariates.14 Our 

mechanism+CT+QEEG model increases this PTE1 identification nearly 2-fold to 27%; 

reducing the enrollments for anti-epileptogenesis trials by 50% (Online Supplemental Table 

S6).

We found that a greater EA burden was associated with PTE1, generating hypotheses on 

metabolic dysregulation. EA burden post-TBI may increase metabolic demand when there 

is decreased metabolic supply, leading to a mismatch triggering epileptogenesis. Whether 

interventions reducing EAs post-TBI prevent metabolic exhaustion and PTE development 

warrants exploration. The larger delta asymmetry for PTE1 vs Non-PTE1 patients suggests 

that focal/hemispheric network dysfunction may be relevant as reported previously.1,4 

Suppression burden predicts PTE1, perhaps reflecting injury severity independent of GCS.

Together, our data highlight the benefits of EEG monitoring for moderate-to-severe TBI 

patients.1,2 With increased post-TBI EEG monitoring, our quantification scheme may 

reduce the cost of manually reviewing EEG reports without compromising PTE1 prediction 

accuracy. However, ED algorithms may need further improvement in specificity (Online 

Supplemental Table S4&7).

Limitations

First, medication and state changes (sleep, awake, sedated) may affect EEG. These 

differences are highly influenced by TBI severity, and thereby more comparable amongst 

patients matched by admission GCS. However, the impacts of these and other TBI severity 

measures (lesion location/type, craniectomy/craniotomy) on QEEG and PTE1 risk warrant 

further exploration. Second, our study is retrospective with possible selection bias toward 

moderate-to-severe TBI patients and/or those at risk for ESZ. Therefore, PTE1 incidences 

or prediction models here need further refinement to apply to the mild TBI population. Our 

findings should be validated in prospective studies. Third, some non-PTE1 patients here 

might develop >12-month PTE. If such patients had QEEG similar to those of PTE1 patients, 
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their risk for PTE would be underestimated, and so would the contributions of QEEG 

in PTE prediction. Studies investigating the association of QEEG with PTE latency are 

warranted. Finally, combining QEEG with quantitative neuroimaging data15 may improve 

PTE prediction.

In summary, epileptiform and spectral features quantified by QEEG tools enhance covariates 

identifiable on TBI admission and CT abnormalities in PTE1 prediction. Future large-

sample, prospective studies should validate our findings and could incorporate QEEG into 

PTE risk models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS

KD received funding from the National Institute on Aging (NIA) (R34AG061304) and the National Institute of 
Neurological Disorders and Stroke (NINDS) (R01NS117904) of the National Institutes of Health (NIH). CS and 
CBM acknowledge the University of Florida Integrated Data Repository (IDR) and the UF Health Office of the 
Chief Data Officer for providing the analytic data set for this project. CS and CBM were supported by the National 
Center for Advancing Translational Sciences (NCATS) of the NIH under University of Florida Clinical and 
Translational Science Awards (UL1TR000064, UL1TR001427). CBM received funding from the American Heart 
Association (AHA). AA is supported by NCATS of the NIH through an institutional KL2 Career Development 
Award from the Miami Clinical and Translational Science Institute (UL1TR002736). MBD received funding from 
the NINDS of the NIH and the American Epilepsy Society. EJG received funding from NIH (R01NS117904). AFS 
received funding from the NINDS under the NIH (R01NS111022) and Ceribell. BE received funding from the 
NINDS (R21NS109627, RF1NS115268) and the Office of the Director (DP2HD101400) of the NIH, the James S. 
McDonnell Foundation, and the Tiny Blue Dot Foundation. MBW received funding from the Glenn Foundation 
for Medical Research, the American Federation for Aging Research (Breakthroughs in Gerontology), the 
American Academy of Sleep Medicine Strategic Research Award, and the NINDS (R01NS102190, R01NS102574, 
R01NS107291) and the NIA (RF1AG064312, R01AG062989, R01AG073410) of the NIH. JAK received funding 
from the NINDS (R25N065743, K23NS112596-01A1, R01NS117904), the American Academy of Neurology 
Clinical Research Training Scholarship, the AHA, and the Bee Foundation.

REFERENCES

1. Kim JA, Boyle EJ, Wu AC, et al. Epileptiform activity in traumatic brain injury predicts post-
traumatic epilepsy. Ann Neurol. 2018;83(4):858–862. doi:10.1002/ana.25211 [PubMed: 29537656] 

2. Lee H, Mizrahi MA, Hartings JA, et al. Continuous Electroencephalography after 
Moderate to Severe Traumatic Brain Injury. Crit Care Med. 2019;47(4):574–582. doi:10.1097/
CCM.0000000000003639 [PubMed: 30624278] 

3. Jennett B, Van De Sande J. EEG prediction of post-traumatic epilepsy. Epilepsia. 1975;16(2):251–
256. [PubMed: 807472] 

4. Tomkins O, Feintuch A, Benifla M, Cohen A, Friedman A, Shelef I. Blood-brain barrier breakdown 
following traumatic brain injury: A possible role in posttraumatic epilepsy. Cardiovasc Psychiatry 
Neurol. [Published online February 22, 2011]. doi:10.1155/2011/765923

5. Scheuer ML, Bagic A, Wilson SB. Spike detection: Inter-reader agreement and a statistical Turing 
test on a large data set. Clin Neurophysiol. 2017;128(1):243–250. doi:10.1016/j.clinph.2016.11.005 
[PubMed: 27913148] 

6. Scheuer ML, Wilson SB, Antony A, Ghearing G, Urban A, Bagid AI. Seizure Detection: Interreader 
Agreement and Detection Algorithm Assessments Using a Large Dataset. J Clin Neurophysiol. 
2021;38(5):439–447. doi:10.1097/WNP.0000000000000709 [PubMed: 32472781] 

7. Jing J, Sun H, Kim JA, et al. Development of Expert-Level Automated Detection of Epileptiform 
Discharges during Electroencephalogram Interpretation. JAMA Neurol. 2020;77(1):103–108. 
doi:10.1001/jamaneurol.2019.3485 [PubMed: 31633740] 

Chen et al. Page 6

J Neurol Neurosurg Psychiatry. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



8. Ge W, Jing J, An S, et al. Deep active learning for Interictal Ictal Injury Continuum EEG patterns. J 
Neurosci Methods. 2021;351:108966. doi:10.1016/j.jneumeth.2020.108966

9. Xu T, Yu X, Ou S, et al. Risk factors for posttraumatic epilepsy: A systematic review and meta-
analysis. Epilepsy Behav. 2017;67:1–6. doi:10.1016/j.yebeh.2016.10.026 [PubMed: 28076834] 

10. Englander J, Bushnik T, Duong TT, et al. Analyzing risk factors for late posttraumatic seizures: a 
prospective, multicenter investigation. Arch Phys Med Rehabil. 2003;84(3):365–373. doi:10.1053/
apmr.2003.50022 [PubMed: 12638104] 

11. Annegers JF, Hauser WA, Coan SP, Rocca WA. A population-based study of seizures after 
traumatic brain injuries. N Engl J Med. 1998;338(1):20–24. doi:10.1056/NEJM199801013380104 
[PubMed: 9414327] 

12. Tubi MA, Lutkenhoff E, Blanco MB, et al. Early seizures and temporal lobe trauma predict 
post-traumatic epilepsy: A longitudinal study. Neurobiol Dis. 2019;123:115–121. doi:10.1016/
j.nbd.2018.05.014 [PubMed: 29859872] 

13. Ruiz AR, Vlachy J, Lee JW, et al. Association of periodic and rhythmic electroencephalographic 
patterns with seizures in critically ill patients. JAMA Neurol. 2017;74(2):181–188. doi:10.1001/
jamaneurol.2016.4990 [PubMed: 27992625] 

14. Temkin NR, Dikmen SS, Wilensky AJ, Keihm J, Chabal S, Winn HR. A randomized, double-blind 
study of phenytoin for the prevention of post-traumatic seizures. N Engl J Med. 1990;323(8):497–
502. doi:10.1056/NEJM199008233230801 [PubMed: 2115976] 

15. Lutkenhoff ES, Shrestha V, Ruiz Tejeda J, et al. Early brain biomarkers of post-traumatic 
seizures: Initial report of the multicentre epilepsy bioinformatics study for antiepileptogenic 
therapy (EpiBioS4Rx) prospective study. J Neurol Neurosurg Psychiatry. 2020;91(11):1154–1157. 
doi:10.1136/jnnp-2020-322780 [PubMed: 32848013] 

Chen et al. Page 7

J Neurol Neurosurg Psychiatry. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: Quantitative Electroencephalography (QEEG) Prediction Models for First-year Post-
traumatic Epilepsy (PTE1).
(A) % Epileptiform Abnormalities (EAs) for all one-hour windows for all patients (0% 

corresponds to grey, higher % corresponds to darker red/blue); each block represents 

an one-hour window; y-axis represents individual patients sorted by total recording 

duration (top: longest duration). (B) Same as panel A but for % suppression distribution. 

(C) Area Under the receiver-operating-characteristic Curve (AUC) comparison; AUC for 

forward-selected QEEG logistic regression (orange): 0.69 (95% CI, 0.60–0.78); test AUC 

for cross-validated ridge logistic regression based on TBI mechanism and Computed 
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Tomography (Mechanism+CT, grey): 0.61 (0.51–0.72), and test AUC for cross-validated 

ridge logistic regression based on TBI mechanism, Computed Tomography, and QEEG 

(Mechanism+CT+QEEG, green): 0.71 (0.61–0.80); shaded areas represent the bootstrapped 

(n=1000) 95% confidence intervals. (D) Same as panel C but showing calibration errors for 

QEEG logistic regression: 0.06 (0.02–0.12), Mechanism+CT ridge regression: 0.06 (0.02–

0.12), Mechanism+CT+QEEG ridge regression: 0.08 (0.04–0.15). (E) Feature importance 

for Mechanism+CT+QEEG ridge regression; features were sorted by the importance 

measure; each boxplot visualizes the distribution of penalized coefficients across 8 folds.
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Table 1.

Univariable Analysis of QEEG Features Associated With PTE1 Development
a

Univariable Analysis Univariable Logistic Regression

Variable, Descriptive Statistics, Unit Non-PTE1 Patients (n=63) PTE1 Patients (n=63) OR (95% CI) P value

Matched Variables

 Age at TBI, median (IQR), year 49 (28–66) 48 (28–65) 1 (0.98–1.02) 0.94

 Female, No. (%) 18 (29) 17 (27) 1.09 (0.50–2.38) 0.84

 Admission GCS Score, No. (%)

  13–15 (Mild TBI)
13 (21)

b 13 (21) 1 [Reference]

  9–12 (Moderate TBI)
15 (24)

b 15 (24) 1 (0.35–2.86) 1

  3–8 (Severe TBI)
35 (56)

b 35 (56) 1 (0.41–2.46) 1

Injury Mechanism, No. (%)

 Acceleration/Deceleration 31 (49) 20 (32) 1 [Reference]

 Direct Impact to Head 3 (5) 6 (10) 3.10 (0.69–13.83) 0.14

 Fall from Standing 16 (25) 20 (32) 1.94 (0.82–4.60) 0.13

 Fall from >3ft 11 (17) 9 (14) 1.27 (0.45–3.61) 0.66

 Penetrating 2 (3) 8 (13) 6.20 (1.19–32.23) 0.03

EEG Monitoring, median (IQR)

 Start Time Post-TBI, day 2.3 (1.5–4.7) 2.6 (1.6–4.8) 1.01 (0.95–1.07) 0.71

 Monitoring Duration, day 0.7 (0.3–1.7) 1.0 (0.7–1.8) 1.21 (0.96–1.53) 0.11

QEEG Features, ≤14 Days Post-TBI

 ESZ Presence, No. (%) 9 (14) 20 (32)
2.79 (1.15–6.75)

c 0.02

 ED Presence, No. (%) 41 (65) 45 (71)
1.34 (0.63–2.85)

c 0.45

 Peak EA Burden, median (IQR), %1h 8.2 (1.4–31.7) 34.3 (2–81.3)
1.15 (1.04–1.27)

c 0.01

  ESZ 0 (0–0) 0 (0–7.7)
1.32 (0.99–1.75)

c 0.06

  ED 0.1 (0–0.7) 0.1 (0–0.8)
1.04 (0.79–1.36)

c 0.80

  LPD 0.1 (0–1.2) 0.2 (0–3.3)
1.09 (0.88–1.35)

c 0.42

  GPD 0.1 (0–0.5) 0.1 (0–1]
11.76 (0.78->100)

c 0.08

  LRDA 3.4 (0.5–24.2) 9.1 (0.9–76.9)
1.13 (1.02–1.25)

c 0.02

 Peak GRDA Burden, median (IQR), %1h 8.3 (0.3–32.1) 1.3 (0.1–9.5)
0.77 (0.64–0.92)

c 0.01

 Suppression, median (IQR), %1h 2.9 (0.6–7.1) 3.8 (0.9–12.5)
1.29 (0.96–1.73)

c 0.09

 Global Band Power, mean (SD)

  Delta (1–4 Hz) 9.4 (2.2) 9.2 (2.4) 0.97 (0.83–1.13) 0.69

  Theta (4–8 Hz) 7.3 (1.8) 7.0 (1.9) 0.92 (0.76–1.11) 0.38

  Alpha (8–13 Hz) 6.3 (1.2) 6.1 (1.4) 0.94 (0.72–1.22) 0.63

J Neurol Neurosurg Psychiatry. Author manuscript; available in PMC 2023 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 11

Univariable Analysis Univariable Logistic Regression

Variable, Descriptive Statistics, Unit Non-PTE1 Patients (n=63) PTE1 Patients (n=63) OR (95% CI) P value

  Beta (13–20 Hz) 6.0 (1.3) 6.0 (1.5) 0.99 (0.76–1.27) 0.92

 Global X-Over-Delta ratios, mean (SD)

  Theta-over-Delta 0.8 (0.1) 0.8 (0.1) 0.47 (0.02–10.91) 0.64

  Alpha-over-Delta 0.7 (0.1) 0.7 (0.1) 1.82 (0.13–25.3) 0.66

  Beta-over-Delta 0.7 (0.1) 0.7 (0.2) 2.42 (0.28–21.02) 0.42

 Power Asymmetry, median (IQR), %

  Delta 8.4 (5.7–18.7) 13.5 (7.3–33.1)
1.29 (1–1.66)

c 0.047

  Theta 9.0 (4.8–15.2) 11.7 (6.7–28.3)
1.25 (0.98–1.58)

c 0.07

  Alpha 8.4 (5.6–14.3) 11.7 (5.3–23.8)
1.25 (0.98–1.59)

c 0.07

  Beta 8.0 (4.6–13.8) 9.7 (5.3–22.1)
1.27 (0.98–1.64)

c 0.07

 Power Variability, median (IQR)

  Delta 0.6 (0.4–0.8) 0.7 (0.3–0.8) 0.96 (0.39–2.31) 0.92

  Theta 0.3 (0.2–0.4) 0.3 (0.2–0.5) 3.08 (0.53–17.87) 0.21

  Alpha 0.3 (0.2–0.4) 0.3 (0.2–0.4) 3.77 (0.42–33.93) 0.24

  Beta 0.2 (0.2–0.3) 0.3 (0.2–0.4) 7.24 (0.70–74.49) 0.096

Abbreviations: QEEG, quantitative electrocochleography; TBI, traumatic brain injury; PTE1, posttraumatic epilepsy within first-year post-TBI; 

OR, odds ratio; GCS, Glasgow Coma Scale; ESZ, electrographic seizure; ED, epileptiform discharge; EA, epileptiform abnormality; LPD, 
lateralized periodic discharge; GPD, generalized periodic discharge; LRDA, lateralized rhythmic delta activity; GRDA, generalized rhythmic delta 
activity.

a
Predictors were included in forward-selection algorithm if P<0.10

b
Numbers may not sum to 100% due to rounding issue

c
Odds ratio associated with 10 unit increase of features
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