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Abstract

Many viral infections cause acute and chronic neurologic diseases which can lead to degeneration 

of cortical functions. While neurotropic viruses that gain access to the central nervous system 

(CNS) may induce brain injury directly via infection of neurons or their supporting cells, 

they also alter brain function via indirect neuroimmune mechanisms that may disrupt the blood-

brain barrier (BBB), eliminate synapses, and generate neurotoxic astrocytes and microglia that 

prevent recovery of neuronal circuits. Non-neuroinvasive, neurovirulent viruses may also trigger 

aberrant responses in glial cells, including those that interfere with motor and sensory behaviors, 

encoding of memories and executive function. Increasing evidence from human and animal 

studies indicate that neuroprotective antiviral responses that amplify levels of innate immune 

molecules dysregulate normal neuroimmune processes, even in the absence of neuroinvasion, 

which may persist after virus is cleared. In this review, we discuss how select emerging and 

re-emerging RNA viruses induce neuroimmunologic responses that lead to dysfunction of higher 

order processes including visuospatial recognition, learning and memory, and motor control. 

Identifying therapeutic targets that return the neuroimmune system to homeostasis is critical for 

preventing virus-induced neurodegenerative disorders.
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Introduction

A new paradigm in neuroimmunology has emerged whereby innate immune molecules are 

recognized as modulators of a variety of central nervous system (CNS) functions throughout 

life. These include the maintenance of blood-brain barrier (BBB) function (Jung et al., 

2012; Wosik et al., 2007), synaptic networks (Filiano et al., 2016), microglial physiology 

(Butovsky & Weiner, 2018; Hickman et al., 2013; Yeh & Ikezu, 2019), astrogenesis and 

glial-mediated synapse remodeling (Kanski, Strien, Tijn, & Hol, 2013; Vainchtein et al., 

2018), and repair (Amor & Woodroofe, 2014; Z. Chen & Palmer, 2008; Cossetti, Alfaro-

Cervelló, Donegà, Tyzack, & Pluchino, 2012; Healy, Yaqubi, Ludwin, & Antel, 2019). 

Within the normal brain, innate immune molecules are expressed by resident cells, including 

perivascular myeloid and ependymal cells, microglia, astrocytes, oligodendrocytes, and 

neurons (Adelson et al., 2016; Blank et al., 2016; Cheng, Jin, Zhang, Tian, & Zou, 2011; 

Datwani et al., 2009; Dixon-Salazar et al., 2014, p.; Ejlerskov et al., 2015; Fourgeaud et 

al., 2010; Glynn et al., 2011; Green et al., 2012; Hirsch et al., 2009; Michelucci et al., 

2015; Peferoen, Kipp, Valk, Noort, & Amor, 2014; Rey, Balschun, Wetzel, Randolf, & 

Besedovsky, 2013; C. Wang et al., 2020). The cellular source of these molecules, which 

include classical pattern recognition receptors (PRRs), complement proteins (C1q, C3, C4), 

major histocompatibility (MHC) I, cytokines (i.e. type I interferon (IFNαβ), interleukin 

(IL)-1β, IL-6, tumor necrosis factor (TNF), transforming growth factor (TGF)-β), and 

chemokines (CXCL12, CXCL1), determine their effects on normal brain function. Some 

innate immune molecules, such as C1q and C3, are produced within the normal CNS 

(Veerhuis, Nielsen, & Tenner, 2011), contributing to CNS glial communication and synapse 

loss during normal forgetting, sleep and aging (Clark et al., 2021; Datta et al., 2020; Shi et 
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al., 2015; Stephan et al., 2013; C. Wang et al., 2020), and increase in diseases with cognitive 

deficits (Hong et al., 2016; Michailidou et al., 2015; Vasek et al., 2016). Locations and 

levels of cytokine expression in the brain may also differentially impact their effects. For 

example, low basal levels of IFNβ promote neuronal survival and neurite outgrowth within 

the hippocampus (Ejlerskov et al., 2015), and disruptions to the IFNβ-IFNAR signaling 

promote Parkinson’s disease-like phenotypes (Magalhaes et al., 2021). Conversely, increased 

expression of IFNβ within the choroid plexus during aging is associated with decreased 

hippocampal neurogenesis (Baruch et al., 2014), which is critical for the formation of 

new memories. Similarly, IFNα treatment suppresses behavioral activity and reduced 

hippocampal neurogenesis in primates (Kaneko, Nakamura, & Sawamoto, 2020). These 

data suggest that the IFNAR signaling pathway may mediate both neurogenic and anti-

neurogenic effects depending on the context. Factors that influence the effect of a cytokine 

signaling pathway could include variations in the cytokine and cellular milieu, the cytokine 

and receptor expression levels, and the microanatomical location of cytokine production 

within the CNS. This paradigm contrasts with previously held beliefs that innate immune 

responses within the CNS always induce pathology (Fig. 1). It also provides a framework 

for exploring mechanistic links between host-pathogen responses and neurodegenerative 

diseases, especially those that impact cognitive function.

Viruses are an underappreciated factor in the development of neurodegenerative diseases, 

and many classes of viruses are associated with long-term neurologic symptoms (Table 

1). A major example is the neuroinvasive RNA arboviruses, which include members 

of the Bornaviridae, Flaviviviridae, Phenuiviridae, Paramyxoviridae, Picornaviridae, and 
Togaviridae families (Table 1). The flaviviruses are transmitted by arthropod vectors and 

associated with neurocognitive impairments in the majority of survivors. These viruses 

may be associated with acute neuroinfectious diseases, such as meningitis and encephalitis, 

and include viruses that target neurons and/or glia. Members of the Flaviviridae family, 

West Nile (WNV) and Zika (ZIKV) viruses, invade the CNS via retrograde transport 

along neurons or cross the BBB within arthropod exosomes (Zhou et al., 2018). Diseases 

of pathological forgetting and dysexecutive function have also been reported in patient 

survivors of respiratory viruses that may not undergo neuroinvasion. Members of the 

Pnemoviridae, Orthomyxoviridae, and Coronaviridae families that cause infections of the 

upper and lower respiratory tract, including metapneumovirus, influenza A virus (IAV), 

and Severe acute respiratory syndrome coronavirus (SARS-CoV)-2, may also lead to long-

term neuropsychiatric sequelae. Survivors of severe IAV, which may be neuroinvasive, may 

develop prolonged cognitive impairment and psychiatric disorders (Denke et al., 2018), 

although this has not been extensively studied and hypoxia is likely a contributing factor. 

Recovery of SARS-CoV-2 has been associated with a variety of neuropsychiatric diseases, 

even in those that do not experience severe symptoms acutely (Taquet, Geddes, Husain, 

Luciano, & Harrison, 2021).

Neuroimmune mechanisms that lead to neurological sequelae in the setting of recovery 

from infections with emerging RNA viruses are not well understood. Given that these 

mechanisms may be generalizable to multiple diseases of cognition or motor dysfunction, 

and that there are no treatments that reverse deficits, there is a pressing need to define 

the mechanisms that promote cognitive recovery from neurotropic viral infections and 
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to identify biomarkers that identify patients at risk for memory disorders. Building on 

prior reviews (Klein et al., 2019; A. Soung & Klein, 2018), we will discuss recent data 

on alterations in glial functions that underlie defects in higher order processes including 

visuospatial recognition, learning and memory and motor control that occur as a result of 

infections with emerging RNA viruses.

RNA viruses linked to neurological sequelae

WNV, which emerged in North America in 1999, is the leading cause of domestically 

acquired arboviral disease in the United States (Sejvar, 2014), while ZIKV, the cause 

of a 2015 epidemic in South America, is still emerging (Weaver, 2017). WNV targets 

neurons throughout the adult human CNS, while ZIKV more specifically targets neurons 

in the hippocampus and cortex (Figueiredo et al., 2019). Both viruses are associated with 

neurological sequelae (Nicastri, Castilletti, Balestra, Galgani, & Ippolito, 2016; Sejvar, 

2014; Zucker et al., 2017), which has been most extensively studied in WNV survivors. 

Studies evaluating rates of persistent memory impairment in patients previously diagnosed 

with WNV neuroinvasive disease (WNND) using neuropsychological testing report that 

40–70% exhibit cognitive symptoms than continue to worsen for years after recovery 

from acute infection (Murray et al., 2018; Sadek et al., 2010; Weatherhead et al., 2015). 

Other neurotropic encephalitic arboviruses that lead to neurocognitive sequelae in US 

patients include LaCrosse, Eastern Equine Encephalitis, and Powassan viruses (Byrd, 

2016; Hermance & Thangamani, 2017; Ronca, Dineley, & Paessler, 2016). Worldwide, 

neuroinvasive encephalitic arboviruses cause 50–100,000 cases/year with neurocognitive 

sequelae in most survivors (LaBeaud, Bashir, & King, 2011). Human immunodeficiency 

virus (HIV)-1, a retrovirus that invades the CNS via infected monocytes (Davis et al., 

1992) leads to HIV-associated neurocognitive disorders (HAND), whose incidence has not 

decreased in the era of combination antiretroviral treatment (cART) (X. Chen, Zhang, 

& Zhang, 2020).There are currently no vaccines and treatments that mitigate persistent 

neurocognitive impairments associated with these neuroinvasive viral infections.

IAV and SARS-CoV-2, in particular, are the causes of worldwide pandemics with persistent 

neurocognitive diseases in survivors (Frontera et al., 2020; Heneka, Golenbock, Latz, 

Morgan, & Brown, 2020; Needham, Chou, Coles, & Menon, 2020; Serrano-Castro et 

al., 2020; Tansey et al., 2022). Pandemic H1N1 IAV RNA has been detected within 

the CNS of deceased patients who developed myelitis, meningitis, seizures, and acute 

necrotizing encephalopathy (Bohmwald, Gálvez, Ríos, & Kalergis, 2018; Liang, Yang, & 

Lin, 2018; Muhammad Ismail, Teh, & Lee, 2015; Ruisanchez-Nieva, Martinez-Arroyo, 

Gomez-Beldarrain, Bocos Portillo, & Garcia-Monco, 2017; Simon et al., 2013; Xia, Zhu, 

Hu, Wang, & Zhang, 2014). Patients that survive acute neurologic disease may also 

develop idiopathic Parkinson’s disease (Jang et al., 2009). Following acute SARS-CoV-2 

infection, a majority of people recover within a few weeks; however >50% of recovered 

individuals continue to experience neurological diseases, which has been termed post-acute 

coronavirus syndrome (PACS) (Mehandru & Merad, 2022; Taquet, Luciano, Geddes, & 

Harrison, 2021; F. Wang, Kream, & Stefano, 2020). Vaccinated individuals continue to 

experience breakthrough infections, which reportedly reduces PACS by only 50% (Antonelli 

et al., 2022; Taquet, Luciano, et al., 2021). While there is little evidence of SARS-CoV-2 
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neuroinvasion (Espíndola et al., 2021; Paterson et al., 2020; Thakur et al., 2021), clinical 

studies report blood-brain barrier (BBB) disruption, and microglial activation in various 

brain regions upon post-mortem examination. In addition, a subset of individuals, including 

those with milder symptoms, suffer from a dysexecutive syndrome consisting of memory 

and learning impairments, inattention, disorientation, or poorly organized movements 

(Ortelli et al., 2021).

Higher cortical functions and systems impacted by infection with emerging neurotropic 
RNA viruses

Neuroimaging findings in patients with neuroinvasive viral diseases often reveal 

inflammation within various parts of the limbic system, including the cingulate gyrus/

cortex, basal ganglia, thalami, and hippocampus (HPC). The HPC, in particular, exhibits 

higher susceptibility to viral infection, blood-brain barrier dysfunction, and inflammation 

(Chapman et al., 2012; Ivanidze et al., 2019; Johnston & Webster, 2009; Petito, 2004). The 

primary circuitry of the HPC includes trisynaptic sequential synapses between the entorhinal 

cortex (EC), the dentate gyrus (DG) granule cells, and pyramidal cells of the cornu ammoni 

(CA3 to CA1) (Basu & Siegelbaum, 2015; Chauhan, Jethwa, Rathawa, Chauhan, & Mehra, 

2021). The HPC processes information derived from the EC and in turn influences cortical 

and subcortical areas that modulate complex behavioral processes involving recognition, 

formation and retrieval of declarative memories and spatial relationships. These circuits 

utilize excitatory amino acids aspartate or glutamate. Inhibitory GABAergic interneurons 

within the HPC modulate local synaptic transmission within this structure (Fazekas et 

al., 2022). Thus, alterations in the synthesis, storage, release, or inactivation of either the 

excitatory or inhibitory amino acids could lead to localized excitotoxicity with disruption of 

the circuit. Neural precursor cells that reside within the subgranular zone (SGZ) of the DG 

generate new neurons throughout life (Boldrini et al., 2018; Tartt et al., 2018). Studies in 

animal models indicate that adult neurogenesis is essential for visuospatial learning.

While most arboviruses infect neurons and/or astrocytes across brain regions, animal studies 

of ZIKV infection demonstrate high tropism to adult hippocampal neurons (Figueiredo et 

al., 2019; Garber et al., 2019), SGZ neural progenitor cells (H. Li et al., 2016), astrocytes 

(van den Pol, Mao, Yang, Ornaghi, & Davis, 2017), and glial progenitor cells (C. Li et 

al., 2018; Schultz et al., 2021), consistent with reports of damage and dysfunction of this 

brain region leading to neurocognitive sequelae (da Silva, Frontera, Bispo de Filippis, 

Nascimento, & for the RIO-GBS-ZIKV Research Group, 2017; Zucker et al., 2017). 

Damage to the HPC produces large and persistent effects on behavior, with cognitive 

impairments similar to those observed in human dementias. Consistent with this, survivors 

of arboviral infections exhibit features that overlap with neurodegenerative dementias such 

as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Magnetic resonance imaging 

(MRI) of patients that have recovered from WNV, including those without neuroinvasive 

disease, report atrophy of the posterior cingulate and insular cortices, and the hippocampus 

and entorhinal regions in the temporal lobe (Rev in (Borisow, Mori, Kuwabara, Scheel, 

& Paul, 2018), as observed in AD (Ledig, Schuh, Guerrero, Heckemann, & Rueckert, 

2018). Involvement of the substantia nigra, which exhibits degeneration in patients with 

PD, has also been reported (Bosanko et al., 2003; Schafernak & Bigio, 2006) as has 
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parkinsonism (Lenka, Kamat, & Mittal, 2019). While learning and memory disorders 

appear to worsen over time in WNV-recovered patients, parkinsonism and other movement 

disorders eventually resolve (Lenka et al., 2019). Recently, MRI-based studies examining 60 

COVID-19-recovered patients at three months after acute infection reveal micro-structural 

alterations within gray matter areas involving the olfactory system, hippocampus and 

cingulate cortex, consistent with ongoing anosmia, tremors, impaired mobility and memory 

loss (Lu et al., 2020). Overall, these findings support the need for larger studies utilizing 

neuropsychological testing and neuroimaging in patients with post-infectious neurologic 

dysfunction after recovery from respiratory viruses.

Glia recognize neuroinvasive viral infections via pattern recognition, cytokine signaling, 
and damage sensing

Viruses that invade the CNS may infect glia, neurons, or both, leading to inflammation, 

tissue damage, or cell death (Fig. 2). Depending on the type of virus, glia use a variety 

of mechanisms to detect neuroinvasive viruses. One such mechanism is through the 

expression of pattern recognition receptors (PRRs), surface-expressed or cytosolic receptors 

that recognize common and conserved elements of pathogens that are not generally shared 

by host cells. PRR engagement generally leads to a downstream signaling cascade resulting 

in the expression of many host genes with antiviral effects. Neurons and glia express a 

range of PRRs in both humans and mice, as recently reviewed (Gern et al., 2021; L. Li, 

Acioglu, Heary, & Elkabes, 2021). Microglia especially express a wide breadth of PRRs, 

including toll-like receptors (TLRs) 1–10, allowing recognition of viral double-stranded 

RNA, single-stranded RNA, and viral envelope proteins (Gern et al., 2021; Martín-García 

& González-Scarano, 2009). Interestingly, astrocytic expression has also been reported for 

almost all of these TLRs (Furr & Marriott, 2012; Gern et al., 2021), albeit at lower levels 

than that observed in microglia. Oligodendrocytes, conversely, do not appear to express 

significant numbers or amounts of PRRs, but have been reported to express low levels of 

TLR-2 and TLR-3 (Martín-García & González-Scarano, 2009). The importance of TLRs in 

specifically protecting the CNS against viral encephalitides is clearly illustrated by the fact 

that TLR-3 deficiency in mice and humans confers heightened risk of herpes simplex virus 1 

(HSV-1, a DNA virus) encephalitis without major alterations in peripheral infection severity 

(Reinert et al., 2012; Zhang et al., 2007). In fact, in the absence of TLR-3, astrocytes fail 

to mount an innate response to HSV-1 while microglia retain the ability to respond, likely 

reflecting differences in their PRR repertoires (Sato et al., 2018).

Upon PRR engagement, microglia and astrocytes produce cytokines and other inflammatory 

mediators such as TNF-α, IL-12, CXCL2, CXCL10, and cyclooxygenase-2 (Chung & 

Benveniste, 1990; Esen & Kielian, 2006; J.-I. Kim et al., 2007; Phares, Stohlman, Hinton, 

& Bergmann, 2013; Walsh, Perry, & Minghetti, 2000). Likewise, TLR engagement can 

also trigger the type I interferon pathway (Zheng, Chen, Chu, Zhu, & Jin, 2019), leading 

to secretion of interferon-α and interferon-β (IFN-α/β). These cytokines signal through 

the interferon-α receptor (IFNAR) in both an autocrine and paracrine fashion, initiating 

a regional state of antiviral alarm by causing the upregulation of hundreds of interferon 

stimulated genes (Schneider, Chevillotte, & Rice, 2014). Therefore, TLR signaling in CNS 

cells can directly lead to neuroinflammation, with impacts on cognition and behavior. Mice 
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treated systemically or intracranioventricularly with lipopolysaccharide, a potent bacterial 

TLR-4 ligand, displayed microglial activation and acute underperformance in Morris water 

maze, passive avoidance, and pole climb tests of memory and motor coordination (Zhao et 

al., 2019). In an in vitro assay of BBB permeability, exposure to agonists for TLR7 or the 

intracellular PRRs MDA5 or RIG-I increased barrier permeability in an IFNAR-dependent 

fashion (Daniels et al., 2014).

The neuroinflammatory effects of neural cell PRR engagement can contribute to neurologic 

disease. For example, TLR-7 contributed to pathogenesis in an animal model of enterovirus 

71 (EV71) in which neonatal mice were infected intracranially (Luo et al., 2019). In this 

study, mice deficient in TLR-7 exhibited enhanced infection of astrocytes, enhanced neural 

cell apoptosis, and reduction in the integrity and amount of neurofilament protein (Luo et 

al., 2019). Interestingly, these changes in viral tropism and neuronal damage occurred in the 

absence of overall changes in viral titer in the brain (Luo et al., 2019).

In cases in which glia do not directly play host to viral infections, glia may rely on similar 

signals from infected neurons to initiate an immune response (Fig. 2). Like glia and immune 

cells, neurons also express PRRs that can lead to the production of cytokines that signal to 

nearby glia. Infected cells may suffer injury and consequently release proteases, complement 

factors, and damage-associated molecular patterns (DAMPs) such as host DNA, ATP, and 

chaperone proteins (Karve, Taylor, & Crack, 2016). These factors can signal to glial cells 

through complement receptors, purinergic receptors, TLRs, double-stranded DNA receptors, 

and others (G. Y. Chen & Nuñez, 2010; Davalos et al., 2005; Kanmogne & Klein, 2021). 

DAMPs are produced by damaged or dying cells during infection as well as other sources 

of CNS insult, such as neurodenerative disease, sterile inflammation, ischemic stroke, or 

traumatic injury (Bradbury & Burnside, 2019; Kigerl, de Rivero Vaccari, Dietrich, Popovich, 

& Keane, 2014; Yates, Anthony, Ruitenberg, & Couch, 2019). Therefore, damage-detection 

receptors may be one mechanism explaining similarities between the downstream cognitive 

sequelae of diverse types of CNS insults. This principle is illustrated by studies of traumatic 

spinal cord injury that link acute damage to TLR-4 signaling, astrocytic production of IL-1β 
and other cytokines, and leukocyte recruitment (Dickens et al., 2017; Didangelos et al., 

2016).

Finally, mammalian mechanisms of viral detection are still being discovered. A recent 

report found that monocytes can respond to HSV-1 independent of PRRs via viral-mediated 

degradation of a negative regulator of the type I interferon pathway (Gaidt et al., 2021). This 

so-called “self-guarding” could play a similar role in allowing cells of the CNS to detect 

viral infection and other types of neuronal injury.

Astrocytes regulate the blood-brain barrier and respond to viral infection via cytokine 
signaling

Glia cooperate with endothelial and mural cells to regulate the blood-brain barrier (BBB) 

(Daneman & Prat, 2015). In the CNS, BBB regulation is essential to the immune response 

to viruses; a permeable BBB may allow pathogen entry to the CNS via passive diffusion or 

host cell transport (Ayala-Nunez & Gaudin, 2020), but is also necessary to allow peripheral 

immune cells to enter the CNS to aid in pathogen clearance. In response to signals from 
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neurons and immune cells, astrocytes regulate BBB permeability via their cellular processes, 

which ensheath blood vessels and vascular tubes (Daneman, 2012; Daneman & Prat, 2015).

Neuroinvasive infection may either precede or follow a change in BBB permeability. Once 

a viral infection has been established in the brain, cytokine signals derived from within 

the CNS can lead to alterations in BBB permeability. For example, IFNAR signaling in 

cerebellar astrocytes leads to an decrease in BBB permeability after intracranial inoculation 

of West Nile virus (Daniels et al., 2017). Astrocytic type I interferon signaling is also 

necessary to activate microglia and recruit peripheral immune cells after vesicular stomatitis 

virus (Chhatbar et al., 2018), and is critical for protection and herpesvirus encephalitis 

(Hayes, Giraldo, Wilcox, & Longnecker, 2022). Similarly, interferon lambda (IFNλ) 

signaling via the interferon lambda receptor (IFNLR1) is critical for BBB integrity during 

WNV infection (Lazear et al., 2015), but the role astrocytes play in this signaling pathway 

has not yet been fully elucidated.

In the opposite case of peripheral or systemic viral infection preceding neuroinvasive 

infection, cytokines in serum may signal via the luminal side of the BBB to cause an 

increase in permeability, facilitating viral entry. In vitro models of the BBB suggest that 

exposure to human serum may increase BBB permeability, and the extent of this effect was 

correlated with levels of chemokine ligands 12 and 7 (CCL12 and CCL7), interleukin 13 

(IL-13), and interleukin 1β (IL-1β) (Ho & Kelly, 2020). In SIV infection of non-human 

primates, changes in microglial interleukin-6 (IL-6) were found to precede viral invasion 

into the CNS (Gopalakrishnan et al., 2021). Proper regulation of leukocyte extravasation 

through the BBB is essential for viral control and prevention of serious encephalopathies, 

as indicated by the association between Natulizumab blocking leukocyte extravasation 

into the brain and risk of serious opportunistic CNS infections by human polyomavirus 

2 (Bloomgren et al., 2012).

Astrocytes have a variety of roles during viral infection of the CNS beyond regulating 

permeability of the BBB. Notably, astrocytes undergo proliferation and other reactogenic 

changes following viral infection and other insults to the CNS, collectively referred to 

as astrogliosis or reactive astrogenesis (Escartin et al., 2021). In the context of viral 

infection, reactive astrogenesis may be triggered by direct infection of astrocytes or by pro-

inflammatory signals from neighboring neurons, glia, or infiltrating immune cells. Reactive 

astrocytes produce cytokines with complex roles including promoting viral clearance as 

well as mediating adverse neurologic changes. After infection with a gliotropic variant 

of the betacoronavirus mouse hepatitis virus (MHV), astrocytic CXCL9 and CXCL10 

promotes the accumulation of virus-specific IgG and antibody secreting cells within the 

CNS (Phares et al., 2013), supporting viral clearance. Conversely, astrocyte-derived IL-1β 
during a model of West Nile neuroinvasive disease is required for synapse elimination and 

post-infectious deficits in hippocampal neurogenesis and spatial learning (Garber et al., 

2018). In this example, astrocyte IL-1β may signal directly to neural stem cells, promoting 

further generation of IL-1β+ reactive astrocytes at the expense of normal neurogenesis 

(A. L. Soung et al., 2022). Likewise, astrocyte NFκB signaling promotes astrogliosis, α-

synuclein aggregation, and neuronal loss during recovery from Western equine encephalitis 

virus (Bantle et al., 2021). In a mouse model of encephalitis caused by the DNA virus 
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herpes simplex virus, astrocytes produced CXCL1, recruiting neutrophils that further 

enhanced disease severity (Michael et al., 2020). Conversely, after intracranial infection 

with the RNA virus human enterovirus A71 (a cause of hand, foot, and mouth disease 

with occasional severe neuropathology), mouse astrocytes produced high levels of CXCL1, 

mimicking results observed in cerebrospinal fluid of patients, without significant neutrophil 

recruitment (Gunaseelan et al., 2022). Pharmacologic perturbation of this pathway lessened 

disease severity, suggesting that astrocyte-derived CXCL1 could promote neuropathogenesis 

either by direct effects on neurons or by recruitment of pro-inflammatory immune cells 

(Gunaseelan et al., 2022). The interferon-stimulated gene viperin is induced in astrocytes 

and other CNS cell types during viral infection, and restricts replication of the neurotropic 

flaviviruses TBEV, ZIKV, and Langat virus, although it remains unclear if astrocytic 

expression specifically is necessary for this protective effect (Lindqvist, Kurhade, Gilthorpe, 

& Överby, 2018; Lindqvist et al., 2016). These studies illustrate the complex context-

dependence of astrocyte cytokine responses.

Astrocytes also participate in the phagocytosis and clearance of debris during viral 

encephalitides, a role shared with microglia. This process may be imperative for recovery 

but may also damage synapses. In the context of microglial depletion during ZIKV 

infection of the adult mouse brain, astrocytes appeared to increase their phagocytic capacity, 

suggesting a compensatory mechanism with unknown effects on neuronal health (Enlow 

et al., 2021). In another study of neonatal mice infected with ZIKV, convalescent mice 

maintained small parenchymal foci of viral material surrounded by activated astrocytes 

and microglia up to one year after recovery (Ireland et al., 2020). Astrocytes appear to 

regionally upregulate superoxide dismutase in response to viral infection in a non-human 

primate model of HAND, suggesting a role for astrocytes in quenching reactive oxygen 

species and reducing neuroinflammation (Sullivan et al., 2020), yet also contribute to 

amyloidosis in a similar model (Sil et al., 2020). Together, these studies highlight that 

reactive astrocytes affect both response and recovery during viral infections in a manner that 

is highly dependent on the host context and specific viral pathogen (Fig. 1).

Microglial activation affects neuroinvasive viral clearance and neurocognitive recovery

Microglia are resident myeloid cells that enter the brain during early development (Ginhoux 

et al., 2010). While they are not glia, they exhibit many neuroprotective functions similar 

to astrocytes, especially with regard to synaptic plasticity (Colonna & Butovsky, 2017; 

Nguyen et al., 2020; Sipe et al., 2016; Waltl & Kalinke, 2022). Microglia are key players 

during viral infection of the CNS, with both therapeutic and pathogenic roles depending 

on the context (Chhatbar & Prinz, 2021). For example, microglia are essential to the 

early immune response to MHV infection; mice succumb to intracerebral infection if 

microglia are depleted prior to infection using an inhibitor of colony stimulating factor 1 

receptor (Wheeler, Sariol, Meyerholz, & Perlman, 2018). Likewise, microglial depletion 

affects virologic control in mouse models of DENV, ZIKV, WNV, and JEV (Enlow et 

al., 2021; Funk & Klein, 2019; Seitz, Clarke, & Tyler, 2018; Tsai et al., 2016). During 

vesicular stomatitis virus infection, microglia initiate a type I interferon response that limits 

transsynaptic viral spread (Drokhlyansky et al., 2017).
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In some cases, microglia appear to have beneficial roles not just in viral clearance, 

but also in promoting neurologic and cognitive recovery. Depletion of microglia during 

MHV clearance impaired remyelination, suggesting that microglia guide oligodendrocyte 

remyelination after viral infection by clearing myelin debris and upregulating factors that 

promote oligodendrocyte maturation, such as galectin-3 and insulin-like growth factor 1 

(Sariol et al., 2020). During ZIKV infection of adult mice, microglia undergo activation, 

correlate with virologic control, and appear to phagocytose debris (Enlow et al., 2021). 

Depletion of microglia during TMEV infection similarly allowed increased viral spread 

and exacerbated post-infectious seizures and hippocampal damage (Waltl et al., 2018). 

However, genetic deletion of CCR2 or CX3CR1 (which impacts both microglial and other 

myeloid responses) prevented hippocampal damage but did not affect seizure development, 

illustrating the complexity of the role of microglia in viral infection of the CNS (Käufer et 

al., 2018).

Microglia have also been implicated in detrimental neurologic outcomes of CNS viral 

infection. In a mouse model of post-infectious West Nile neurologic disease, microglia 

contribute to aberrant synaptic pruning after viral clearance via complement proteins 

C1q and C3 (Vasek et al., 2016). Microglia responding to T cell-derived IFNγ were 

also implicated in learning deficits and elimination of neuronal nuclei and post-synaptic 

terminals after ZIKV infection (Garber et al., 2019). In mice that recovered from West Nile 

neurologic disease, single cell RNA sequencing revealed that microglia underwent sustained 

changes, with transcriptional profiles that resembled those found in neurodegenerative 

diseases (Rosen et al., 2021). Similarly, unique microglial transcriptomic profiles were also 

observed after neurotropic MHV infection and glycoprotein-deleted Rabies virus infection 

(K. W. Huang & Sabatini, 2020; Syage et al., 2020). These studies illustrate how advances in 

single-cell transcriptomics have facilitated the differentiation of microglia from infiltrating 

macrophages, allowing more in-depth characterization of microglia in infected animals.

Microglia can also be directly infected by viruses, and serve as an important latent reservoir 

for HIV as well as a potential barrier to HIV cure strategies (Cosenza, Zhao, Si, & Lee, 

2002). Astrocytes may similarly contribute to the cellular HIV reservoir (Lutgen et al., 

2020; Valdebenito, Castellano, Ajasin, & Eugenin, 2021). The emerging RNA viruses 

Oropouche virus and Middle Eastern respiratory syndrome coronavirus infect neurons and 

glia in humanized mice or human brain slice cultures, leading to complement-mediated BBB 

changes and microglial activation (Almeida et al., 2021; Jiang et al., 2021). Future studies 

will determine whether these effects are also observed in human patients.

A Potential Role for Glia in Post-Acute Coronavirus Syndrome

Infection with SARS-CoV-2 has been associated with a variety of post-infectious syndromes 

including the development of new autoimmune conditions, ongoing respiratory deficiencies, 

and adverse cognitive and neurologic sequelae. Collectively, these conditions have been 

termed “long COVID” or post-acute coronavirus syndrome (PACS). Notably, these post-

infectious syndromes can include stark changes to the CNS, including splenial alterations to 

the corpus collosum, reduction in grey matter thickness, diffuse edema, gliosis, microglial 

and astrocyte activation, and reductions in brain size (Abdel-Mannan et al., 2020; Douaud 
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et al., 2022; Pajo, Espiritu, Apor, & Jamora, 2021; Schwabenland et al., 2021). Current 

evidence largely suggests that SARS-CoV-2 does not typically infect or invade the central 

nervous system and viral material is very rarely found in the brain parenchyma of patients 

(Pajo et al., 2021; Poloni et al., 2021; Solomon, 2021). However, unique clusters of activated 

microglia, astrocytes, and CD8+ T cells have been identified in the brain stem and olfactory 

bulb of deceased patients (Schwabenland et al., 2021). These cellular “nodules” differed 

from those observed in multiple sclerosis or non-viral severe respiratory failure patients, and 

correlated with axonal damage as well as the presence of SARS-CoV-2 viral components in 

the vascular compartments of the CNS (Schwabenland et al., 2021). There are many open 

questions about how SARS-CoV-2 infection leads to neurologic and cognitive sequelae. A 

variety of potential explanations have been proposed, including hypoxia, cytokine storm, 

low levels of viral invasion into the CNS, or induction of autoimmunity (Franke et al., 2021; 

Kumar et al., 2021; Meinhardt et al., 2021; Vargas et al., 2020). Glia could play a role 

in several of these potential pathways (Fig. 2), and early results from single nucleus RNA 

sequencing studies of COVID-19 patient brains indeed point to glial alterations associated 

with SARS-CoV-2 infection (Yang et al., 2021).

Hypoxia after non-infectious injury (cardiac arrest, ischemic stroke, and traumatic brain 

injury) is associated with adverse neurologic and cognitive sequelae including neuronal 

dysfunction and death, cerebral edema, and Parkinson’s disease (Brownlee, Wilson, Curran, 

Lyttle, & McCann, 2020; Nalivaeva & Rybnikova, 2019; Sekhon, Ainslie, & Griesdale, 

2017). Even in the absence of infection, hypoxia has diverse effects on both the blood-

brain barrier and CNS cytokine profiles. Experimentally-induced hypoxia leads to vascular 

remodeling and an increase in vascular permeability, an effect attributed to pericytic rather 

than astrocytic hypoxia inducible factor 1 (Baumann et al., 2022). In patients recovering 

from cardiac arrest, hypoxia but not normoxia was associated with cerebral release of IL-6, 

glial fibrillary acidic protein, tau, and other biomarkers of neuroglial injury (Hoiland et al., 

2021). Respiratory distress, hypoxia, and induction of a pro-thrombotic state are associated 

with severe COVID-19 (Mehandru & Merad, 2022; Serebrovska, Chong, Serebrovska, 

Tumanovska, & Xi, 2020), and evidence from other non-neuroinvasive viral infections such 

as respiratory syncytial virus supports the theory that virus-mediated lung pathology can 

lead to increased BBB permeability and neuroinflammation (Bohmwald et al., 2021). In 

PACS, symptoms such as brain fog occur even following mild cases (Bliddal et al., 2021), 

suggesting that severe hypoxia is not critical to the development of PACS. Subclinical 

hypoxia could still play a role in post-infectious sequelae.

Altered soluble mediator or immune cell levels in the circulation following infection with 

SARS-CoV-2 could also underly the development of neurologic and cognitive symptoms 

associated with PACS. Severe COVID-19 is characterized by cytokine storm, a condition 

in which levels of circulating immune mediators, including TNF-α, IL-1, and IL-6, reach 

levels elevated enough to be life-threatening (Fajgenbaum & June, 2020; Kumar et al., 

2021; Merad, Blish, Sallusto, & Iwasaki, 2022). Cytokine storm is not necessary for the 

development of PACS (Taquet, Geddes, et al., 2021). However, even in mild SARS-CoV-2 

infection, mild hypoxia combined with circulating immune factors could synergize in their 

signaling to pericytes and astrocytes, leading to opening of the BBB (Reynolds & Mahajan, 
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2021) and resulting cytokine and immune cell infiltration, neuroinflammation, and adverse 

effects on neuronal circuits.

Future Outlook

Glial cells play diverse roles during viral infections, functioning as target cells, pro-

inflammatory bystanders, mediators of neurologic damage, and facilitators of neurologic 

recovery depending on the host, immune context, and pathogen. Many open questions 

remain regarding the functions of glia during viral infections, including how they interact 

with infiltrating immune cells, how they promote neuronal survival vs. synaptic damage, 

and how they participate in brain recovery after viral clearance. In addition, the COVID-19 

pandemic has firmly demonstrated that even in the absence of viral neuroinvasion, viral 

infections can still lead to significant cognitive impairments, a process which likely involves 

glia. Future research into these topics must employ a mixture of patient sample analysis, 

ex vivo organoid models, and animal models, as no single approach can fully shed light 

on the complex relationship between glia, neurons, and immune cells in the human brain. 

As research into the role of glia during viral infections continues, we anticipate the advent 

of pharmacologic interventions that will modulate glial functions during viral infections to 

promote neuronal and cognitive health.
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Main Points

• Neuroinvasive and neurovirulent viral infections lead to acute and chronic 

neurologic sequelae

• Glia use distinct viral sensing pathways depending on the tropism of the virus

• Glial immune responses can both protect and damage neuronal tissues
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Figure 1. Glia facilitate clearance of CNS viral infections, but also mediate neurologic damage.
During neuroinvasive and neurovirulent viral infections, glia perform functions that are 

essential to viral clearance and neurocognitive recovery, such as regulating the BBB, 

maintaining chemokine gradients, and phagocytosing debris. However, these responses can 

also damage neuronal tissue by promoting chronic inflammation, impeding neurogenesis, 

and pruning synapses.
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Figure 2. Glia use distinct detection pathways to respond to different types of viral infection.
Viruses associated with neurocognitive sequelae may be gliatropic, neurotropic, 

neurovirulent, or some combination of each. Glia can recognize gliatropic viruses (left) via 

intracellular innate sensing receptors, such as endosomal Toll-like receptors or cytosolic 

pattern-recognition receptors that bind to viral nucleic acids. Infected glia can further 

amplify their innate immune response via autocrine cytokine signaling. Glia may recognize 

neurotropic viral infection (middle) via paracrine cytokine signaling. Infected neurons may 

also signal to glia via the release of damage-associated molecules such as chaperone 

proteins, host DNA, or ATP. Finally, glia may mediate neuroinflammation in response to 

neurovirulent viruses (right) via the sensing or translocation of viral particles or cytokines 

from the circulation. Hypoxia resulting from respiratory disease could amplify these signals 

via alterations to the blood-brain barrier.
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