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Abstract
Human leukocyte antigen (HLA) class I subunit expression level in primary and metastatic lesions has been characterized 
in many cancer types utilizing formalin-fixed and paraffin-embedded (FFPE) tissue sections as substrates in immunohisto-
chemical reactions. The evaluation of the results of these studies has been hampered by the scant information about HLA 
class I subunit expression level in normal tissues. To address this unmet need, we have analyzed the HLA class I subunit 
expression level in FFPE sections of normal tissues.
Two tissue microarray (TMA) blocks were constructed from archived FFPE tissue samples of a wide number of human 
normal tissues. The expression level of HLA-A, HLA-B, HLA-C heavy chains and β2-microglobulin (β2-M) was evaluated 
by IHC staining, with mAb HC-A2, mAb HC-10, and mAb NAMB1, respectively. The staining was scored according to its 
intensity.
According to their staining patterns with the three mAbs tested, normal tissues can be divided into four groups: (i) tissues 
displaying moderate/strong staining patterns, (ii) tissues displaying barely detectable staining patterns, (iii) tissues display-
ing differential staining patterns, and (iv) tissues with no detectable staining. The ubiquitous expression pattern for HLA-A, 
B, C heavy chain and β2-M was found only at the endothelial level; the stroma was negative except for fibroblasts in all the 
tissues analyzed. Our data suggest that, contrary to the general postulate, HLA class I subunit expression is not detectable 
in all nucleated cells. This information provides a useful background to evaluate changes in HLA class I subunit expression 
associated with the malignant transformation of cells.
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Introduction

The impressive clinical responses observed in cancer 
patients treated with immune checkpoint inhibitors [1] 
have restored tumor immunologists’ confidence in the abil-
ity of patients’ immune system to recognize and eliminate 
neoplastic cells [2–5].

As a result, there has been a revival of interest in the 
role of immune surveillance [6, 7] in the pathogenesis 
and clinical course of malignant diseases as well as in 
the expression by malignant cells of molecules which 
mediate their interactions with the host’s immune system 
[8, 9]. The driving force for these studies is the expecta-
tion that the identification and characterization of defects 
in the structure and/or function of these molecules will 
contribute to our understanding of the molecular basis of 
immune escape mechanisms utilized by malignant cells to 
avoid immune recognition and destruction as well as to the 
rational design of strategies to counteract them [10–12].

The immunologically relevant molecules analyzed in 
malignant cells include the β2-microglobulin-HLA class 
I heavy chain complexes since they mediate interactions 
between cancer cells and the host’s immune system by pre-
senting tumor antigen-derived peptide to cognate cytotoxic 
T cells [11, 12].

HLA class I antigen expression levels by malignant 
cells have been analyzed by IHC staining with mAbs [8]. 
FFPE tissues represent the substrate of choice in these 
reactions since they provide the most accurate cellular 
details and allow the use of collections of archival tissues 
available in the departments of pathology. The fixation 
procedure dissociates β2M-HLA class I heavy chain com-
plexes. As a result, the expression of HLA class I subunits, 
but not that of HLA class I complexes and of HLA class I 
alleles, can be evaluated. Stained tissue sections are scored 
by microscopic examination.

The analysis of changes in HLA class I subunit expres-
sion levels associated with the malignant transformation 
of cells has suffered from the limited available information 
about the HLA class I subunit expression levels in normal 
tissues [13–15]. To address this unmet need, in this study, 
we have performed a comprehensive analysis of HLA class 
I subunit expression levels in normal tissues. We have ana-
lyzed separately the expression of HLA-A heavy chains 
and HLA-B and C heavy chains since their expression is 
controlled by different regulatory mechanisms and they 
play distinct functional roles in the interactions of cancer 
cells with immune cells [16, 17]. To this end, we have 
used as probes mAbs with selective reactivity with the 
gene products of HLA class I loci, since mAbs recognizing 
framework epitopes shared by the gene products of HLA 
class I loci do not detect their differential expression.

Materials and methods

Tissues samples

Archived (years 2012–2020) FFPE samples of 40 human 
tissues were retrospectively collected from the section of 
pathological anatomy, Department of Health Sciences of 
the University of Florence; no autopsy specimens in the 
tissue sampling were included in this study. Hematoxy-
lin and eosin-stained tissue slides were reviewed by two 
expert pathologists (AS, DM). The use of FFPE sections of 
human samples was approved by the local ethics commit-
tee (#14865_bio) according to the Helsinki Declaration.

Tissue microarray  construction

Two high-density TMAs were prepared from FFPE sam-
ples, using two blocks for each tissue analyzed, as previ-
ously described [18]. In brief, cylindrical tissue cores of 
1.5 mm diameter were punched out from representative 
areas of each donor block using specialized TMA equip-
ment and arrayed into two new recipient paraffin blocks 
at defined array coordinates using an automatic system 
(TMA Grand Master, 3DHistech). To confirm the evalu-
ation of tissues with no detectable staining or showing 
conflicting results in TMA, samples of the thyroid, liver, 
pancreas, adrenal gland, urinary bladder, and placenta 
were re-tested using up to 5 samples of whole slides for 
each organ.

Monoclonal antibodies

The mAb HC-A2, a mouse IgG1 [0.3 µg/1 ml], which recog-
nizes β2-M-free HLA-A (excluding -A24), -B7301, and -G 
heavy chains, the mAb HC-10 a mouse IgG1 [0.3 µg/1 ml], 
which recognizes β2-M-free HLA-A3, -A10, -A28, -A29, 
-A30, -A31, -A32, -A33, and all β2m-free -HLA-B (exclud-
ing -B5702, -B5804, and -B73) and -HLA-C heavy chain, 
and the β2-M-specific mAb NAMB1, a mouse IgG1, [1.2 µg 
/1 ml], were developed as previously described [19, 20]. 
mAbs were purified from an ascitic fluid by affinity chro-
matography on a protein G column (GE Healthcare Life 
Sciences, Pittsburgh, PA). The purity and activity of mAb 
preparations were monitored by SDS-PAGE and by binding 
assays with the cognate antigen, respectively. Commercial 
abs included: Stat 1 (#14,994, clone D1K9Y, 1:1000, rabbit 
monoclonal, Cell Signaling, Danvers, MA) that recognizes 
total STAT1 protein and Phospo-Stat1 (#9167, Tyr701, clone 
58D6, rabbit monoclonal, Cell Signaling, Danvers, MA) that 
detects STAT1 protein phosphorylated tyrosine 701.
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Immunohistochemical staining

Tested antibodies, dilutions, and experimental conditions are 
summarized in Table 1. Briefly, tissue Sects. (3 µm) were 
incubated with the HLA class I subunit-specific mAbs on a 
Ventana Discovery Ultra immunostainer (Ventana Medical 
Systems, Tucson, AZ). Negative controls (mouse and rabbit 
monoclonal negative control Ig, Vector Laboratories) were 
simultaneously performed to exclude the presence of any 
non-specific staining. The staining procedure included pre-
treatment with cell conditioner 1 (CC1) followed by incuba-
tion with the tested antibodies. For all antibodies, the signal 
was developed with the UltraMap DAB anti-Mouse Detec-
tion Kit (Ventana Medical Systems, Tucson, AZ). Sections 
were then counterstained with hematoxylin.

Digital image acquisition and analysis of tissue sections 
stained with the HLA class I subunit-specific mAbs, with the 
STAT1-specific rabbit mAb, and with the P-STAT1-specific 
rabbit mAb were digitally scanned at X400 magnification by 
using the Aperio AT2 platform (Leica Biosystems, Wetzlar, 
Germany). For each antibody, staining was scored as 0 (not 
detectable), 1 + (weak intensity), 2 + (moderate intensity), 
and 3 + (strong intensity). All TMA sections and whole tis-
sue sections were scored by two pathologists. On the basis 
of clinical records, we can rule out that immune modulation 
has influenced the HLA class I subunit expression, and the 
discrepancies in evaluations were resolved by joint discus-
sion with the support of digital image acquisition.

Results

According to their staining patterns with the HLA-A heavy 
chain-specific mAb HC-A2, the HLA-B, C heavy chain-
specific mAb HC-10, and the β2-M mAb NAMB1, tis-
sues can be divided into four groups: (i) tissues display-
ing moderate/strong staining patterns with the three HLA 
class I subunit-specific mAbs, (ii) tissues displaying barely 
detectable staining patterns with the three mAbs, (iii) tis-
sues displaying differential staining patterns with the three 
mAbs, and (iv) tissues with no detectable staining by the 
three mAbs (Figs. 1A–4A). We found a ubiquitous expres-
sion pattern for HLA-A, B, C heavy chain and β2-M only 
at the endothelial level that was always positive (moderate 

staining) across every tissue tested; the stroma was nega-
tive except for fibroblasts which were moderately positive 
in all the tissues analyzed. The staining was restricted to 
the cell membrane of the nucleated cells in all the tissues 
tested, except for focal cytoplasmic staining by the HLA-A 
heavy chain-specific mAb HC-A2 and the β2-M-specific 
mAb NAMB1 in tonsil, thymus, lymph node, spleen, colon 
epithelium, and adrenal gland medulla.

Tissues with moderate/strong staining patterns 
by HLA class I subunit‑specific mAbs

This group includes the tonsil, lymph node (except for 
mantle zone), and spleen (except for red pulp) in the 
lymphoid system; pulmonary alveolar epithelium in the 
respiratory system; artery/vein endothelium in the cardio-
vascular system; the epithelial lining cells of the small 
intestine, colon, and vermiform appendix in the gastro-
intestinal system; the glomeruli of the kidney in the uro-
genital system; prostate glands in the reproductive system; 
and adnexal structures of skin in the integumentary system 
(Fig. 1B). Representative examples of the staining patterns 
are shown in Fig. 1. In this group of tissues, HLA class 
I subunit expression was associated with the expression 
of total STAT1 (Fig. 1A). P-STAT1 expression was not 
detectable (data not shown).

Tissues with barely detectable staining patterns 
by HLA class I subunit‑specific mAbs

This group includes the olfactory epithelium and Eus-
tachian tube in the nervous system; the red pulp of the 
spleen in the lymphoid system; the salivary glands, ductal 
portion, and Langerhans’s islet of the pancreas in the gas-
trointestinal system; the distal tubules of the kidney in the 
urogenital system; and the testis in the reproductive system 
(Fig. 2B). Representative examples of the staining patterns 
are shown in Fig. 2. Also, in this group, HLA class I subu-
nit expression was associated with the expression total of 
STAT1 (Fig. 2A). P-STAT1 expression was not detectable 
(data not shown).

Table 1   Antibodies used for 
immunohistochemistry

Antibodies target Clone Antigen retrieval Incubation time Dilution

HLA A [HC-A2] 32 min with CC1 12 h 1:3000
HLA B, C [HC-10] 32 min with CC1 1 h 1:3000
β2-Microglobulin [NAMB-1] 32 min with CC1 2 h 1:800
STAT 1 [D1K9Y] 64 min with CC1 2 h 1:1000
P-STAT1 [58D6] 64 min with CC1 6 h 1:100
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Fig. 1   A Representative tissue samples showing a moderate/strong 
staining pattern for mAb HC-A2, mAb HC-10, and β2-M. Immuno-
histochemical images of lung, colon, and lymph node healthy tissues 
with mAb HC-A2, mAb HC-10, β2-M, and STAT1. Magnification 

200X, inset 400X (scale bars 200 µm, 50 µm, respectively). B Sum-
mary table of tissues showing a moderate/strong staining pattern for 
mAb HC-A2, mAb HC-10, and β2 mAb
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Tissues with differential staining patterns by HLA 
class I subunit‑specific mAbs

This group includes hypophysis in the nervous system, 
lymph node’s mantle zone and thymus of in the lym-
phoid system, breast ductal epithelium in the reproduc-
tive system, stomach’s epithelium and liver’s epithelium 
and sinusoidal lining cells in the gastrointestinal system, 

medulla of the adrenal gland in the endocrine system, 
uterus endometrium in the reproductive system, and the 
epidermal skin in the integumentary system (Fig. 3B). 
Representative examples of the staining patterns are 
shown in Fig. 3A. Low/moderate STAT1 staining was 
detectable in the hypophysis, lymph node’s mantle zone, 
and uterus. The other tissues of this group, including the 
thymus, breast, stomach’s epithelium, liver, medulla of 

Fig. 2   A Representative tissue samples showing a barely staining pat-
tern for mAb HC-A2, mAb HC-10, and β2-M. Immunohistochemi-
cal images of pancreas, bladder, and testis healthy tissues with mAb 
HC-A2, mAb HC-10, β2-M, and STAT1. Magnification 200X, inset 

400X (scale bars 200 µm, 50 µm, respectively). B Summary table of 
tissues showing a barely detectable staining pattern for mAb HC-A2, 
mAb HC-10, and β2 mAb
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the adrenal gland, and skin, were nearly negative with the 
presence of few positive cells. P-STAT1 expression was 
not detectable (data not shown).

Tissues with no detectable staining by HLA class I 
subunit‑specific mAbs

This group includes the brain cortex, spinal cord, and 
peripheral nerve in the nervous system; bronchi/bronchioli 

Fig. 3   A Representative tissue samples showing differential stain-
ing pattern for mAb HC-A2, mAb HC-10, and β2-M. Immunohisto-
chemical images of the liver, adrenal gland, and skin-healthy tissues 
with mAb HC-A2, mAb HC-10, β2-M, and STAT1. Magnification 

200X, inset 400X (scale bars 200 µm, 50 µm, respectively). B Sum-
mary table of tissues showing a differential staining pattern for mAb 
HC-A2, mAb HC-10, and β2 mAb
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in the respiratory system; heart, artery, and vein in the car-
diac system; epithelium, lamina propria of the esophagus, 
and lamina propria of the colon in the gastrointestinal sys-
tem; proximal tubules of the kidney, lamina propria of the 
urinary bladder, and ureter in the urogenital system; thyroid, 
parathyroid, and cortex of adrenal gland in the endocrine 
system; acini and stroma of breast, myometrium of uterus, 
ovary, placenta, the stroma of prostate, epididymis, and 
seminal vesicles in the reproductive system; dermis of skin 
in the integumentary system; smooth and skeletal muscle 
fibers; bone and cartilage in the skeletal system (Fig. 4B). 
Representative examples of the staining patterns are shown 
in Fig. 4. Total STAT1 (Fig. 4A) and P-STAT1 (data not 
shown) expressions were not detectable. In order to exclude 
that the lack of stain in this large group of tissues was due to 
antigenic conservation, we compared the staining of FFPE 
samples 20 years old with FFPE from 2020. We confirmed 
a high conservation of these antigens demonstrating no dif-
ferences in staining patterns between samples 20 years old 
and the more recent ones.

Discussion

A comprehensive and extensive IHC analysis with mAbs 
of a large number of FFPE normal tissues has shown that, 
contrary to what is generally assumed, HLA class I subunits 
are not expressed by nucleated cells in all the normal tissues 
[21–23]. Many of them are barely or not stained by mAbs 
reacting with HLA-A heavy chain, HLA-B heavy chain, 
HLA-C heavy chain, and β2-M.

Thanks to the availability of innovative and specific anti-
bodies, we propose that healthy human tissues be classified 
into four different groups, based on the mAb HC-A2, mAb 
HC-10, and β2-M mAb staining intensity and cellular locali-
zation: (i) tissues with moderate/strong staining patterns by 
HLA class I subunit-specific mAbs, (ii) tissues showing a 
barely detectable staining pattern by HLA class I subunit-
specific mAbs, (iii) tissues showing a differential staining 
pattern by HLA class I subunit-specific mAbs, (iv) and tis-
sues with no detectable staining by HLA class I subunit-
specific mAbs.

Our results parallel those obtained by testing normal 
frozen tissues [13–15] with mAb PA 2.6 and mAb 06/64 
for HLA ABC highlighting some differences. Differences 
include the use of frozen vs. FFPE tissues [13–15], antibod-
ies with diverse sensitivity, and methodological variability 
in the employed assays. In particular, previous studies used 
a manual peroxidase-antiperoxidase (PAP) method with 
the monoclonal antibody PA2.6, which reacts similarly to 
w6/32 that recognizes an epitope on the HLA-A,B,C heavy 
chain/β2 micro-globulin complex in the membrane of cells 
[13–16]. While in the present study, we employed a more 

accurate and sensitive automated IHC procedure, and we 
used monoclonal antibodies with higher specificity that 
although they are unable to detect the HLA-A,B,C heavy 
chain/β2 micro-globulin complex, they allowed us to dis-
criminate the subcellular localization of the single sub-units 
in FFPE tissues [24, 25].

Another point of strength of our study was the use of 
TMA, which is a rapid and high-throughput technique to 
assay numerous tissues arrayed on a single slide [26]. TMA 
allows a reliable semiquantitative scoring of the intensity 
of the staining because all tissue samples on a TMA slide 
are exposed to the same amount of primary and secondary 
antibody and chromogen. Simultaneous analysis of a large 
number of specimens decreases time and cost since only a 
small amount of each reagent is needed to assay all cores at 
the same time. A potential caveat is a more comprehensive 
analysis of tissues in the presence of tissue heterogeneity, 
particularly for small cores. Nevertheless, by using normal 
and not tumoral tissues, this could represent a partial bound-
ary; however, we re-tested on the whole section of every 
sample that was negative for the three staining or not evalu-
able on TMAs.

The reported data clearly showed that the tissue distri-
bution of HLA A, B, C heavy chains and β2-M is not uni-
form all over the tested tissues. In this context, our study 
is relevant and timely by providing the most extensive and 
comprehensive evaluation of HLA class I subunit expres-
sion (A, B, C heavy chains and β2-M) in different human 
healthy tissues. This represents a backbone analysis for 
future functional studies in cancer tissues with the aim to 
elucidate the baseline staining expression of HLA A, B, C 
heavy chains and β2-M in healthy tissues. The expression of 
the gene products of HLA class I loci is controlled by differ-
ent regulatory mechanisms [16]. One of the most important 
pathways is interferon-γ (IFN-γ)/Janus kinase (JAK)/sig-
nal transducer and activator of transcription (STAT1). The 
IFN-γ/JAK/STAT1 pathway plays a crucial role in the anti-
gen processing pathway and the subsequent dynamic change 
of downstream signals, including the HLA class I subunit 
[16, 27]. The differential basal expression of HLA A, B, C 
heavy chain and β2-microglobulin in normal tissues could 
be justified by the parallel differential basal expression of 
the transcription factor STAT1. In this paper, we show that 
there is an interesting association between the expression 
of HLA A, B, C heavy chains and β2-M and the expression 
of STAT1.

Although these results strongly support our thesis that 
HLA class I subunits are not ubiquitously expressed, on 
the other hand, we expected to find differences in the lev-
els of phosphorylated STAT1 as well. Instead, all healthy 
tissues tested were negative. This unexpected result 
may be due to the basal activity of STAT1. Activated in 
response to many different cytokines and growth factors 
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by phosphorylation of specific tyrosine residues, STAT1 
enhances its transcription factor effect. This strong activa-
tion has been shown to be present in many pathological 
conditions such as injury, ischemia, and tumors [28–30]. 
We could assume that in healthy tissues, this activation 
does not occur and that the non-phosphorylated form 
STAT1 handles the basal expression of proteins such as 
HLA class I components [31].

Expression of HLA class I subunits in healthy human 
tissues should be considered when evaluating the increase, 
reduction, or loss of HLA I expression on malignant cells 
reported in many types of cancer [32–35]. The amount of 
these molecules expressed at the cell surface varies signifi-
cantly depending on the level of gene transcription, trans-
duction, and epigenetic regulation (8). In immunohisto-
chemical studies, however, the boundary between complete, 
irreversible loss, and down-regulation (or low expression) of 
HLA in tumor tissues may be unclear if the baseline level of 
expression in the respective normal tissue is not taken into 
consideration.

In conclusion, our data elucidated the selective distri-
bution and patterns of expression of HLA A, B, C heavy 
chains and β2-microglobulin in healthy human tissues. We 
showed that the expression of the three main subunits of the 
HLA class I is tissue-specific and can vary within the same 
districts, emphasizing again the caution that is needed to 
explain the changing levels of expression of these antigens 
in respective tumor tissues. Thus, our data could add new 
insight for the interpretation of immunohistochemical stud-
ies in different cancer types, and it may improve the under-
standing of the mechanisms of escape adopted by malignant 
cells during tumor development and progression.
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