
Gene expression

The adapted Activity-By-Contact model for

enhancer–gene assignment and its application to

single-cell data

Dennis Hecker 1,2,3, Fatemeh Behjati Ardakani1,2,3, Alexander Karollus4,

Julien Gagneur 4,5,6,7 and Marcel H. Schulz 1,2,3,*

1Institute of Cardiovascular Regeneration, Goethe University Hospital, 2Cardio-Pulmonary Institute, Goethe University, 3German Centre

for Cardiovascular Research, Partner site Rhine-Main, Frankfurt am Main 60590, 4School of Computation, Information and Technology,

Technical University of Munich, Garching 85748, 5Institute of Human Genetics, Technical University of Munich, Munich 81675,
6Computational Health Center, Helmholtz Center Munich, Neuherberg 85764 and 7Munich Data Science Institute, Technical University

of Munich, Garching 85748, Germany

*To whom correspondence should be addressed.

Associate Editor: Valentina Boeva

Received on June 23, 2022; revised on December 5, 2022; editorial decision on January 19, 2023; accepted on January 26, 2023

Abstract

Motivation: Identifying regulatory regions in the genome is of great interest for understanding the epigenomic land-
scape in cells. One fundamental challenge in this context is to find the target genes whose expression is affected by
the regulatory regions. A recent successful method is the Activity-By-Contact (ABC) model which scores enhancer–
gene interactions based on enhancer activity and the contact frequency of an enhancer to its target gene. However,
it describes regulatory interactions entirely from a gene’s perspective, and does not account for all the candidate tar-
get genes of an enhancer. In addition, the ABC model requires two types of assays to measure enhancer activity,
which limits the applicability. Moreover, there is neither implementation available that could allow for an integration
with transcription factor (TF) binding information nor an efficient analysis of single-cell data.

Results: We demonstrate that the ABC score can yield a higher accuracy by adapting the enhancer activity according
to the number of contacts the enhancer has to its candidate target genes and also by considering all annotated
transcription start sites of a gene. Further, we show that the model is comparably accurate with only one assay to
measure enhancer activity. We combined our generalized ABC model with TF binding information and illustrated an
analysis of a single-cell ATAC-seq dataset of the human heart, where we were able to characterize cell type-specific
regulatory interactions and predict gene expression based on TF affinities. All executed processing steps are incor-
porated into our new computational pipeline STARE.

Availability and implementation: The software is available at https://github.com/schulzlab/STARE

Contact: marcel.schulz@em.uni-frankfurt.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Unravelling the mechanisms behind gene expression regulation is a
central task in epigenomics. Enhancers are key players in this pro-
cess. They are accessible regions in the genome, which can be bound
by transcription factors (TFs) in a sequence-specific fashion. Those
TFs have a variety of functions: recruit other cofactors, remodel

chromatin conformation, cause changes in epigenetic modifications
or directly interact with the transcription machinery, affecting gene
expression (Gonzalez, 2016; Lambert et al., 2018; Pabo and Sauer,

1992; Pabo and Sauer, 1992). Many methods exist for annotating
enhancers, for example, using open-chromatin assays like DNase-,
ATAC- or NOMe-seq (Buenrostro et al., 2015; Kelly et al., 2012;
Song and Crawford, 2010). Histone modifications associated with
enhancer activity like H3K27ac or H3K4me1 also aid enhancer an-
notation (Creyghton et al., 2010; Heintzman et al., 2009). Besides a
plethora of methods to define enhancers, another ongoing challenge
is to identify target genes of enhancers, which is essential for under-
standing their function. These enhancer–gene interactions can span
large distances and are insufficiently explained by linear proximity
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(Schoenfelder and Fraser, 2019; Yao et al., 2015). Many approaches
exist to predict target genes of enhancers, for example, using correl-
ation of enhancer activity and gene expression (Gao and Qian,
2019; Schmidt et al., 2021; The FANTOM Consortium et al.,
2014), or correlation of accessibility across samples (Pliner et al.,
2018). Another possibility is to include chromatin contact data, for
example, Hi-C (Lieberman-Aiden et al., 2009), to call chromatin
loops for annotating enhance–gene links (Rao et al., 2014; Schmidt
et al., 2020; Yi et al., 2021). Although loops correlate with gene ex-
pression, their anchors only cover a fraction of active promoters and
enhancers and their removal impacts expression of only few genes
(Nora et al., 2017; Rao et al., 2017; Schoenfelder and Fraser, 2019).
Fulco et al. (2019) combined measurements of enhancer activity
with chromatin contact data and proposed the Activity-By-Contact
(ABC) model. The assumption is that active enhancers that frequent-
ly contact a gene’s promoter are more likely to affect a gene’s regula-
tion. The ABC model requires DNase-seq, H3K27ac ChIP-seq data
and a Hi-C matrix. The Hi-C matrix can be substituted with a ma-
trix averaged over multiple cell types, or with a quantitative func-
tion describing the distance–contact relationship (Fulco et al.,
2019). The original ABC-model formulation is entirely gene-centric,
which means it does not take the candidate target genes of an enhan-
cer into account.

We propose a generalized ABC (gABC) score with two adapta-
tions: first, it describes enhancer activity in a gene-specific manner
and second, it uses the information of all annotated transcription
start sites (TSSs) of a gene. Further, we could show that, instead of
using both DNase- and H3K27ac ChIP-seq data for the ABC model,
one assay for measuring enhancer activity yields a similar accuracy.
We validated the adaptations on three datasets of experimentally
tested enhancer–gene interactions in K562 cells and on expression
quantitative trait loci (eQTL) data from different tissues. We devel-
oped STARE, a fast implementation of the ABC score with an ap-
proach to quantify TF binding affinity for genes. STARE can
compute enhancer–gene interactions from single-cell chromatin ac-
cessibility data, illustrated on data of the human heart. With only
one data modality at single-cell resolution, we identified and charac-
terized cell type-specific (CS) regulatory interactions.

2 Materials and methods

2.1 ABC score
We use the terms enhancer and regulatory region interchangeably.
The principle of the ABC model is that an enhancer, which is highly
active and has a high contact frequency with a gene, is likely to regu-
late it (Fulco et al., 2019). The ABC score represents the relative
contribution of an enhancer r to the regulation of gene g, measured
by the enhancer’s activity Ar and its contact frequency Cr;g with the
promoter of g. For each candidate enhancer, the activity is multi-
plied with the contact frequency and this product is taken relative to
the sum over all candidate enhancers Rg in a predefined window
around the TSS of a gene:

ABCðr; gÞ ¼ Ar � Cr;gP
i2Rg

Ai � Ci;g
: (1)

By definition the scores per gene sum up to 1. In practice, a cut-
off is used to select valid interactions. The ABC model allows a
many-to-many relationship: a gene may link to multiple enhancers
and an enhancer may link to multiple genes. We tested three types of
epigenomic assays to approximate Ar by counting sequencing reads
in the enhancer: DNase-seq, ATAC-seq or H3K27ac ChIP-seq. The
contact Cr;g is taken from a normalized chromatin contact frequency
matrix. A pseudocount is added to each Cr;g, so that all candidates
Rg are taken into account (see Supplementary Material).

2.2 gABC score
We present a 2-fold adaptation of the ABC score, to account for all
candidate target genes of an enhancer and for all TSSs of a gene.
Regarding the former, the activity of an enhancer conceptually

represents all regulatory interactions an enhancer has. However, an
enhancer can interact with different genes and not all genes are
equally likely to be brought into vicinity of the enhancer. We assume
that an enhancer’s regulatory input is a function of the number of
contacts with all potential target genes. Target genes that are often
in contact with the enhancer would receive more regulatory input
than genes with fewer contacts. Thus, the activity Ar could be
denoted in a relative manner:

Ar ¼
X
g2Gr

Ar;g; (2)

where Ar;g denotes the relative regulatory activity of enhancer r to-
wards gene g and Gr denotes the set of all genes that are located
within a predefined window around r. Since the values of Ar;g are
not known, we propose an approximation by using chromatin
contacts:

Ar;g � Ar �
Cr;gP

j2Gr
Cr;j

: (3)

We approximate the regulatory activity Ar;g by the relative frac-
tion of its contact Cr;g to the TSS of g to the sum over the contacts to
all genes Gr in a window around the enhancer. Thus, the ABC score
becomes

ABCr;g ¼
Ar;g � Cr;gP

i2Rg
Ai;g � Ci;g

: (4)

In comparison to Equation (1), the activity Ar of an enhancer is
replaced with its gene-specific relative activity Ar;g, see Equation (3).
Thus, this adapted score does not only function in a gene-centric
way, but also in an enhancer-centric way, by adapting the activity to
the relative number of contacts of an enhancer’s candidate target
genes. This adaptation therefore uses a reduced enhancer activity es-
timate, in particular for enhancers in contact with many genes, and
prevents them from being accounted with their full activity for all
genes within the window.

In addition, instead of considering only one TSS per gene, for ex-
ample, the 50 TSS, we propose to include all TSSs of a gene in the
following fashion:

gABCr;g ¼
P

t2TSSg
Ar;t � Cr;tP

i2Rg

P
t2TSSg

Ai;t � Ci;t
; (5)

where TSSg are all annotated TSSs of gene g. That allows to include
the contact information to more potentially relevant transcription
sites and omits the selection of an individual TSS. We name the score
with these two changes the gABC score.

2.3 Validation on CRISPR screens
To validate our gABC score and to test different assays for measur-
ing enhancer activity, we examined the performance on experimen-
tally validated enhancer–gene interactions. We made use of three
CRISPRi screens for K562 cells. Gasperini et al. (2019) used a
single-cell CRISPRi screen, introducing guide RNAs at a high multi-
plicity of infection, followed by single-cell RNA-seq. Schraivogel
et al. (2020) developed targeted Perturb-seq (TAP-seq), which prom-
ises to be more sensitive by targeting genes of interest for the tran-
scriptomic readout, and was established by a screening on two
chromosomes. Fulco et al. (2019) used their CRISPRi-FlowFISH ap-
proach and collected data from other CRISPR-based studies. Unlike
Fulco et al. (2019), we neither divide interactions into enhancer–
gene and promoter–gene pairs nor exclude interactions, where the
expression decreased after enhancer perturbation. We tested four
different set-ups for measuring enhancer activity: (1) DNase-seq, (2)
H3K27ac ChIP-seq, (3) the geometric mean of DNase-seq and
H3K27ac ChIP-seq and (4) ATAC-seq. In addition, we assessed a
K562 Hi-C matrix, a Hi-C matrix averaged across 10 cell types con-
structed by Fulco et al. (2019) and a contact estimate (inverse of the
linear distance) based on a fractal globule model (Lieberman-Aiden
et al., 2009). For each combination, we evaluated the ABC- and
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gABC-scoring approach and calculated precision–recall curves. In
addition, we tested the significance of the pairwise difference be-
tween the area under the receiver operate characteristic (ROC)
curves (DeLong et al., 1988; Robin et al., 2011) (more details in
Supplementary Material).

We also compared gABC with Enformer, a sequence-based deep
learning model predicting gene expression and chromatin states,
whose characteristic is an increased information flow between distal
sequence positions (Avsec et al., 2021). To quantify enhancer–gene
interactions with Enformer we compared the expression estimate
upon in silico mutagenesis of the enhancer region, by either replac-
ing 2 kilobase (kb) centred at the enhancer with neutral nucleotides,
or by shuffling the sequence for 25 iterations (Karollus et al., 2022).
Due to the size of Enformer’s receptive field, we limited the com-
parison to interactions with �96 kb distance.

2.4 TF affinities and summarization on gene level
In addition to enhancer–gene interactions, STARE aims to describe
a TF’s regulatory impact on a gene (Supplementary Fig. S1). There
are two steps required. First, genomic regions that influence the
regulation of a gene have to be identified. This can be done via ABC
scoring as described before, or in a more simplistic approach by tak-
ing all open regions within a defined window around the gene’s TSS
into account. Utilizing the ABC model allows STARE to function
with any desired window. Second, the affinities of TFs to the identi-
fied regions have to be quantified. Instead of relying on calling TF
binding sites, we use the tool TRAP, which calculates relative bind-
ing affinities for TFs in a genomic region. TRAP describes TF bind-
ing with a biophysical model to predict the number of TF molecules
that bind in a sequence (Roider et al., 2007). The higher the affinity,
the more likely a TF is to bind. Retaining low binding affinities can
hold valuable information (Kribelbauer et al., 2019; Schmidt et al.,
2016) and omits selection of an arbitrary threshold. For all analyses
presented in this manuscript, we used a non-redundant collection of
818 human TF motifs in the form of position frequency matrices
(PFMs) from JASPAR 2022, HOCOMOCO v11 and the work of
Kheradpour and Kellis (2014) (Castro-Mondragon et al., 2022;
Kulakovskiy et al., 2018). When converting PFMs to position-
specific energy matrices required by TRAP, we take the average nu-
cleotide content of the candidate regulatory regions as background.

To summarize the TF affinities in enhancers per gene, we com-
bine them with the predicted enhancer–gene interactions. The sum-
marization depends on how the region-gene mapping was done. For
the window-based approach, TF affinities in all open regions around
the gene’s TSS are summed:

afg;tf ¼
P

r2Rg

afr;tf

mltf
� Ar � e�

dr;g
d0 ; (6)

where afg;tf is the affinity of TF tf summarized for gene g. Rg is the
set of all open regions r that were located within the window around
g. afr;tf is the affinity of tf in r, mltf is the motif length of tf and Ar is
the activity for r. The affinity is corrected for the distance dr;g of r to
the TSS of g by an exponential decay function, as proposed by
Ouyang et al. (2009), where d0 is set to a constant of 5000 bp.

When the gABC score was used to assign regions to genes, the
summarization changes, as there is more epigenomic information
available. Regions close to the TSS (�2500 bp) are always included,
independently of their gABC score, as they are very informative for
the expression regulation of a gene (Schmidt et al., 2019). They are
also scaled differently:

afg;tf ¼
P

r2Rg

afr;tf

mltf
� Ar � e�

dr;g
d0 ; if dr;g � 2500 bp

Ar;g; otherwise
:

(
(7)

Rg is the set of regions that was linked to the gene with the gABC
score and Ar;g is the adapted activity (Equation 3). For regions close
to the TSS, the base activity Ar is corrected with the exponential
decay function, as the contact frequency would likely be the contact
of the region with itself and thus Ar;g could be erroneous. When
using the regular ABC score, the affinity scaling changes as follows:

afg;tf ¼
P

r2Rg

afr;tf

mltf
�

Ar � e�
dr;g
d0 ; if dr;g � 2500 bp

Ar �
Cr;g

Cmax
; otherwise

:

8><
>: (8)

The regions close to the TSS are scaled in the same way as be-
fore. For all the other regions, we divide the contact frequency Cr;g

by the maximum contact that was measured for all region–gene
pairs Cmax. The reasoning is to incorporate the contact frequency
and to have both multipliers for Ar in the range of [0, 1]. Essentially,
the activity multipliers for gABC and ABC differ only in how the
contact is scaled: for gABC relative to all gene contacts of the re-
spective enhancer and for ABC to the contacts of all enhancer–gene
pairs.

In addition to the TF affinities, we report three additional gene
features: the number of regions considered per gene, the regions’
average distance to the TSS and the regions’ average base pair
length, as all three can be predictive of gene expression (Schmidt
and Schulz, 2019).

2.5 Application to single-cell data
To test the capability of gABC-scored enhancer–gene interactions
combined with TF affinities to capture regulatory CS information,
we analysed a single-cell dataset of the human heart from Hocker
et al. (2021), providing single-nuclei (sn) ATAC-seq, as well as
snRNA-seq data. The candidate enhancers were pooled and ATAC-
seq reads per kilobase per million reads (RPKM) was measured for
each cell type. For chromatin contacts, we tested H3K27ac HiChIP
data of the left ventricle (Anene-Nzelu et al., 2020) as well as an
average Hi-C matrix (Fulco et al., 2019). Regions known to accu-
mulate an anomalous amount of sequencing reads were excluded
(Amemiya et al., 2019; The ENCODE Project Consortium, 2012).
As we had enhancer activity and enhancer contact data at hand, we
determined enhancer–gene interactions for each cell type with the
gABC score (cut-off 0.02, 5 MB window around all annotated TSS)
and summarized TF affinities for each gene in each cell type based
on those interactions. To assess the predictability of gene expression
by gene-TF affinities, we used INVOKE (Schmidt et al., 2017),
which implements a linear regression model based on gene-TF
scores, and selects TFs that are most predictive of gene expression.
We trained prediction models for multiple set-ups for each cell type
to compare their prediction accuracy. We repeated this process for
CS genes, defined as genes where the z-score of expression between
cell types was �2 and transcripts per million (TPM) �0.5. The gene-
TF matrices were limited to TFs expressed in a cell type (TPM �
0.5). Schmidt et al. (2020) applied INVOKE on similar data types
for bulk data, but restricted information of distant enhancers to
those connected to promoters via loops. With the ABC approach we
have a finer resolution of regulatory interactions and can integrate
the contact frequency into the summarization of TF affinities.

2.5.1 Comparison to co-accessibility analysis

A common approach to identify regulatory interactions in single-cell
ATAC-seq data is to call co-accessible regions. Hocker et al. (2021)
ran Cicero (Pliner et al., 2018) on their snATAC-seq data to derive
pairs of regions with correlated accessibility, limited to a distance of
250 kb. Whenever either side of a co-accessible region pair over-
lapped a 400-bp window around any annotated TSS of a gene, we
considered it as an enhancer–gene interaction for that gene. We
tested how informative the resulting 62 384 co-accessible interac-
tions are for our gene expression prediction model. Summarization
of TF affinities was done according to Equation (6) and the affinities
of regions close to the TSS (�2500 bp) were included, as described
in Section 2.4.

2.5.2 Intersection with eQTLs

Further, we compared the agreement of the regular ABC and gABC
score with eQTL data. We intersected ABC-scored interactions from
four different heart cell types (Hocker et al., 2021) and K562
cells with eQTL-gene pairs of matching samples from the GTEx
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portal (The GTEx Consortium, 2020). We used high confidence
eQTL-gene pairs from three different fine-mapping approaches,
namely CAVIAR, CaVEMaN and DAP-G (Brown et al., 2017;

Hormozdiari et al., 2014; Wen et al., 2016). For each set of eQTLs,
we defined the enhancer–gene pairs that were supported by the

eQTLs, meaning all candidate enhancers of a cell type with a vari-
ant, where the affected target gene was within the chosen ABC win-
dow size. Then, we compared the fraction of those eQTL-supported

enhancer–gene pairs that we could also find among a variable num-
ber of highest scored ABC/gABC interactions (Recall). As we also

had the co-accessibility analysis on the heart data, we examined
how many eQTL-gene pairs the resulting interactions recover.

3 Results

3.1 gABC score improves interaction prediction
We propose a gABC score (Equation 5), where the activity of an en-

hancer is described in a gene-specific manner (Fig. 1c; Equation 3),
and all annotated TSSs of a gene are considered. On all validation

datasets and for all combinations of activity measurements, the
gABC score outperformed the regular ABC score (P-value�0.0005
Wilcoxon signed-rank test) (Fig. 1a and d and Table 1). The differ-

ence was more pronounced in the Gasperini and Schraivogel valid-
ation data. Each of the two adaptations of the gABC score

individually increased the area under the precision recall curve
(AUPRC) compared with the regular ABC across activity assays,
with the gene-specific activity providing an average gain of 0.026,

and including all TSSs giving an average improvement of 0.053.
Taken together, the gABC score yielded on average a 0.107 higher

AUPRC (Supplementary Table S1). The areas under the ROC curves
for gABC were significantly higher in 10 out of 12 pairwise compar-
isons across CRISPRi screens and activity assays (Supplementary

Table S5). Using an average Hi-C matrix changed the accuracy mar-
ginally for both ABC scores (Supplementary Fig. S2a and Table 1).
When using the fractal globule module to estimate contact frequency

only based on distance, gABC achieved less improvement over the
regular ABC with an average AUPRC gain of 0.048 (Supplementary

Table S1). We could reproduce the higher accuracy of the gABC
score in a direct comparison to the implementation of Fulco et al.
(2019) (Supplementary Table S2). Further, we examined the correl-

ation between each of the ABC scoring approaches and the absolute
change in gene expression as measured in the CRISPRi screens. The

gABC score showed a higher Spearman correlation coefficient across
all three datasets (Supplementary Table S3).

To disentangle for which enhancers the gABC score performs
better than the regular ABC, we focused on the largest CRISPRi
screen from Gasperini et al. (2019) (Supplementary Fig. S3a) and

found that the regular ABC predicted more false positive target
genes for enhancers with a high activity (Fig. 1e and f and

Supplementary Fig. S3b–e). There was a small subset of enhancers in
gene-rich regions for which the gABC score predicted more false
positive interactions (Supplementary Fig. S3f–i).

Enformer is a novel method that predicts gene expression and
chromatin states directly from the DNA sequence using a complex

neural network architecture outperforming other sequence-based
models (Avsec et al., 2021). We compared the gABC score and an
Enformer model learned on K562 cells using in silico mutagenesis,

where the strength of interactions was quantified by the predicted
expression change upon sequence perturbation of the enhancer.

gABC achieved a higher accuracy on all three validation datasets
(Fig. 1b) testing alternative ways for the in silico mutagenesis
(Supplementary Table S4). This was also reflected in significantly

higher areas under the ROC curves (all P-values � 0.05, DeLong
et al., 1988; Robin et al., 2011).

Although it uses the same information, the gABC score per-
formed better than the regular ABC score and outperformed the ac-

curate sequence-based Enformer model.

3.2 One activity assay yields similar accuracy
The original formulation of the ABC score requires two types of
assays to measure enhancer activity, namely DNase-seq and
H3K27ac ChIP-seq (Fulco et al., 2019). We tested the performance
of the gABC scoring principle using different assays for measuring
enhancer activity (Fig. 1a and d, Table 1 and Supplementary Fig.
S2b). On the datasets of Schraivogel and Fulco, the combination of
DNase-seq and H3K27ac ChIP-seq performed better than either of
them alone, although the performance drop with only DNase-seq
was small. On the Gasperini data, DNase-seq without H3K27ac
ChIP-seq was slightly better. Quantifying enhancer activity with
ATAC-seq resulted in a worse performance on the Schraivogel and
Fulco validation data, but a clear improvement on the Gasperini
dataset, surpassing the combination of DNase-seq and H3K27ac
ChIP-seq.

3.3 Regulatory interactions in single-cell data
Using just one epigenome assay for the ABC score enables direct ap-
plication on high-resolution snATAC-seq data, which has the poten-
tial to improve the prediction of CS interactions. As a proof of
concept, we analysed a human heart snATAC-seq dataset, compris-
ing eight cell type clusters (Hocker et al., 2021). The candidate
enhancers of the cell types were pooled to a set of 286 777 regions
with a summarized ATAC-seq measurement for each defined cell
type (Fig. 2a). On average we predicted 408 846 gABC-scored inter-
actions (SD � 12 200) over all cell types. Approximately 23.6% of a
cell type’s interactions were shared with all other cell types (Fig. 2b
and Supplementary Fig. S4a). Each cell type also featured unique
interactions although this was highly variable (l �11.6%,
SD�5.1%). Atrial cardiomyocytes (aCM) and ventricular cardio-
myocytes (vCM) formed the largest intersection of interactions
found in only two cell types, consisting of 39 707 interactions. The
average median of enhancers per expressed gene (TPM � 0.5) across
cell types was 4.75 (SD � 0.43) (Supplementary Fig. S4b). Despite
all cell types having the same candidate enhancers and a shared
contact measurement, their predicted enhancer–gene interactions
appeared to be considerably distinct.

3.3.1 gABC score recovers more eQTL-gene pairs

We examined how many eQTLs from different tissues are recovered
by ABC interactions from matching cell types, including four heart
cell types from Hocker et al. (2021) and K562 cells. We took high
confidence eQTL-gene pairs from three different fine-mapping
methods and compared which fraction of enhancer–gene interac-
tions supported by eQTLs were also found by the 300 000 highest
scored ABC and gABC interactions (Fig. 2c). The gABC interactions
recovered significantly more eQTL-gene pairs across all fine-
mapping methods and eQTL datasets (P-value�0.0005 Wilcoxon
signed-rank test). This finding was reproduced for the 100 000 and
200 000 highest scored interactions. The gABC interactions
also captured more eQTL-gene pairs than interactions derived via
co-accessibility analysis (Supplementary Fig. S4c).

3.3.2 Linking epigenetic features to CS expression

We trained CS gene expression prediction models based on gene-TF
affinity matrices, constructed with different approaches (Fig. 3a).
Using the gABC score performed best across all cell types (Pearson
correlation coefficient l �0.563), with similar results using the
average Hi-C matrix (l �0.556). The regular ABC score had a
slightly lower performance (l �0.538), whereas interactions identi-
fied via co-accessibility resulted in the lowest performance
(l �0.505). Since the co-accessible interactions were limited to a
distance of 250 kb, we also tested the gABC score in a 500-kb win-
dow, which marginally decreased the performance in the prediction
model (l �0.562, Supplementary Fig. S5a).

We defined a set of CS genes (TPM � 0.5 and z-score � 2) for
each cell type (l¼1404 genes, SD�582 genes) and analysed those
in more detail. The CS genes were mostly unique to a cell type
(Supplementary Fig. S4d) and GO term enrichment returned cell-
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type appropriate terms (Supplementary Fig. S4e). To further char-
acterize the sets of CS genes, we examined additional attributes
and compared CS genes with non-CS genes, both sets restricted to
expressed genes (TPM � 0.5) (Fig. 3b and Supplementary Fig. S4f).
CS genes had more assigned enhancers than non-CS genes in all
cell types except for LC. This matches the finding of Fulco et al.
(2019), who described a higher number of enhancers for tissue-
specific than for ubiquitously expressed genes. Furthermore, CS

genes tended to have a higher percentage of unique interactions,
meaning the fraction of interactions of a gene, that were exclusive-
ly found in that cell type, was higher. Most cell types had a slightly
higher average activity in enhancers linked to CS genes than in
enhancers linked to non-CS genes, except for aCM and FB. There
was no clear trend visible for the average contact frequency or TSS
distance of the assigned enhancers. To exclude that the differences
were solely caused by the CS genes’ higher expression, we repeated

(a)

(b)

(c)

(d) (e) (f)

Fig. 1. Performance comparison of the ABC and gABC score on CRISPRi screens in K562 cells using different epigenomic assays. For chromatin contacts, a K562 Hi-C matrix

(5 kb resolution) was used (Rao et al., 2014). (a) Precision–recall (PR) curves of both ABC scores on experimentally validated enhancer–gene links. The AUPRC values can be

found in Table 1. (b) PR curves comparing gABC with Enformer on interactions with a distance of � 96 kb. Out of four tested calculations for the predicted expression differ-

ence of Enformer the best one is shown. The AUPRC values are listed in Supplementary Table S4. DNase-seq and H3K27ac ChIP-seq were used as activity for gABC. (c)

Schema for the gene-specific enhancer activity, which distributes the activity of an enhancer among its scored genes, dependent on contact frequencies. (d) Direct comparison

of the AUPRC for ABC and gABC on different CRISPRi screens and with different assays for enhancer activity. (e) PR curve coloured by ABC/gABC score, respectively, with

DNase and H3K27ac as activity on the CRISPRi screen of Gasperini et al. (2019). The dotted grey line marks the position at 40% recall. (f) Distribution of the activity of

enhancers (geometric mean of read counts of DNase-seq and H3K27ac ChIP-seq) separated by the number of false positive (FP) target genes called by each method at 40% re-

call on the screen of Gasperini et al. (2019). ‘equal FP’ contains all enhancers where the number of FP target genes is the same for both scores (0 FP included). ‘more FP’ means

that either of the scores called more FP target genes for that enhancer. The number of enhancers in each category is shown below the x-axis labels
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the comparisons but restricted them to CS and non-CS genes from
the upper quartile of TPM values. The results were highly similar
across all features (data not shown). We repeated the training of
gene expression models but limited it to CS genes and observed an
overall decrease in prediction accuracy (Supplementary Fig. S5b).
The gABC score still performed better than the ABC score. The
prediction model returns a regression coefficient for each TF, indi-
cative of TF relevance, and allows to investigate which TFs might
drive gene expression in which cell type (Supplementary Fig. S5c).
Overall, we were able to characterize CS expression regulation
based on single-cell chromatin accessibility and bulk chromatin
contact data.

3.4 Runtime of STARE
We optimized STARE’s runtime by allowing multiple steps to be

run in parallel (Fig. 4a) and to omit redundant calculations, if
multiple cell types/metacells/individual cells with a respective activ-
ity measurement are processed. The runtime per activity column

decreases when multiple columns are handled in the same run,
allowing large datasets to be processed in a few minutes (Fig. 4b).

4 Discussion

We present a variation of identifying regulatory enhancer–gene

interactions with the ABC model. In its original study, the ABC

Table 1. AUPRC using ABC and gABC for identifying regulatory interactions on three validation datasets, with different assays for enhancer

activity and contact data

Validation data Gasperini et al. (2019) Schraivogel et al. (2020) Fulco et al. (2019)

755 valid out of

37 738 interactions

69 valid out of

9093 interactions

158 valid out of

3999 interactions

Enhancer activity

assay

DNase and

H3K27ac

DNase H3K27ac ATAC DNase and

H3K27ac

DNase H3K27ac ATAC DNase and

H3K27ac

DNase H3K27ac ATAC

ABC K562 Hi-C 0.4421 0.4333 0.3816 0.4919 0.3600 0.3549 0.2746 0.2909 0.4365 0.4167 0.3835 0.3702

gABC K562 Hi-C 0.5042 0.5076 0.4596 0.5408 0.5717 0.5592 0.505 0.4884 0.471 0.4552 0.4388 0.4176

ABC avg Hi-C 0.4486 0.4395 0.3898 0.4929 0.3554 0.3661 0.2806 0.2945 0.436 0.4085 0.386 0.3663

gABC avg Hi-C 0.5038 0.5072 0.4605 0.5364 0.5552 0.5507 0.4985 0.475 0.452 0.4387 0.4259 0.4015

Note: The highest AUPRC within each column is written in bold.

(a)

(b) (c)

Fig. 2. Enhancer–gene interactions called in single-cell heart data. (a) Schema of data processing. snATAC-seq from Hocker et al. (2021) was used to identify candidate

enhancers and their activity in the annotated cell types. For each cell type gABC interactions were called. Enhancer–gene contacts were retrieved from left ventricle H3K27ac

HiChIP data (Anene-Nzelu et al., 2020). (b) Upset plot of the enhancer–gene interactions called in each cell type. Only the 10 largest intersections are shown. EC, endothelial

cells; FB, fibroblasts; MAC, macrophages; LC, lymphocytes; AD, adipocytes; NR, nervous cells. (c) Intersection of eQTL-gene pairs from different GTEx samples with the

ABC and gABC interactions. Recall is the fraction of enhancer–gene pairs found by each score out of all pairs where the enhancer contained an eQTL whose target gene was

within the window size used for ABC scoring. The 300 000 highest scored interactions of ABC and gABC were used
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model already showed a better accuracy for detecting validated en-
hancer–gene links than other approaches (Fulco et al., 2019). We
propose a gABC score where the activity of an enhancer is described
in a gene-specific manner by weighting it relative to the number of
enhancer–gene contacts and where all TSSs of a gene are considered.
This generalization resulted in an improvement in identifying experi-
mentally validated enhancer–gene interactions, both compared with
the regular ABC, as well as to the deep learning model Enformer. It
should be noted however, that Enformer was built to predict gene
expression, and not to identify enhancer–gene links (Avsec et al.,
2021). The accuracy of different scoring approaches was partially

inconsistent between validation datasets, especially when using
ATAC-seq for enhancer activity. Although all datasets are based on
a dCas9-KRAB system, there are differences in the experimental
set-ups and scope. Gasperini et al. (2019) introduced multiple guide
RNAs and measured expression via single-cell RNA-seq, allowing
quantification of interactions for over 10 000 genes. Schraivogel
et al. (2020) presented their method TAP-seq, while Fulco et al.
(2019) published CRISPRi-FlowFISH and collected previous results,
both evaluating interactions for less than one hundred genes. Details
in candidate enhancer selection, filtering steps and processing might
lead to biases or varying sensitivity in the identification of enhancer–
gene pairs, which is already indicated by the different fractions of
significant interactions. Further, it is debatable whether CRISPRi
screens are able to detect all regulatory interactions, as true
enhancers with small effect sizes may be overlooked. Moreover, per-
turbations of individual enhancers are presumably not capable of
accounting for shadow enhancers with redundant functionality
(Schoenfelder and Fraser, 2019; Singh and Yi, 2021). More
large-scale validation data could consolidate and contextualize our
findings, but are currently unavailable. Importantly, any model to an-
notate enhancer–gene interactions is only a prediction and likely not
capturing the whole regulatory complexity of genes. The ABC model
requires two data types, which makes it applicable in a range of scen-
arios, but it might also miss out relevant epigenetic information.
Further, the model assumes all genes are regulated in the same way.

In context of required data types, we were able to demonstrate
that, unlike suggested in the original work, one assay for measuring
enhancer activity works similarly well, specifically using DNase- or
ATAC-seq without H3K27ac ChIP-seq data. Further, using aver-
aged contact data yielded a high performance as well, which broad-
ens the applicability of the ABC score to all datasets, where a
measurement of enhancer activity is available. Especially for single-
cell epigenomics, it is challenging to measure multiple modalities in
the same cell.

We present the STARE framework to derive gene-TF affinities.
After mapping candidate enhancers to genes, using either the ABC
score or a window-based approach, STARE summarizes TF affin-
ities on a gene level. Unlike other methods aiming to determine regu-
latory relations of TFs to genes (Lan et al., 2012; Wang et al.,
2013), STARE does not require scarce TF ChIP-seq data. It uses a
motif-based biophysical model (Roider et al., 2007) to determine TF
affinities in accessible regions. As consequence, unlike other meth-
ods (McLeay et al., 2012), it is able to retain low affinity binding in-
formation. Patel and Bush (2021) use similar data as STARE and
rely on a graph-based approach, but they do not incorporate active
regulatory regions and analysis is limited to a window marked by
the most distant CTCF peaks within 50 kb of the gene body. With
the ABC model, STARE specifically determines candidate enhancers
within any selected window size. Notably, our model assumes an
additive influence of TFs, which is not likely to accurately capture
biological reality (Zeitlinger, 2020). Furthermore, there is potential
redundancy on two levels: the aforementioned functional redun-
dancy of enhancers and the redundancy of TF binding motifs
(Cusanovich et al., 2014; Gitter et al., 2009).

We applied our framework to single-cell data with clustered cell
types of the human heart (Hocker et al., 2021), where the activity of
a unified set of candidate enhancers was measured for each cell type.
The assumption was that cell type specificity is mainly driven by ac-
tivity of regulatory regions and less by spatial chromatin conform-
ation. Although chromatin contacts were also found to change upon
cell differentiation (Fraser et al., 2009; Zhang et al., 2020), the 3D
conformation of the genome is described as less dynamic and more
as a scaffold to enable and stabilize regulatory interactions (Ing-
Simmons et al., 2021; Schoenfelder and Fraser, 2019). We were able
to unravel differences in regulatory interactions across cell types and
to characterize regulation of CS genes, despite using bulk chromatin
contact data. We demonstrated a downstream application example
of STARE with a linear expression model, which allows to identify
candidate regulatory TFs for further evaluation. Considering the
small training sets and that the model assumes the same regulation
for all genes, the prediction yielded a reasonable performance.

(a)

(b)

Fig. 3. Gene expression prediction on single-cell data and characterization of CS

genes. (a) Accuracy of a gene expression prediction model based on different gene-

TF affinity matrices. The model was trained on all genes with available expression

values. The Pearson correlation coefficient is shown as average over a 10-fold outer

cross-validation. A horizontal line above the bars indicates significance (P-value �
0.05, Mann–Whitney U test). snATAC-seq data were used as enhancer activity for

all approaches. ABC/gABC H3K27ac HiChIP, regular/gABC scoring with H3K27ac

HiChIP as contact data; gABC avg Hi-C, gABC with an average Hi-C matrix as con-

tact data; Co-accessibility, enhancer–gene links defined by Cicero (Pliner et al.,

2018), see Section 2.5.1. The respective Spearman correlation coefficients, as well as

additional approaches and their performance in a training on CS genes only, are pre-

sented in Supplementary Figure S5. (b) Comparison of attributes between CS (TPM

� 0.5 and z-score � 2) and not CS (non-CS) genes (TPM � 0.5) (*P-value � 0.05,

Mann–Whitney U test). See Figure 2 for cell type abbreviations

(a) (b)

Fig. 4. Runtime of the STARE pipeline. (a) Runtime of the original ABC pipeline by

Fulco et al., and our ABC scoring implementation with a different number of cores.

Any writing of output files was omitted. Calculations were done for K562 cells,

scoring 155 976 candidate enhancers for 24 586 genes in a 10-MB window. The

bars show the mean of five runs. (b) Runtime divided by the number of activity col-

umns for the ABC scoring alone and when additionally calculating the gene-TF af-

finity matrix. Writing and compression of output files are included. Calculations

were done on single-cell heart data (Hocker et al., 2021) with 286 777 candidate

enhancers, for 55 765 genes in a 5-MB window. In total, 818 TFs were assessed.

The bars’ height represents the mean of three runs
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Schmidt et al. (2020) used a similar expression prediction approach
and incorporated distant enhancers. However, their work relies on
annotated loops, which are not likely to cover all relevant regulatory
interactions. In addition, their strategy is not able to integrate con-
tact frequencies into TF affinities, nor to derive CS interactions from
bulk contact data. There are other tools for predicting gene expres-
sion explicitly in individual cells that incorporate TF information,
such as SCENIC (Aibar et al., 2017), ACTION (Mohammadi et al.,
2018) or TRIANGULATE (Behjati Ardakani et al., 2020), but none
of them considers long-range enhancer–gene interactions. A compel-
ling approach would be to combine these expression prediction tools
with information on distant enhancers.

STARE represents a currently unique form of deriving TF affin-
ities on a gene level: it combines enhancer–gene links called by the
ABC score with a non-hit-based TF annotation. Prospectively, we
would like to apply STARE on individual cells instead of clustered
cell types, which would require additional steps to account for the
drastic sparsity of most single-cell measurements. It would also be
highly interesting to further investigate the importance of chromatin
contacts in cell type specificity, once the resolution and availability
for such data are advanced.

Data availability

The presented results are provided via Zenodo (https://doi.org/10.5281/zen

odo.5841991). All data are in hg19. For details on the used data, see the

Supplementary Material.
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