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Abstract
Background  Recently, PET/CT imaging with radiolabelled FAP inhibitors (FAPIs) has been widely evaluated in diverse dis-
eases. However, rare report has been published using SPECT/CT, a more available imaging method, with [99mTc]Tc-labelled 
FAPI. In this study, we evaluated the potential effect of [99mTc]Tc-HFAPi in clinical analysis for digestive system tumours.
Methods  This is a single-centre prospective diagnostic efficiency study (Ethic approved No.: XJTU1AF2021LSK-021 of 
the First Affiliated Hospital of Xi’an Jiaotong University and ChiCTR2100048093 of the Chinese Clinical Trial Register). 
Forty patients with suspected or confirmed digestive system tumours underwent [99mTc]Tc-HFAPi SPECT/CT between Janu-
ary and June 2021. For dynamic biodistribution and dosimetry estimation, whole-body planar scintigraphy was performed 
at 10, 30, 90, 150, and 240 min post-injection in four representative patients. Optimal acquisition time was considered in 
all the patients at 60–90 min post-injection, then quantified or semi-quantified using SUVmax and T/B ratio was done. The 
diagnostic performance of [99mTc]Tc-HFAPi was calculated and compared with those of contrast-enhanced CT (ceCT) using 
McNemar test, and the changes of tumour stage and oncologic management were recorded.
Results  Physiological distribution of [99mTc]Tc-HFAPi was observed in the liver, pancreas, gallbladder, and to a lesser extent in 
the kidneys, spleen and thyroid. Totally, 40 patients with 115 lesions were analysed. The diagnostic sensitivity of [99mTc]Tc-HFAPi 
for non-operative primary lesions was similar to that of ceCT (94.29% [33/35] vs 100% [35/35], respectively; P = 0.5); in local 
relapse detection, [99mTc]Tc-HFAPi was successfully detected in 100% (n = 3) of patients. In the diagnosis of suspected metastatic 
lesions, [99mTc]Tc-HFAPi exhibited higher sensitivity (89.66% [26/29] vs 68.97% [20/29], respectively, P = 0.03) and specificity 
(97.9% [47/48] vs 85.4% [41/48], respectively, P = 0.03) than ceCT, especially with 100% (24/24) specificity in the diagnosis of 
liver metastases, resulting in 20.0% (8/40) changes in TNM stage and 15.0% (6/40) changes in oncologic management.
Conclusion  [99mTc]Tc-HFAPi demonstrates a greater diagnostic efficiency than ceCT in the detection of distant metastasis, 
especially in identifying liver metastases.
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Introduction

An in-depth understanding of the tumour microenviron-
ment has revealed a new player: cancer-associated fibro-
blasts (CAFs) [1]. The majority of epithelial tumours recruit 

fibroblasts and other non-malignant cells, stimulating 
them to become CAFs. This often leads to overexpression 
of membrane serine protease fibroblast activating protein 
alpha (FAP-α, also known as prolyl endopeptidase FAP), 
which is estimated to be overexpressed in approximately 
90% of human cancers [2–4]. As FAP is mostly absent in 
healthy tissue, inhibitors of FAP (FAPIs) can be used in 
nuclear medicine for imaging [5]. Indeed, a large number of 
FAPI-based radiopharmaceuticals have been developed for 
PET/CT imaging, and a promising role for [68Ga]Ga-FAPI 
PET/CT in the diagnosis, staging, and radiotherapy plan-
ning of digestive tract cancers has been demonstrated [6–8].

[68Ga]Ga-FAPI PET/CT showed a higher sensitivity than 
[18F]FDG PET/CT in the detection of primary and metastatic 
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lesions of various types of cancers [6, 9]. Recently, Koerber 
et al. reported the first clinical use of [68Ga]Ga-FAPI PET/
CT for tumours in the lower intestinal tract [7]. Their results 
revealed that both primary and metastatic malignancies 
in the lower gastrointestinal tract can be reliably detected 
using [68Ga]Ga-FAPI PET/CT, leading to relevant changes 
in TNM status and oncologic management.

Due to its lower cost, SPECT/CT with technetium-99m 
(99mTc) is a more widely available, and 99mTc-labelled FAPIs 
are generally applicable tracers that are attractive options 
for imaging in clinical management when PET imag-
ing is inaccessible or limited [10]. Lindner et al. reported 
99mTc-labelled FAPIs and evaluated their biodistribution in 
tumour‐bearing mice [10], and found 99mTc-FAPI-34 show-
ing strong and constant tumour accumulation. The preclini-
cal application has indicated that it is a good candidate for 
scintigraphic imaging owing to the high contrast obtained 
via rapid tumour uptake and clearance from the rest of the 
body. Nevertheless, reliable clinical data are lacking, which 
only applied in two patients with ovarian and pancreatic can-
cer. Here, we report our first clinical experience with [99mTc]
Tc-HYNIC-FAPI-04 ([99mTc]Tc-HFAPi) SPECT/CT applied 
in a cohort of patients with digestive system tumours. After 
quantifying tracer uptake in primary tumours and metasta-
ses, we compared the diagnostic efficiency of the [99mTc]Tc-
HFAPi with the conventional imaging ceCT, which is rou-
tinely recommended in digestive system tumours [11–13].

Materials and methods

Radiopharmaceutical preparation

For 99mTc radiolabelling, 1  mL of 925–1295  MBq 
(25–35 mCi) of [99mTc]TcO4− saline solution was added to 
25 µg of hydrazinonicotinamide-FAPI-04 (HYNIC-FAPI-04, 
abbreviated to HFAPi, Fig. S1), 3.0  mg of Trisodium 
triphenylphosphine-3,3′,3″-trisulfonate, and 2.0 mg of tricine, 
then incubated at 100 °C for 15 min. The radiochemical purity 
(RCP) was analysed by radio-HPLC and ITLC-SG, and the 
specific operation method is detailed in the supplementary 
information. For clinical use, the RCP was always greater than 
95%. The reaction mixture was then filtered through a 0.20-
mm Millex-LG filter (EMD Millipore) before agent injection.

Patients

This is a single-centre prospective diagnostic efficiency study 
of [99mTc]Tc-HFAPi SPECT/CT in digestive system tumours, 
with ceCT serving as the reference method, approved by the 
Clinical Research Ethics Committee of the First Affiliated 
Hospital of Xi’an Jiaotong University (Ethic approved No.: 

XJTU1AF2021LSK-021) and Chinese Clinical Trial Register 
(Registration No.: ChiCTR2100048093). From January to 
June 2021, patients with suspected digestive system tumours 
who needed preoperative initial staging or posttreatment 
restaging were consecutively recruited at the First Affiliated 
Hospital of Xi’an Jiaotong University with written informed 
consent. Detailed Eligibility criteria is provided in the sup-
plementary information. After a standard work-up including 
but not limited to ceCT, additional [99mTc]Tc-HFAPi SPECT/
CT was performed (generally within 7 days).

Scintigraphy and SPECT/CT

Based on the previous reference dose [10, 14, 15], [99mTc]
Tc-HFAPi was administered intravenously in amounts 
ranging from 790.4 to 930.2 MBq (21.36 to 25.14 mCi). 
For dynamic biodistribution, whole-body planar scintigra-
phy was performed at 10, 30, 90, 150 and 240 min in four 
representative patients. Base on biodistribution results, 
[99mTc]Tc-HFAPi imaging was performed 60–90 min fol-
lowing tracer injection in all the patients to get whole-
body planar scintigraphy as well as SPECT/CT tomog-
raphy fusion images. Whole-body scans were performed 
via GE Discovery 670 pro scanner system (GE Health-
care) equipped with low-energy high-resolution (LEHR) 
collimators in 18  cm/min velocity. Low-dose CT was 
performed for attenuation correction and anatomic local-
ization. The patients were asked to self-report any abnor-
malities at 30 min after the examination was completed.

Biodistribution and dosimetry estimation

Visual analysis was applied to determine the integral biodis-
tribution of the tracer as well as the transient and intersubject 
stability. For each subject, regions of interest (ROIs) were 
delineated over the identified organs: the heart, liver, lungs, 
kidneys, pancreas, spleen, brain, thyroid and salivary glands. 
The geometric mean count was determined for every organ 
from the background-corrected anterior and posterior counts. 
The results are expressed as a percentage of the initial injected 
activity after decay correction (%ID/organ). For dosimetry esti-
mation, absorbance dose of different organs and effective dose 
were calculated using OLINDA/EXM 1.0 software (Vanderbilt, 
University, Nashville, TN, USA) as previously described [15].

SPECT/CT imaging review

[99mTc]Tc-HFAPi SPECT/CT scans were evaluated by 1 
certified radiologist and 2 certified nuclear medicine physi-
cians. They reach consensus when there is disagreement. 
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Conventional imaging was interpreted by 2 certified radi-
ologists with consensus but blind to the [99mTc]Tc-HFAPi 
SPECT/CT results. Fused SPECT/CT images were viewed 
on the Xeleris Workstation (version AW 4.7, GE Health-
care). For quantitative and semi-quantitative analyses, 
ROIs were drawn on transaxial images over the tumour 
with focally increased uptake. Quantitative calculating the 
SUVmax was based on an algorithm, which has been pat-
ented (Patent number: US11189374B2) [16]. The tumour-
to-background (T/B) ratio was determined by dividing the 
maximum tumour uptake by the maximum contralateral 
muscle uptake. For skull lesions, T/B ratio was calculated 
as dividing the maximum tumour uptake by the maximum 
normal skull uptake.

Diagnosis and follow‑up

Histopathology of biopsy/resected surgical specimens 
served as the gold standard for the final diagnosis. In cases 
in which the diagnosis of malignancy was not applicable, 
follow-up data after the SPECT/CT scans were requested. 
Referring to a similar study [9], the disease was defined as 
malignancy when (a) typical malignant features were con-
firmed by multi-modality imaging, (b) significant progres-
sion on follow-up imaging (significant increase in size), or 
(c) a significant decrease in size after anticancer treatment. 
All suspected lesions were followed up for no less than 
6 months.

Immunohistochemistry (IHC) of FAP expression

FAP expression in 4 representative patients was analysed 
by immunohistochemistry, heat-mediated antigen retrieval 
was performed with Tris/EDTA buffer pH 9.0. The sections 
were incubated with 1:250 humanized anti-fibroblast activa-
tion antibody (Abcam, ab207178) at 4 °C overnight. After 
incubation with the labelled streptavidin–biotin (LSAB) 
complex, the slides were stained and visualized using the 
iView DAB detection system (ZSGB-BIO, Beijing, China). 
Typical lesions in high-power fields were photographed for 
visual comparison.

Statistical analyses

All statistical analyses were conducted using SPSS 25.0 
statistical analysis software (IBM, Armonk, NY, USA). 
For organ biodistribution, the percentage of initial injected 
activity after decay correction (%ID) was used. To deter-
mine lesion uptake, the T/B ratio and SUVmax were used 
with the median ± interquartile range (IQR) because of 
non-normal distribution. McNemar test and chi-square test 

were employed to compare the diagnostic values between 
[99mTc]Tc-HFAPi SPECT/CT and ceCT. A receiver operat-
ing characteristic (ROC) curve was constructed to quantify 
the diagnostic performance of the T/B ratio and SUVmax 
by assessing the respective areas under the curve (AUCs). 
Two-tailed P values < 0.05 were considered significant.

Results

Radiopharmaceutical preparation

The structure of [99mTc]Tc-HFAPi was shown in (Fig. S1). 
The average radiochemical purity of [99mTc]Tc-HFAPi pre-
pared from lyophilized kits, determined by radio-HPLC 
(Fig. S2) and ITLC-SG (Fig. S3), was over 95% with < 1% 
of free [99mTc]TcO4

− as well as < 0.5% of [99mTc]Tc-col-
loid. [99mTc]Tc-HFAPi could be readily prepared in high 
specific activity (> 2.275 × 105 MBq/μmoL), and it was 
stable in the kit matrix as well as in the saline for > 6 h. 
More data on [99mTc]Tc-HFAPi preparation and preclini-
cal studies will be reported in detail in a separate research 
paper.

Patient characteristics

For 40 patients (25 male) enrolled, thirty-five patients had 
yet to undergo cancer-related surgery (30 treatment naïve 
and 5 with chemo/radio-therapy). Another 5 patients had 
already undergone surgery with/without chemotherapy 
and/or radiotherapy. The characteristics of the patients and 
primary lesions information are summarized in Table 1. 
Ultimately, 39 patients were confirmed to have malignant 
disease, whereas 1 was confirmed to have benign tumour 
(spindle cell tumour of intestine). The scheme of the study 
design is presented in Fig. 1.

No drug-related side effects occurred during or after 
[99mTc]Tc-HFAPi injection, and SPECT/CT imaging was 
tolerated well by all patients. Vital parameters remained 
stable, and no patient reported any new symptoms during 
the observation period.

Dynamic biodistribution in organs and dosimetry 
estimation

The dynamic physiological biodistribution of [99mTc]Tc-
HFAPi in vital organs at 10, 30, 90, 150, and 240 min was 
measured in 4 patients and summarized using %ID/organ 
(patients’ information Table S1). Physiological distribution of 
[99mTc]Tc-HFAPi was observed in the liver, pancreas, gall-
bladder, and to a lesser extent in the kidneys, lungs, spleen, 
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salivary glands, and thyroid glands, with rapid clearance of the 
radiotracer from these organs (Fig. 2a). Representations of a 
coronal section from whole-body SPECT are shown in Fig. 2b.

A summary of dosimetric parameters for various organs is 
given in Table S2, and the mean effective dose equivalent of 
the whole body was 1.26 × 10−3 mSv/MBq, which is consistent 
with those for other molecules labelled with 99mTc [15, 17].

[99mTc]Tc‑HFAPi for diagnosing primary lesions

Thirty-five patients with unresected primary digestive system 
lesions, which were all pathologically confirmed as malig-
nant lesions, were detected by [99mTc]Tc-HFAPi SPECT/
CT with a nearly identical sensitivity of 94.29% (33/35) 
as ceCT (35/35, 100%, P = 0.5). The two false-negative of 
[99mTc]Tc-HFAPi were found highly differentiated rectal 
adenocarcinoma by pathology. Representative 3 true-positive 
and 1 false-negative lesions were stained with the anti-FAP 

antibody by IHC. As illustrated in Fig. 3, patient (P4) with 
false-negative lesions on [99mTc]Tc-HFAPi SPECT/CT 
showed the lowest expression of FAP compared with true-
positive patients (P1-3), indicating that the uptake of [99mTc]
Tc-HFAPi was associated with the expression of FAP.

Local recurrence was found in 60% (3/5) of patients by 
pathology or follow-up imaging, all of which were posi-
tively detected by ceCT and [99mTc]Tc-HFAPi SPECT/CT 
(Table S3).

[99mTc]Tc‑HFAPi in the diagnosis of suspected 
metastatic lesions

After [99mTc]Tc-HFAPi examination, 77 suspected lesions 
were detected. Among them, 29 lesions in 9 patents were con-
firmed metastatic lesions by pathology (n = 4), multi-modality 
imaging (n = 11), or follow-up (n = 14). In total, [99mTc]Tc-
HFAPi-positive metastases were observed in 8 patients with 26 
lesions, including liver (n = 15), bone (n = 8), abdomen (n = 1), 
pelvic (n = 1) and mediastinum tissue (n = 1). Compared to 
ceCT, [99mTc]Tc-HFAPi exhibited higher sensitivity in the 
diagnosis of suspected metastatic lesions (89.66% [26/29] vs 
68.97% [20/29], respectively, P = 0.03). For 48 benign lesions, 
[99mTc]Tc-HFAPi showed higher specificity than ceCT (97.9% 
[47/48] vs. 85.4% [41/48], respectively; P = 0.03). The only 
one false positive case turned out to be tuberculosis that has 
been reported previously [9, 18]. A comparison of diagnostic 
efficiency on benign or metastatic lesions between ceCT and 
[99mTc]Tc-HFAPi SPECT/CT is shown in Table 2. It is worth 
noting that for liver metastasis determination, 100% (24/24) 
specificity was achieved using [99mTc]Tc-HFAPi SPECT/CT, 
with 83.3% (20/24) by ceCT (Table 3). Although the non-sta-
tistical difference (P = 0.13) might be related to the relatively 
small sample size, subsequent studies with larger sample size 
are still worthwhile.

Clinical values of [99mTc]Tc‑HFAPi

In suspected metastatic lesions which were not diagnosed 
coincidently by ceCT and [99mTc]Tc-HFAPi SPECT/CT, 
follow-up data were requested as described in methods 
(Diagnosis and follow-up section). As a result, [99mTc]Tc-
HFAPi SPECT/CT suggested the metastasis (M) classifica-
tion restaging in 8/40 (20.0%) patients (1 patient staged up 
and 7 staged down). Among the restaging, 6 of 8 patients 
changed the oncologic regimen, including 1 with new find-
ings for bone metastasis who changed to systemic therapy 
and 5 for whom curative surgery was performed instead 
of systemic therapy, consistently with those of [99mTc]Tc-
HFAPi imaging results. Changes in the clinical oncologic 
regimen are given in Table 4. The results indicate that 
[99mTc]Tc-HFAPi SPECT/CT can provide a strong basis 
for clinical decision-making.

Table 1   Characteristics of patients that underwent [99mTc]Tc-HFAPi 
SPECT/CT

Characteristic Value

No. of patients 40
Age (years)
  Median 64.5
  Interquartile range 54.3–71.8
Sex
  Male 25
  Female 15
Site and pathology of primary disease
  Rectum Adenocarcinoma 15
  Gastric Adenocarcinoma 13
  Colonic Adenocarcinoma 8
  Esophageal Squamous carcinoma 1
  Intestinal Spindle cell tumour 1
  Pancreatic carcinoma 1
  Anal malignant melanoma 1
Clinical status before imaging
  Treatment-naive 30
  Neoadjuvant chemo/radio-therapy 5
  Resection surgery 3
  Chemo/radio-therapy after surgery 2
Other imaging
  Contrast enhanced CT 40
  Gastrointestinal endoscope 38
  DWI 11
  B ultrasound 7
18F-FDG 1
Clinical questions for 99mTc-HFAPi
  Staging of cancer before surgery 35
  Identification of disease recurrence and restaging 5
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SUVmax and T/B ratio in the diagnosis of benign 
and malignant disease

Our team previously designed an algorithm, which has been 
patented (Patent number: US11189374B2) [16], to calculate 
the SUVmax based on SPECT/CT and linearized it against 

the standard T/B ratio. The result indicating an obvious lin-
ear correlation with R2 of 0.735 (Fig. 4, P < 0.001) between 
SUVmax and T/B ratio.

For primary malignant lesions, the median T/B ratio and 
SUVmax were 6.35 (IQR: 3.64 to 8.10) and 9.52 (IQR: 5.73 
to 14.52), respectively; for all metastases, they were 3.65 

Fig. 1   The scheme of the study 
design
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Fig. 2   Biodistribution of [99mTc]Tc-HFAPi in different vital organs 
over time. a % Injection Dose (ID)/organ of [99mTc]Tc-HFAPi in 
heart, liver, lungs, kidneys, pancreas, spleen, brain, thyroid and sali-
vary glands in different times. Data represent median ± interquartile 

range. b Example of background ROIs in patient #002 on planar scin-
tigraphy images: whole body [99mTc]Tc-HFAPi scintigraphy was per-
formed at 10, 30, 90, 150 and 240 min post-injection
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(IQR:2.47 to 4.79) and 6.05 (IQR: 4.43 to 9.09), respectively. 
The SUVmax and T/B ratio for different malignant lesions 
by [99mTc]Tc-HFAPi are shown in Fig. 5a, b and Table S3, 
S4. High SUVmax and T/B ratios were found in gastric can-
cer and liver metastasis. For non-malignant lesions, few 
showed intense uptake of [99mTc]Tc-HFAPi, with a median 

T/B ratio and SUVmax of 1.32 (IQR: 1.01–1.74) and 2.11 
(IQR: 1.68–2.75), respectively, both were significantly lower 
(P < 0.001) than malignancies (Fig. 5c).

The ROC curve built with 67 malignant lesions (38 
primary malignancies and 29 metastatic lesions) and 
48 benign lesions yielded an AUC of 0.938 (95% CI, 

NT

T

P1

P2

P3

P4

F/58, Moderately differentiated 
adenocarcinoma of the cecum 

F/54, Moderately differentiated 
adenocarcinoma of the rectum

M/70, Poorly differentiated 
adenocarcinoma of the rectum

F/72, Highly differentiated 
adenocarcinoma of the rectum

NT

T

NT

T

NT

T

Fig. 3   SPECT/CT (left) and immunohistochemistry staining (right) 
of representative primary lesions and tumour-adjacent tissue. The 
graphs above the dotted line were representations of true positive 

cases (P1–P3), while below the dotted line is a representation of false 
negative case (P4) by [99mTc]Tc-HFAPi. Scale bar, 200  μm; T: pri-
mary tumour; NT: Tumour-adjacent tissue
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Table 2   Diagnostic efficiency of 
[99mTc]Tc-HFAPi in suspected 
lesions compared with ceCT

a TPR, true positive rate
b TNR, true negative rate

Basis of 
analysis and 
modality

Sensitivity
TPRa (%)

Specificity
TNRb (%)

Negative predict value
NPV (%)

Positive predict value
PPV (%)

Accuracy
ACC (%)

HFAPi-meta
95% CI

89.7 (26/29) 97.9 (47/48) 94.0 (47/50) 96.3 (26/27) 94.8 (73/77)
71.5–97.3 87.5–99.9 82.5–98.4 79.1–99.8 87.0–98.4

ceCT-meta
95% CI

69.0 (20/29) 85.4 (41/48) 82.0 (41/50) 74.1 (20/27) 79.2 (61/77)
49.0–84.0 71.6–93.5 68.1–90.9 53.4–88.1 68.8–86.9

Table 3   Diagnostic efficiency of [99mTc]Tc-HFAPi in liver metastasis compared with ceCT

Basis of analysis and 
modality

Sensitivity
TPR (%)

Specificity
TNR (%)

Negative predict value
NPV (%)

Positive predict value
PPV (%)

Accuracy
ACC (%)

HFAPi-liver
95% CI

88.2 (15/17) 100.0 (24/24) 92.3 (24/26) 100.0 (15/15) 95.1 (39/41)
62.2–97.9 82.8–100.0 73.4–98.7 74.7–100.0 83.0–99.5

ceCT-liver
95% CI

100.0 (17/17) 83.3 (20/24) 100.0 (20/20) 81.0 (17/21) 90.2 (37/41)
77.1–100.0 61.8–94.5 79.9–100.0 57.4–98.7 76.9–96.7

Table 4   Changes in metastatic staging and oncologic management according to [99mTc]Tc-HFAPi

No Sex Age State Primary tumour Metastasis stage 
and site from 
ceCT

Metastasis 
stage and site 
from [99mTc]
Tc-HFAPi

Ways to confirm Changing in 
stage

Clinical decision

1 F 69 Treatment-naive Adenocar-
cinoma of 
rectum

Mx M1 with occipi-
tal bone

CT with bony 
change

Staging up Palliative operation

2 F 58 Treatment-naive Adenocarci-
noma of the 
cecum

M1 with liver M0 without 
liver

DWI: hepatic 
cyst

Staging down Tend to operation

3 M 81 Treatment-naive Adenocar-
cinoma of 
rectum

M1 with liver M0 without 
liver

DWI: Hepatic 
spongy 
hemangioma

Staging down Tend to operation

4 M 55 Treatment-naive Gastric adeno-
carcinoma

M1 with liver M0 without 
liver

DWI: no obvi-
ous abnormal-
ity

Staging down Tend to operation

5 F 22 Treatment-naive Gastric adeno-
carcinoma

M0 M1 with skull, 
posterior 
bulbar tissue, 
peritoneum

Pathology of 
peritoneum, 
CT with bony 
change of the 
skull

Staging up Palliative surgery 
and intraperitoneal 
chemotherapy

6 M 58 Treatment-naive Gastric adeno-
carcinoma

Mx M0 without 
liver

Follow up Staging down Tend to operation

7 F 51 Neoadjuvant 
chemotherapy

Adenocar-
cinoma of 
rectum

Mx M0 without 
spleen

DWI: Splenic 
hemangioma

Staging down Tend to operation

1234 European Journal of Nuclear Medicine and Molecular Imaging  (2023) 50:1228–1239

1 3



0.895–0.981, P < 0.001) for the T/B ratio and 0.913 (95% 
CI, 0.859–0.966, P < 0.001) for SUVmax (Fig. 6, left). 
Youden’s index analysis revealed several optimal cut-off 
values for discriminating malignant from non-malignant 
lesions (Fig. 6, right).

Discussion

Recent PET/CT studies with FAP inhibitors have been well 
developed, revealing strong PET signals across dozens of 
major cancers, especially digestive system cancers [6, 7, 
19, 20]. With FAPI-specific PET imaging, patients do not 
require dietary preparation, and high-quality images can be 
obtained soon after tracer injection (10 min to 1 h, mainly 
1 h) [21]. The superior value of [68Ga]Ga-FAPI PET/CT 
over [18F]FDG in detecting primary and metastatic lesions 
in digestive system cancers has been confirmed, most 
lesions showing higher tracer uptake with FAPI imaging, 
and it exhibits a promising role in the diagnosis, (re)staging, 
management, and treatment planning of digestive system 
cancers [22]. However, limited data about 99mTc-labelled 
FAPIs in clinical have been reported, with only applica-
tion in two patients (ovarian and pancreatic cancer) [10]. 
Here, we evaluated the biodistribution of a newly developed 
[99mTc]Tc-HFAPi and the uptake in different digestive sys-
tem cancers. Biodistribution studies have shown that [99mTc]
Tc-HFAPi has good targeting of malignancies and fast renal 
clearance, with low uptake in normal organs, leading to a 
higher tumour-to-background ratio and have a relatively 
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wide imaging time window, indicating it is a suitable clinical 
imaging agent for digestive system tumours. Comparisons 
of diagnostic efficiency in digestive system cancers between 
[99mTc]Tc-HFAPi and ceCT were performed in this study, 
since CT with contrast is routinely used for preoperational 
imaging in digestive system cancers based on NCCN guide-
lines [11–13].

Our study demonstrated that [99mTc]Tc-HFAPi and 
ceCT were comparable in detecting the primary tumours of 
digestive system. Almost all primary malignancies (n = 33) 
showed marked uptake of [99mTc]Tc-HFAPi, especially gas-
tric cancers and colon cancers, with median T/B ratios of 
7.01 and 6.35, and median SUVmax values of 12.43 and 9.13, 
respectively. This was in line with the previous PET imaging 
with 68Ga-labelled FAPI-04 [20], which showed the highest 
uptake in colon cancers and gastric cancers. Our study also 
covered small samples of oesophageal squamous carcinoma, 
pancreatic carcinoma, and anal malignant melanoma, which 
all showed good detection performance. In the detection of 
tumour recurrence in patients who received surgery (n = 5), 
60% (3/5) of them showed recurrence and all had success-
ful detection by [99mTc]Tc-HFAPi, consistent with the ceCT 
results. Although the samples were too few, they were par-
ticularly useful for their presence of elevated tumour mark-
ers but no clinical or morphological evidence, as previously 
indicated [9].

The liver is the main site of metastasis and a major cause 
of death in digestive system malignancies, leading to short 
PFS and extremely poor prognosis [23]. Several imaging 
methods have been utilized in the detection of liver metas-
tasis, including ceCT, MRI, and [18F]FDG PET/CT, but all 
have limitations. Although ceCT is commonly used for diag-
nosing liver metastasis, its accuracy does not always meet 
clinical requirements [24, 25]. ceMRI is suggested to have 
advantage over ceCT in detecting small liver metastases 
(< 10 mm); however, criticism has been directed towards it 
because the cost does not match the clinical benefit [24, 26, 
27]. [18F]FDG PET/CT is not routinely indicated for initial 
staging of digestive tract tumours [11–13] because of its 
low sensitivity for liver metastasis, particularly in patients 
who have received preoperative chemotherapy [25, 28, 29]. 
The low background of the normal liver leads to the poten-
tial application of FAPI tracers in patients with suspected 
liver metastases [7, 30]. Previous studies with PET FAPI 
agents have indicated an outstanding role in the diagnosis 
of liver metastasis [7, 20]. Our findings likewise support 
the implementation of [99mTc]Tc-HFAPi SPECT/CT in the 
identification of liver metastasis. In metastatic lesions, the 
highest uptake of [99mTc]Tc-HFAPi were achieved in liver 
metastasis, with a median T/B ratio and SUVmax of 4.48 and 
7.59, respectively. Basically, [99mTc]Tc-HFAPi demonstrated 
satisfactory sensitivity (88.2%) for detecting liver metastasis. 
Moreover, due to the low expression of FAP in benign liver 

lesions [31], an extremely high specificity (100%) of [99mTc]
Tc-HFAPi was achieved. Four cases of suspected liver 
metastasis in ceCT were negatively detected by [99mTc]Tc-
HFAPi with minimal uptake, and the lesions were proven to 
be benign by biopsy or multi-modality imaging, thus exclud-
ing from metastasis and restaging from M1 to M0 and allow-
ing the chance for radical surgery. Overall, [99mTc]Tc-HFAPi 
provided an accurate diagnosis of suspected liver metastases, 
which may avoid unnecessary misdiagnosis, correct tumour 
staging and promote clinical oncological decisions.

In addition to liver metastasis, [68Ga]Ga-FAPI outper-
formed traditional imaging in detecting bone metastases [9]. 
In the present study, 2 patients with multiple skeletal metas-
tases showed visible uptake of [99mTc]Tc-HFAPi, which was 
often missed by ceCT. These results further demonstrate 
the diagnostic advantage of [99mTc]Tc-HFAPi for various 
distant metastasis, thus improving the staging of cancer and 
treatment modification.

The expression of FAP is also widely reported to be avid 
in tissue modelling, wound healing, and inflammation-
induced fibrosis [32]. Our study with 99mTc-labelled FAPI 
also demonstrated pulmonary tuberculosis with moderate 
uptake (T/B ratio of 4.36). Moreover, uterine fibroids dem-
onstrated diffuse uptake of [99mTc]Tc-HFAPi, which might 
be attributed to the activated fibroblasts, as shown in previ-
ous PET imaging studies [33, 34].

Altogether 2 primary tumour lesions demonstrated 
false-negative uptake of [99mTc]Tc-HFAPi. One might be 
attributed to obviously low expression of FAP, which was 
revealed by following IHC staining [35], while the other 
one still had moderate expression on IHC. The mechanisms 
underlying the discordance between FAP expression and 
[99mTc]Tc-HFAPi uptake might be due to the liganding of 
molecules and certain physical influences, which might alter 
the conformation of some membrane proteins and their func-
tional state (activation or inactivation) [36]. When it is in a 
nonactivated conformation, it is inaccessible to its targeted 
inhibitors. However, this still needs to be further confirmed.

We know that sensitivity and specificity are equally 
important when Youden’s index is used to obtain the best 
cut-off value. Previous study adopted cut-off value based 
on the highest Youden’s index [37]. However, a fixed cut-off 
value often does not meet the needs of clinical decision-
making. Different cut-off values are needed according to 
different disease states and clinical purposes, just as previ-
ous study indicated [38]. Here, we listed a series of cut-off 
values for reference, because larger samples and data from 
other tumour histotypes and different clinical statuses with 
[99mTc]Tc-HFAPi are needed to optimize this criterion.

There are several limitations to this study. First, a small 
patient cohort limited the statistical significance for some 
kinds of cancers, such as oesophageal, pancreatic, and gall-
bladder cancer. Second, although being the ideal reference 
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standard, histopathological examination was not available in 
all lesions because of ethical and technical reasons. Third, 
further prospective studies with larger populations in head-
to-head comparisons of [99mTc]Tc-HFAPi SPECT/CT and 
[68Ga]Ga-FAPI PET/CT are warranted to best comment on 
the superiority of the tracers to clarify the role of SPECT/CT.

Despite these limitations, to the best of our knowledge, 
this article might be the first application of a new 99mTc-
labelled FAPI for digestive system tumours from a clini-
cal perspective, and we confirmed its diagnostic efficacy in 
tumour staging and restaging, providing an important basis 
for clinical application and subsequent studies. Furthermore, 
our 99mTc-labelled FAPI might provide some future direc-
tions for drug labelling with 188Re, such as integration in FAP 
targeted diagnosis and targeted radionuclide therapy [10].

Conclusion

In this work, we have developed a new 99mTc-labelled molec-
ular probe and transformed it for the first time for diges-
tive system tumours study. The findings indicate selective 
uptake of [99mTc]Tc-HFAPi SPECT/CT and demonstrate a 
high target-to-background ratio for various types of diges-
tive system cancers as well as related metastasis, especially 
liver metastasis, which contributes to the current literature 
on FAP inhibitor molecular imaging. Further studies with 
large populations and other cancer types should be done to 
draw firmer conclusions on the superiority of the tracers.
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