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a b s t r a c t

In three domains of life, proteins are synthesized by large ribonucleoprotein particles called ribosomes. All 
ribosomes are composed of ribosomal RNAs (rRNA) and numerous ribosomal proteins (r-protein). The 
three-dimensional shape of ribosomes is mainly defined by a tertiary structure of rRNAs. In addition, rRNAs 
have a major role in decoding the information carried by messenger RNAs and catalyzing the peptide bond 
formation. R-proteins are essential for shaping the network of interactions that contribute to a various 
aspects of the protein synthesis machinery, including assembly of ribosomes and interaction of ribosomal 
subunits. Structural studies have revealed that many key components of ribosomes are conserved in all life 
domains. Besides the core structure, ribosomes contain domain-specific structural features that include 
additional r-proteins and extensions of rRNA and r-proteins. This review focuses specifically on those r- 
proteins that are found only in archaeal and eukaryotic ribosomes. The role of these archaea/eukaryote 
specific r-proteins in stabilizing the ribosome structure is discussed. Several examples illustrate their 
functions in the formation of the internal network of ribosomal subunits and interactions between the 
ribosomal subunits. In addition, the significance of these r-proteins in ribosome biogenesis and protein 
synthesis is highlighted.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Protein synthesis, an essential process for life, is carried out by a 
large ribonucleoprotein complex called the ribosome. All ribosomes 
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are composed of two subunits - the small ribosomal subunit (SSU; 
30S in archaea and 40S in eukaryotes) and the large ribosomal 
subunit (LSU; 50S in archaea and 60S in eukaryotes) (Fig. 1). The SSU 
associates with mRNA during translation and mediates tRNA-mRNA 
interactions. Thus, SSU contains the decoding center (DC) that en
sures the recognition of correct start codon during the initiation of 
translation and the selection of correct aminoacyl-tRNAs during the 
elongation of translation. The LSU catalyzes the formation of peptide 
bonds between the incoming amino acids and the growing peptide 
chain at the peptidyl transferase center (PTC). In addition, LSU 

stimulates the hydrolysis of factor-bound GTP molecules and drives 
exit of the growing peptide chain through the nascent polypeptide 
exit tunnel (PET). The two subunits form a translating ribosome 70S 
in archaea and 80S in eukaryotes) containing binding sites for three 
tRNAs - the aminoacyl site (A-site), the peptidyl site (P-site) and the 
exit site (E-site). Both subunits are made up of two types of struc
tural components - ribosomal RNAs (rRNAs) and ribosomal proteins 
(r-proteins). rRNAs and r-proteins constitute the most abundant 
biological macromolecules in cells [1,2]. This is illustrated by the 
observation that in actively dividing bacterial cells, rRNAs account 

Fig. 1. Comparison of archaeal and eukaryotic ribosomal subunits. Intersubunit view of individual subunits of Pyrococcus furiosus (A) and Saccharomyces cerevisiae (B) (left – 
SSU (30S, 40S), right – LSU (50S, 60S). rRNA and r-proteins are shown in grey and teal, respectively. Domains of the SSU (H, head; Be, beak; P, platform; Sh, shoulder; B, body, Sp, 
spur; RF, right foot; and LF, left foot) and mRNA entry/exit sites are labelled. Landmarks of the LSU (uL1-stalk; P-stalk; CP, central protuberance) are shown. Sarcin-ricin loop (SRL) 
is colored yellow, 5S rRNA is orange, 5.8S rRNA is purple. The decoding centre in the SSU and the peptidyl transferase centre in the LSU are indicated by red spheres. In addition, 
approximate positions of the A-, P- and E-sites for tRNA binding are indicated. PDB coordinates 4V6U for P. furiosus [3] and 4V88 for S. cerevisiae [4] were rendered in PyMol.
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for approximately 85% of the total cellular RNA and r-proteins ac
count for 23% of the total protein [1].

High resolution atomic models have revealed that all cytoplasmic 
ribosomes (from bacteria to the higher eukaryotes) have a similar 
core structure [5–7]. This universal common core has a mass of 
nearly 2 MDa and comprises ∼4400 RNA bases together with 33 r- 
proteins. The common core contains all of the main functional 
centers of the ribosome - DC, PTC, GTPase-associated region, upper 
part of PET closer to PTC, and A-, P- and E-sites for tRNA binding. In 

addition to the core structure, the ribosomes from different life 
domains contain their own set of specific moieties: additional rRNA 
sequences called expansion segments (ES), domain-specific r-pro
teins as well as insertions and extension of r-proteins present in all 
cytoplasmic ribosomes [5].

In general, the r-proteins can be divided into three main groups: 
(1) the universally conserved r-proteins that with the rRNA form the 
universal common core; (2) the domain-specific r-proteins (e.g. 
bacteria-specific and eukaryote-specific; no archaea-specific group 

Fig. 2. Comparison of the location of archaea/eukaryote-specific r-proteins in archaeal and eukaryotic ribosomes. Intersubunit view of individual subunits of Pyrococcus 
furiosus (A) and Saccharomyces cerevisiae (B) (left – SSU (30S, 40S), right – LSU (50S, 60S) are shown. rRNA and universally conserved r-proteins are highlighted in grey and dark 
blue, respectively. Archaea/eukaryote-specific proteins are colored red and labelled. Domain-specific proteins are yellow. Approximate positions of the A-, P- and E-sites for tRNA 
binding are indicated. Protein groups and nomenclature are according to [8]. PDB coordinates 4V6U for P. furiosus [3] and 4V88 for S. cerevisiae [4] were rendered in PyMol.
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of r-proteins is currently recognised); and (3) the r-proteins ex
clusively shared between archaea and eukaryotes (also called the 
archaea/eukaryote-specific, A/E-specific) [8]. R-proteins are un
evenly distributed in the ribosome, with most of them located on the 
solvent side of the subunits, leaving the subunit interface side to be 
dominated by rRNA [9,10].

In bacterial ribosome, r-proteins belonging to the common core 
account for about 62% of all r-proteins [5]. Additional r-proteins, 
about 20 of them, are bacteria-specific. The exact number of these r- 
proteins varies between bacterial species [11]. Although the core 
structural components of archaeal rRNA are very similar to those of 
bacteria, the content of r-proteins differs markedly. In archaeal ri
bosomes, 71 different r-proteins have been identified [12,13]. Only 
54 of them are known to be ubiquitous across archaea [14]. In ad
dition to the 33 universally conserved r-proteins, a set of 35 r-pro
teins is shared with eukaryotic ribosomes. Interestingly, archaeal 
ribosomes do not share any r-proteins exclusively with bacterial ri
bosomes. In eukaryotic ribosomes, the overall mass of r-proteins is 
dramatically increased. For example, unlike the bacterial SSU, where 
the protein-to-rRNA mass ratio is ∼1:2, the eukaryotic SSU has a 
mass ratio of almost 1:1 [15]. The budding yeast (S. cerevisiae) 80S 
ribosome contains 79 r-proteins [4,8]. In addition to the universally 
conserved and A/E-specific r-proteins, 11 r-proteins are specific only 
to the eukaryotes.

R-proteins have an essential function in ribosome biogenesis and 
in ensuring optimal functioning of the ribosome. In this context, r- 
proteins have a role in stabilizing the intrasubunit network, in 
forming the subunit contacts during protein synthesis and are 
docking sites for translation factors and other ribosome-associated 
proteins during translation. This review focuses on r-proteins con
served in archaea and eukaryotes and how these A/E-specific r- 
proteins perform functions specific to r-proteins. In addition, a 
number of A/E-specific r-proteins are discussed in detail with re
spect to their known functions.

2. Archaea/eukaryote-specific r-proteins

A/E-specific r-proteins, like r-proteins in general, share a number 
of characteristics. By and large, r-proteins are among of the smallest 
proteins in cells. For instance, in budding yeast ribosome, the length 
of A/E-specific r-proteins varies from 25 aa residues in eL41 up to 
261 aa residues in eS4 (Supplementary Table S1) [16,17]. R-proteins 
are characterized by high isoelectric point (generally higher than 
9.0) and net positiive charge compared to non-ribosomal proteins 
[18,19]. In addition, they exhibit charge segregation, i.e. positively 
charged regions of r-proteins interact with negatively charged rRNA 
residues whereas negatively charged regions of r-proteins are ex
posed to the solvent [20,21]. This charge segregation ensures tight 
binding of r-proteins to rRNA, which helps to stabilize the overall 
structure of ribosome. However, there are some A/E-specific r-pro
teins that do not share the same properties. For example, the P- 
proteins (archaeal P1 and eukaryotic P1 and P2) are acidic (pI 
∼3.5–4.5) and are the only r-proteins present in multiple copies per 
ribosome [22,23].

Structural analysis of archaeal and eukaryotic ribosomes has re
vealed that the spatial distribution of A/E-specific r-proteins in 
subunits is different. In the SSU, A/E-specific proteins reside at the 
spur/foot of the subunit, at the platform domain and at the top of the 
head (Fig. 2, Supplementary Fig. S1) [4]. In the LSU these r-proteins 
follow the cluster organization of rRNA ESs [4]. In general, the ar
chaeal A/E-specific r-proteins consist of a single globular domain 
conserved in both archaea and eukaryotes (Supplementary Figs. S2- 
S3) [3,24]. These globular domains contain both α-helices and β- 
barrels, and in some cases only α-helices (e.g. eS17, eL39, and eL41) 
or β-barrels (e.g. eS27 and eS28). A few of the archaeal A/E-specific r- 
proteins contain additional loops and/or N-terminal and/or C- 

terminal extensions (e.g. eS8, eS27, eL21, and eL39). In contrast, the 
eukaryotic A/E-specific r-proteins are characterized, in addition to 
the conserved globular domain, by the presence of long unstructured 
N-terminal and/or C-terminal extensions that frequently reach far 
from the globular domains [25,26]. Thus, eukaryotic A/E-specific r- 
proteins usually consist of multiple domains (e.g. eS6, eL19, and 
eL24). Interestingly, the size and sequence of r-proteins is conserved 
within a single domain of life. For instance, 72 out of the 80 r-pro
teins from H. sapiens have nearly identical size and tertiary struc
tures as their homologs from S. cerevisiae (Supplementary Table 
S1) [5].

Structural analysis of ribosomes has also demonstrated that 
several A/E-specific r-proteins are positional analogues of bacteria- 
specific r-proteins (Supplementary Table 2). These r-proteins occupy 
similar positions relative to structural elements of rRNA. In the 
course of evolution, the A/E-specific r-proteins have acquired addi
tional contacts with rRNA helices. This is particularly well illustrated 
by structural analysis of the eukaryotic ribosome (Supplementary 
Table 2). In general, there is no structural homology between the 
positional analogues of r-proteins. An exception is eS1, whose C- 
terminal domain resembles the bacterial bS6, but its overall fold is 
different [26]. In the LSU, P-stalk proteins do not directly ineract 
with rRNA [27]. Instead, they are in contact with universally con
served r-proteins uL11 and uL10, which form the base and anchor 
the stalk to the rRNA. Although the localisation of P-stalk proteins in 
the ribosome is identical, the archaeal P1 and the eukaryotic P1/P2 
are not homologous to bacterial stalk protein bL12.

Recent cryo-EM structures of Pyrococcus abyssi 30S initiation 
complex and Thermococcus celer 30S post-splitting complex identi
fied a previously unobserved density for r-protein on the archaeal 
SSU platform [28,29]. The newly identified 59 aa long r-protein oc
cupies the same position as eS21 in the SSU of S. cerevisiae. Fur
thermore, these two r-proteins share a similar structural topology. 
However, the amino acid sequence identity of the newly discovered 
archaeal r-protein with the eukaryotic eS21 is low, with only 7% for 
the full-length protein [29]. It is therefore possible that structural 
homologues for other eukaryote-specific r-proteins are also present 
in archaea. Their low amino acid sequence similarity makes them 
difficult to identify.

Phylogenomic analysis of A/E-specific r-proteins has shown that 
the presence of these r-proteins varies across the archaeal domain of 
life [14,30,31]. In particular, ribosomes of species belonging to Cre
narchaeota and Asgard superphylum (Loki-, Odin-, Thor- and Heim
dallarchaeota) contain more r-proteins than those from other 
archaea (Table 1). There have been several probable independent 
losses of r-proteins in the Euryarchaeota. The A/E-specific eS25, eS30, 
eL13 and eL38 are not found in these species. A number of other A/E- 
specific r-proteins have been gradually reduced. Thus, the ribosomes 
of various archaea have lost several A/E-specific r-proteins, which at 
the same time have been preserved in eukaryotes. It should be noted 
that not all A/E-specific r-proteins are essential for cell viability in 
eukaryotes [32]. Genetic studies with budding yeast have demon
strated that eight A/E-specific r-proteins are non-essential but the 
loss of these r-proteins has different effect on cell growth. Cells 
lacking eL38 or eL41 r-protein grow similarly to wild type cells 
[33,34]. At the same time, the loss of eL31, eL39, or eL25, severely 
limits cell growth [35–37].

Taken together, A/E-specific r-proteins present an intriguing 
group of r-proteins. On the one hand, there is a structural variability 
within these r-proteins, in particular the presence of non-globular 
extensions in eukaryotic r-proteins. On the other hand, there are 
archaeal ribosomes that have lost some A/E-specific r-proteins. Thus, 
such structural variation may be significant for the functional spe
cialization of both A/E-specific r-proteins and the ribosome as a 
complex. An example of such specialization is the preference of ri
bosomes for translating certain subsets of mRNAs. It is known that 
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translation of mRNAs containing internal ribosome entry site (IRES) 
or IRES-like elements is dependent on A/E-specific r-proteins eS25 
[39,40]. As discussed above, these r-proteins belong to the group of 
non-ubiquitous A/E-specific r-proteins in archaea. It is therefore 
possible to speculate that the increased variability in the r-protein 
composition of archaeal ribosomes facilitates translation of a specific 
subset of mRNAs.

3. Functional roles of archaea/eukaryote-specific r-proteins

As already mentioned, a common feature of the r-proteins is that 
the vast majority of them are positively charged. It has therefore 
been proposed that one of the main functions of r-proteins is to 
stabilize the negatively charged rRNA to promote efficient protein 
synthesis [10]. Several studies have revealed that r-proteins also 
have functions in different cellular processes, e.g. cell proliferation 
[41,42], differentiation [43,44], apoptosis [45,46], DNA repair [47,48], 
as well as modulation of cell migration and invasion [49]. In addi
tion, mutations in r-protein genes have been associated with human 
diseases, such as Diamond-Blackfan anemia and Schwachman-Dia
mond syndrome [50]. R-proteins may also participate in the devel
opment of several types of cancers [51,52]. Although r-proteins are 
known to have extra-ribosomal functions, their essential role is to 
provide structural functionality of the ribosome. In the following 
sections, the role of A/E-specific r-proteins in ribosome assembly, 
ribosome function, and protein translation, will be discussed.

4. Role in ribosome biogenesis

Ribosome biogenesis is a highly coordinated process involving 
the synthesis of r-proteins, the synthesis and modification of rRNAs, 
and the assembly of r-proteins and rRNAs into two mature ribosomal 
subunits. It is estimated that exponentially growing budding yeast 

cell produces 2000 ribosomes per minute, making ribosome as
sembly an extremely fast and energy consuming process that is 
critical for cellular homeostasis [53–55]. In eukaryotic cells, the as
sembly starts in the nucleolus, where the transcription of 35S pre
cursor rRNA (pre-rRNA) by polymerase I occurs [56,57]. In parallel, 
polymerase III transcribes 5S rRNA [58,59]. During assembly, pre- 
rRNAs undergo hierarchical processing, folding, chemical modifica
tion, and assembly with r-proteins and assembly factors [60,61]. 
Assembly machinery proceeds through the subsequent nucleolar, 
nucleoplasmic and cytoplasmic steps to result in mature SSU and 
LSU. Recent review articles provide a detailed overview of ribosome 
biogenesis in eukaryotes [62–64]. Ribosome biogenesis in archaea 
has been less studies (reviwed in [65]).

The A/E-specific r-proteins are also involved in assembly of ri
bosomal subunits, as they coordinate folding of rRNAs and binding of 
numerous assembly factors and other r-proteins. For example, 9 out 
of 19 r-proteins that are associated with 35S pre-rRNA during the 
initial co-transcritpional assembly of the SSU belong to the A/E- 
specific r-protein group (Table 2) [66]. Recent cryo-EM studies of the 
earliest pre-LSU particles revealed that 18 r-proteins are already 
associated with pre-rRNAs [67]. Of these, 10 are A/E-specific r-pro
teins. All associated r-proteins assist in the initial folding of pre-rRNA 
at the solvent side of pre-LSU subunit [67,68]. In the cytoplasm, 
where domains of SSU rRNA are finally folded, 3 remaining A/E- 
specific r-proteins (eS17, eS19 and eS25) are incorporated [66]. Cy
toplasmic step of the LSU assembly involves the incorporation of the 
last 9 r-proteins, among them the A/E-specific r-proteins eL24, eL40, 
eL41, eL42, and final folding of P-stalk [62,69–71].

In many cases, the ribosome assembly factors adopt a similar 
conformation and occupy the same rRNA-binding sites as A/E-spe
cific r-proteins. One such example is the Sas10 protein, a component 
of the SSU processome complex [74]. Sas10 mimics eS30 and occu
pies its binding site on helix 16 of SSU rRNA. Another example is 

Table 1 
Distribution of non-ubiquitous A/E-specific r-proteins in various archaeal phyla1. 

Archaeal phylum r-protein2

eS25 eS30 eL13 eL14 eL20 eL30 eL34 eL33 eL38 eL41

Lokiarchaeota + + + + + + + + + -
Odinarchaeota + + + + un + + un - -
Thorarchaeota + + + + + + + + + -
Heimdallarchaeota + + - + + + + un + -
Verstraetearchaeota + + - - + + - + - -
Crenarchaeota + + + /- + + + + + /- + /- -
Korarchaeota + /- + + + - + + - - -
Bathyarchaeota + + + + + + + + + -
Aigarchaeota + + + /- + + + - un - -
Thaumarchaeota + + + /- + /- - + - - - -
Nanoarchaeota - - + + + + + + - +
Euryarchaeota - - - + /- + /- + /- + /- + /- - + /-

+ , present; -, absent; + /-, not present in all; un, distribution unknown
1 Data source: UniProt [38] and Refs [3,14,30,31].
2 Protein names are according to the nomenclature from [8].

Table 2 
Hierarchical assembly of archaea/eukaryote-specific r-proteins in the SSU and LSU of the budding yeast ribosome. 

Subunit Associated in

nucleolus early 
state

nucleolus late 
state

nucleoplasm cytoplasm

40 S assembly1 eS1, eS4, eS6, eS17, eS19,
eS8, eS24, eS27, eS25
eS28, eS30, eS31

60 S assembly2 eL8, eL13, eL14, eL19, eL21, eL39, eL43 eL24, eL42
eL15, eL18, eL20, eL30, eL31,
eL32, eL33, eL37 eL34, eL38

1 assembly is based on [66,72].
2 assembly is based on [67,71,73].
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Rlp24 protein, an assembly factor that associates with pre-LSU par
ticles during nucleolar, nuclear, and cytoplasmic steps of maturation 
[75]. Rlp24 and eL24 share the N-terminal domain that recognizes 
the same binding site on LSU [73]. Rlp24 is an important docking 
factor for other assembly factors and is required for the processing of 
the ITS2 region in pre-rRNA [76,77]. It is removed from pre-LSU 
particles at the cytoplasmic step of maturation, followed by the in
corporation of eL24 [78].

The role of the universally conserved r-proteins in ribosome 
biogenesis has been extensively studied [79–84]. For example, many 
extensions of these r-proteins provide the binding site for chaperons 
or harbour nuclear localization signals and thus promote active 
nuclear import of r-proteins. In addition, some extensions are im
portant for specific pre-rRNA processing steps [79,80,85,86–88]. The 
role of only a few of the A/E-specific r-proteins in ribosome bio
genesis has been studies in detail. The examples include eL14, eL8, 
and eL19 [89–91].

eL8 contains a conserved globular domain and two eukaryote- 
specific extensions - at the N- and C-terminus (Supplementary Fig. 
S3). Contacts of the eL8 globular domain with LSU pre-rRNA are 
stabilized early, during the subunit assembly, while interactions 
between N-terminal extension and pre-rRNA are stabilized at late 
stages [92]. The depletion of eL8 in budding yeast cells causes the 
pre-RNA processing to be blocked at the nucleolar steps [93]. The 
deletion of the N-terminal extension of eL8 affects the late nuclear 
steps of pre-rRNA processing by blocking ITS2 processing and re
arrangements of the central protuberance [89]. In contrast, the eu
karyote-specific extension at the C-terminus is not essential for LSU 
biogenesis [89].

eL14 assembles into pre-LSU particles already in the nucleolus 
[90]. It has been demonstrated that eL14 binding to the pre-LSU is 
required for the stable assembly of a subset of r-proteins and a few 
late-acting assembly factors, most of which are essential for ITS2 
processing. The eukaryotic eL14 contains a specific C-terminal ex
tension absent in the archaeal homologs (Supplementary Fig. S3) 
[86]. This helix interacts with the C-terminal extension of uL13 al
ready in the pre-LSU particles [67,73]. It has been shown that the 
expression of eL14 variant lacking the last 16 amino acids, confers a 
mild LSU biogenesis defect [86]. The expression of eL14 variants with 
longer truncations is lethal [90].

eL19 is composed of N-terminal globular domain, a middle region 
and C-terminal α-helix (Supplementary Fig. S3). The N-terminal 
domain and middle region, two domains that are also present in 
archaeal homologs, are embedded in rRNA of the LSU. The depletion 
of eL19 in budding yeast cells leads to a delay in cleavage in ITS2 
region, resulting the impaired pre-rRNA processing [91,94]. How
ever, the expression of eL19 variant lacking most of the C-terminal 
helix did not show any LSU assembly defects [91]. Thus, for some A/ 
E-specific r-proteins, it is the conserved domains rather than eu
karyote-specific extensions that are important in ribosome bio
genesis.

Altogether, the functional analysis of A/E-specific r-proteins has 
expanded our knowledge of the multiple roles of r-proteins in ri
bosome biogenesis. It has been suggested that r-proteins establish 
several different stepwise interactions with pre-rRNA/rRNA during 
the assembly of subunits [95–97]. Since eukaryote-specific exten
sions of r-proteins are elongated and partially disordered, these 
structurally flexible extensions may facilitate interactions with 
multiple partners thereby allowing the dynamic rearrangement of 
pre-ribosome particles.

5. Stabilization of ribosome structure - participation in 
intrasubunit network

The structural organization of r-proteins allows the formation of 
an extensive neuron-like network of protein-protein interactions 
[25,98,99]. A/E-specific r-proteins play a central role in creating such 
a network. In archaeal ribosomes, most A/E-specific r-proteins in
teract with 2 partners (Table 3), which are mainly universally con
served r-proteins. Contacts between globular domains, between 
globular domains and protein extensions, and between extensions 
occur with the same frequency [99]. Interestingly, four A/E-specific 
r-proteins are not in contact with other r-proteins. All of these 
proteins are composed of a single domain and do not have any N- 
terminal and/or C-terminal extensions. Archaeal eS6 and eL41 lo
calize at the interface side of the subunits (Fig. 2, Supplementary Fig. 
S1). In 70S ribosomes, eS6 forms the contact with the LSU r-protein 
eL24 and eL41 interacts extensively with SSU rRNA [4,99]. Thus, 
these r-proteins are specifically involved in the formation of inter
subunit contacts and do not participate in the intrasubunit network.

Upon transitioning from archaeal to eukaryotic ribosomes, the 
number of intrasubunit protein contacts increases greatly [98]. In 
eukaryotic ribosomes, A/E-specific r-proteins mostly interact with 
2–3 partners in SSU and 3–4 partners in LSU (Table 3). On the other 
hand, eL15 and eL20 connect 7 partners each, making them most 
connected r-proteins. These r-proteins, as well as eL21, link together 
three functional centres of the ribosome: PTC, PET, and tRNA binding 
sites. This bridging has only been observed in eukaryotes [99]. Al
though in eukaryotic ribosome most of the A/E-specific r-proteins 
form many contacts with one another, there are 3 r-proteins that do 
not interact with any r-protein in LSU: eL31, eL38, and eL41. All these 
r-proteins consist of a single domain and do not contain any ex
tensions.

Analysis of the interaction types in the eukaryotic ribosome re
vealed that direct contacts between the globular domains are less 
frequent [98]. Most of the protein-protein ineractions are mediated 
by extensions. Among them, the majority of the contacts involve C- 
terminal extensions. One such example of the diversity of contacts 
formed is the eL14 hub. In archaeal LSU, eL14 forms contacts with 
globular domains of uL6 and eL20 (Fig. 3). In eukaryotic LSU, four 
additional interactions have been added. These include interactions 
of the eL14 N-terminal extension with the uL6 globular domain and 
the eL20 C-terminal helix. The eL14 C-terminal helix interacts with 
the uL13 C-terminal helix as well as the eL6 C-terminal extension 
and globular domain.

Table 3 
Number of intrasubunit protein partners for A/E-specific r-proteins in archaeal and 
eukaryotic ribosomes1. 

Subunit Number of 
partners

In archaea In eukaryotes2

SSU 0 eS6, eS31
1 eS1 eS31
2 eS8, eS17, eS19, 

eS24, eS27, eS28
eS6, eS8, eS17, 
eS19, eS30

3 eS21, eS1, eS24, eS25, 
eS28

4 eS4 eS4, eS21, eS27

LSU 0 eL31, eL41 eL31, eL38, eL41
1 eL8, eL19, eL21, 

eL40
eL19, eL40

2 eL14, eL15, eL18, 
eL24, eL32, eL33, 
eL37, eL43

eL24, eL43

3 eL20, eL30, eL34, 
eL39

eL30, eL32, eL33, 
eL34, eL42

4 eL14, eL18, eL37, 
eL39

5 eL8
6 eL13, eL21
7 eL15, eL20

1 Table is adapted with modifications from [98] and [99].
2 Protein names are according to the nomenclature from [8].
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Thus, eukaryote-specific extensions of r-proteins, including A/E- 
specific r-proteins, ensure the stability of ribosome structure and 
provide communication between different regions of the ribosome.

6. Stabilization of ribosome structure - structural components of 
intersubunit bridges

The overall conformation and functionality of the ribosome de
pends not only on the intrasubunit interactions, but also on the 
communication between ribosomal subunits provided by inter
subunit contacts called bridges. Comparison of available structural 
models of bacterial and eukaryotic ribosomes has led to the division 
of intersubunit bridges into two groups. Twelve intersubunit bridges 
are conserved, as they have very similar composition and location in 
the conserved structural core of both Bacteria and Eukarya ribosomes 
(Fig. 4) [4]. Three A/E-specific r-proteins are involved in the con
served bridges (Table 4). Bridge B6, together with B5 and B8, forms a 
cluster of intersubunit bridges near the binding sites for transla
tional GTPases. The structure of B6 varies significantly among dif
ferent species and becomes less complex with increasing complexity 
of the ribosome. In E. coli ribosome, B6 contains numerous contacts 
between bacteria-specific bL19 and helix 44 of SSU rRNA [100]. In 
eukaryotic ribosomes, this bridge consists of two (in budding yeast) 
or only one (in human) interaction between the N-terminal domain 
of eL24 and helix 44 of SSU rRNA [4,101]. Mutational analysis has 
demonstrated that bridge B6 has no apparent role in the budding 
yeast ribosomes. Cells expressing an eL24 variant that is not able to 

form this bridge showed growth rates and translation levels similar 
to wild type cells [102]. Interestingly, r-proteins associated with 
conserved bridges are tightly connected to other intersubunit 
bridges. Specifically, eL43 is also involved in the formation of bridge 
eB8 and uS15 interacts with eS7, which is a component of bridge 
eB12 (Table 4).

The interaction surface between the two ribosome subunits has 
almost doubled in eukaryotes and additional five eukaryote-specific 
bridges have formed (Fig. 4) [4]. These bridges are predominated by 
A/E-specific r-proteins (Table 4). Only one of the eukaryote-specific 
bridges, eB14, locates in the core of the ribosome. The remaining 
four bridges (eB8, eB11, eB12 and eB13) are positioned at the per
ipheral regions, where relative motion of ribosomal subunits is most 
pronounced. The functional importance of eukaryote-specific 
bridges remains largely obscure due to limited number of studies, 
when compared to knowledge about conserved bridges.

Bridge eB12 is distinguished by the long C-terminal α-helix of 
eL19, which extends from the E-site side of the LSU (Fig. 4). This 
helix interacts with expansion segment ES6S of the SSU. Additional 
stabilizing interactions between eL19 and eS7 or eS17 of the SSU are 
involved, depending on the rotational state of the ribosome. Muta
tional analysis of eL19 has revealed that the functional integrity of 
bridge eB12 depends on the protein-rRNA contacts [91]. The archaeal 
version of eL19 is shorter (Supplementary Fig. S3) [103]. Instead of 
the long C-terminal helical domain, it has a ∼10 aa residues long 
extension after the conserved middle region.

A budding yeast mutant expressing the eL19 variant mimicking 
the archaeal version has been shown to be viable but displays a slow 
growth phenotype [91,104]. In addition, the translation in this mu
tant was reduced by 1.8-fold compared to wild type cells [104].

By analogy to eB12, bridge eB13 is recognizable by the long C- 
terminal α-helix and the linker region of eL24 that extend from the 
A-site side of LSU (Fig. 4). Bulk of the bridge eB13 is formed by in
teractions of α-helix and linker of eL24 with eS6 of SSU. These 
contacts are assisted by interactions between uL3 and eS6. The ad
ditional contacts between eL24 and SSU rRNA occur depending on 
the rotational state of the ribosome. The N-terminal domain of the 
eL24 resides on the surface of the LSU and interacts with uL3 and 
uL14. These three interconnected proteins form a structural cluster 
that gives rise to the interconnected intersubunit bridges B5, B6, B8, 
and eB13. The archaeal homolog of eL24 is a short one-domain 
protein (Supplementary Fig. S3) [103,105]. Mutational analysis of 
eL24 indicated that the functionality of eB13 bridge depends on the 
protein-protein contacts between eL24 and eS6 [102]. Analysis of 
yeast mutant expressing the archaeal variant of eL24 has revealed 
that bridge eB13 is important for subunit joining in vivo and in vitro 
[102]. Further analysis utilizing the cell-free translation system has 
demonstrated the role of this bridge in both the initiation and 
elongation steps of translation.

Bridge eB14 is formed by extensive interactions of the smallest r- 
protein, eL41, of the LSU with conserved SSU helices 27, 44, and 45. 
In eukaryotes, eL41 has more contacts with rRNA of the SSU than 
with rRNA of the LSU [4]. The eL41 encoding gene is not present in 
all archaeal genomes (Table 1) [3]. Furthermore, archaeal eL41 can 
vary in length. A protein with N-terminal extension has been an
notated in several archaeal genomes [28]. eL41 is one of the few 
nonessential r-proteins [32,106]. Yeast cells lacking eL41 display a 
similar wild type growth rate [34]. The functional importance of 
eL41 was revealed by studying the genetic interactions between r- 
proteins, which form eukaryote-specific bridges [104]. Mutant cells 
lacking two r-proteins, eL41 and eL24, or lacking eL41 and eB12 
bridge-forming helix of eL19 displayed severely reduced cell growth 
and decrease in total translation.

Two budding yeast mutants with archaea-like ribosomes have 
been constructed [104]. Ribosomes in cells expressing the archaeal 
variants of eL19 and eL24 are defective in formation of eB12 and 

Fig. 3. eL14 and its interacting partners in archaeal (A) and eukaryotic (B) LSU. The 
r-proteins conserved in archaea and eukaryote are shown in dark blue (eL14), light 
blue (uL6), orange (eL20), and yellow (uL13). The eukaryote-specific eL6 is colored 
dark red. Positions of N and C termini of eL14 are indicated. PDB coordinates 4V6U 
for P. furiosus [3] and 4V88 for S. cerevisiae [4] were rendered in PyMol.
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eB13 bridges. These ribosomes resemble the Euryarchaeota-like ri
bosomes. In the triple mutant, the ribosomes are deficient in three 
eukaryote-specific bridges (eB12, eB13, and eB14). This mutant 

carries ribosomes similar to those of Korarchaeota and Crenarchaeota. 
Phenotypic analysis of these mutants revealed that the formation of 
functional 80S ribosomes during translation initiation is severely 
hampered. This results in a slow growth phenotype and reduced 
levels of translation. Thus, the non-essential structural elements of r- 
proteins become highly important in the context of disturbed sub
unit association.

During evolution, ribosomes have increased in size. Following the 
splitting of eukaryotic and archaeal linages, eukaryotic ribosomes 
acquired additional protein and RNA sequences. The expansion of 
eukaryotic ribosomes also led to an enlargement of the area between 
SSU and LSU. To stabilize the sophisticated 80S structure, inter
subunit bridges characteristic for eukaryotes have evolved. It is the 
A/E-specific r-proteins that play a dominant role in the formation of 
these bridges. In addition, structural studies indicate that also in
tersubunit bridges are connected to each other. Such a network of 
connections is also formed by A/E-specific r-proteins.

7. Involvement in translation

R-proteins and rRNA on the surface of the ribosome act as 
docking sites for translation factors and many other ribosome-as
sociated proteins. Information on the interactions between transla
tion factors and ribosome components is mainly derived from 
atomic models of cryo-EM and X-ray crystallographic structures. 
This is complemented by data from biochemical and genetic ex
periments. Several examples are provided below to illustrate the role 
of A/E-specific r-proteins at different steps of translation.

Of the four steps of translation - initiation, elongation, termina
tion and ribosome recycling - it is the molecular mechanisms of 
initiation that differ most in the three domains in life. In bacteria, 

Fig. 4. Position of the intersubunit bridges in the SSU (A) and LSU (B) of the budding yeast ribosome. rRNA and r-proteins are colored grey. Archaea/eukaryote-specific 
proteins that are involved in bridge formation are colored red. Conserved bridges that contain only rRNA-rRNA contacts or comprise also r-protein component, are shown in blue 
and orange spheres, respectively. Eukaryote-specific bridges are shown as yellow spheres. Approximate positions of the A-, P- and E-sites for tRNA binding are indicated. Bridge 
nomenclature and coordinates are from [4]. PDB coordinates 4V88 [4] were rendered in PyMol.

Table 4 
Components of the intersubunit bridges that involve the A/E-specific r-proteins in 
budding yeast ribosome1. 

Bridge2 Pre-translocational Post-translocational

SSU LSU Number of 
contacts

SSU LSU Number of 
contacts

Conserved bridges
B4 h20 H34 6 h20 H34 7

uS15 H34 1 uS15 H34 5
uS15 eL30 1

B6 h44 eL24 2 h44 eL24 2
B7b/c h24 uL2 6 h24 uL2 4

h24 eL43 1 h24 eL43 4
h27 eL43 1

Eukaryote-specific bridges
eB8 eS1 ES31L 2 eS1 ES31L 2

eS1 eL43 2
eB11 eS8 H63 1 eS8 ES41L 5

eS8 ES41L 6
eB12 ES6S eL19 13 ES6S eL19 14

uS17 eL19 3 eS7 eL19 2
eB13 eS6 uL3 3 h6 uL3 1

eS6 eL24 8 ES3S eL24 6
ES12S eL24 3
eS6 uL3 2
eS6 eL24 11

eB14 h27 eL41 10 h27 eL41 10
h44 eL41 4 h44 eL41 5
h45 eL41 14 h45 eL41 14

1 Protein names are according to the nomenclature from [8].
2 Bridge nomenclature and interactions are from [4].
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SSU binds upstream of the start codon during initiation complex 
formation through interactions between the mRNA Shine-Dalgarno 
sequence and the complementarty sequence in SSU rRNA [107]. In 
eukaryotes, translation initiation follows the canonical, 5′ m7G-cap- 
dependent mechanism [108,109]. In archaea, the initiation me
chanism is determined by the properties of mRNAs similar to those 
of bacterial mRNAs. Depending on the organism, archaeal mRNAs 
may contain a Shine-Dalgarno sequence or a very short 5′ un
translated region or be leaderless [110–112]. Despite differences in 
archaea and eukaryotes in recruitment of the preinitiation com
plexes on the mRNA, the selection of start codon is achieved by the 
common structural core [113]. Several high-resolution structures of 
initiation complexes formed after recognition of start codon have 
revealed that the set of r-proteins contacting the mRNA in the exit 
channel is very similar in archaeal and eukaryotic ribosomes 
[28,114,115]. In archaea, the Shine-Dalgarno helix of mRNA is posi
tioned on one side by uS11, eS1 and helix 26 of the SSU rRNA and, on 
the other side, by uS7, eS28, and helices 28 and 37 of the SSU rRNA 
[28]. In eukaryotes, similar interactions are formed and two more are 
introduced. Namely, the long C-terminal extension of eS17, which is 
absent in archaeal orthologues, is in contact with mRNA and the 
eukaryote-specific r-protein eS26 stabilizes the 3′ end of the mRNA 
[114,115]. In bacteria, two bacteria-specific r-proteins, bS6 and bS18, 
are found in place of eS1. In addition, eS28 is absent in bacteria and 
uS2 possesses an additional C-terminal domain at the location of 
eS17. Because of these differences, the archaeal and bacterial mRNA 
exit channels serve as two structural solutions for Shine-Dalgarno 
duplex binding [28]. In archaea and eukaryotes, A/E-specific r-pro
teins play an important role in the stabilization of mRNA in the exit 
channel.

Some alternative initiation mechanisms have been described in 
eukaryotes [116,117]. One such mechanism, employed mainly by 
certain viruses, requires a specific RNA structure - IRES [118]. A 
number of studies have demonstrated that several structurally and 
functionally diverse IRESs rely on the A/E-specific eS25 
[39,40,119,120]. eS25 is one of the non-essential r-proteins of yeast 
[32]. Its globular domain resides in the E-site of SSU and its N- 
terminal extension stretches towards the P-site of SSU [4,26]. Recent 
high-resolution structures from eukaryotic ribosome:IRES com
plexes have revealed the detailed information about interactions 
between IRESs and r-proteins. For example, Hepatitis C virus IRES is 
in contact with several SSU r-proteins: eS1, uS7, uS11, eS25, eS27, and 
eS28 [121–124]. The cricket paralysis virus intergenic region (IGR) 
IRES has been reportered to contact also with eS25 and other r- 
proteins such as uS7, uL1, uL5, and uL11 [125,126]. Of these r-pro
teins, it is e25 that is critical for initial binding of IGR IRES to the 
SSU [127].

During translation elongation, the nascent polypeptide chain 
passes through the PET of the ribosome, which extends from PTC to 
the surface of the LSU. In all ribosomes, the PET is predominantly 
composed of rRNA [128]. The internal loops of two r-proteins, uL4 
and uL22 form the conserved construction sites. In eukaryotic and 
archaeal ribosomes, the loop of uL4 yields a second construction site 
of the tunnel that is absent in bacteria. Close to the subunit surface, 
the bacterial tunnel is surrounded by rRNA and uL23. In eukarotes 
and archaea, uL23 is also present, but the segment covering the 
tunnel region is replaced by the A/E-specific eL39. eL39 also extends 
to the tunnel exit, resulting in a narrowing of the tunnel. This dif
ference may help to explain certain differences between eukaryotes 
and bacteria in their translocation modes of membrane proteins 
mediated by the signal recognition particle [129,130]. In addition, 
reducing the size of the the tunnel exit enables the antibiotic re
sistance in eukaryotes [128,131,132].

The A/E-specific r-proteins that are exceptional in many ways are 
the P-proteins, which form the ribosomal P-stalk located on the LSU 
(Fig. 1) [27,133]. The P-stalk together with the sarcin-ricin loop forms 

the GTPase-associated center responsible for stimulating factor-de
pendent GTP hydrolysis [134,135]. P-proteins are acidic, they do not 
interact directly with rRNA, and they are the only ribosomal com
ponents that exist in more than one copy per ribosome. The archaeal 
P1 and the eukaryotic P1/P2 are closely related to each other 
[136,137]. Although bacterial stalk protein bL12 is located at the 
identical site on the ribosome, this r-protein is not phylogenetically 
and structurally related to its archaeal/eukaryotic counterparts 
[137]. Nevertheless, P-proteins play identical roles on the ribosome, 
being part of the GTPase-associated region wich is directly re
sponsible for the stimulation of translation factor-dependent GTP 
hydrolysis [134].

All P-proteins are organized into three functional domains 
[137–139]. A globular N-terminal domain is responsible for oligo
merization and for the interaction with uL10. A highly conserved C- 
terminal domain is implicated in translation factor binding. These 
two domains are connected through a flexible hinge region. The 
interactions between P-proteins and translation factors (namely ar
chaeal initiator factor IF5B, and archaeal elongation factors EF1A and 
EF2) are biochemically and structurally well documented [140–144]. 
Two mechanistic functions of the P-stalk have been proposed 
[145–147]. One possibility is that the P-stalk increases the local 
concentration of translational GTPases by recruiting them to the 
factor-binding center. This in turn increases the rate of GTP hydro
lysis. Alternatively, P-stalk may stabilize translational GTPases when 
bound to the SRL of LSU rRNA, thereby increasing the rate of GTP 
hydrolysis. In eukaryotes, specifically in budding yeast, P1/P2 r- 
proteins are not required for cell viability and, consequently, for 
protein synthesis [148]. Ribosomes depleted of P1/P2 exhibit re
duced translation fidelity [149]. Unexpectedly, the lack of P1/P2 has 
little effect in vivo on translocation. It has been proposed that de
crease in decoding accuracy due to the P1/P2 depletion is the main 
factor causing the translational slowdown, which in turn affects the 
metabolic fitness and growth rate of yeast cells. Indeed, the mutant 
lacking P1/P2 exhibits a cold-sensitive phenotype and reduced cell 
growth [148].

Altogether, A/E-specific r-proteins play an important role in en
suring ribosome functionality during translation. As illustrated by 
the examples above, these r-proteins are involved both in binding of 
translation factors and in stabilizing the contacts between mRNA 
and the ribosome.

8. Summary and Outlook

In general, ribosomes are widely considered to be molecular 
machines that decode information carried by messenger RNAs and 
translate this information into proteins. They are universally com
posed of rRNAs and numerous r-proteins. Because ribosomes are the 
central sites for protein synthesis, many key components of ribo
somes are conserved in all three domains of life.

Despite ribosomes carrying out the central function of protein 
synthesis and sharing a universally conserved common core, ribo
somes have diverged considerably during evolution. Eukaryotic ri
bosomes are large and more complex containing rRNA and r- 
proteins extensions as well as additional r-proteins. The expansion of 
eukaryotic ribosomes also led to an increase in the surface between 
the two ribosomal subunits and in the formation of eukaryote-spe
cific intersubunit contacts in which r-proteins play a major role. 
Archaeal ribosomes are only partially similar to eukaryotic ribo
somes. While their rRNAs share similarities with bacterial rRNAs, 
their r-protein composition is more similar to that of eukaryotic ri
bosomes. The archaeal and eukaryotic ribosomes share a common 
set of 35 r-proteins. However, these A/E-specific r-proteins are not 
ubiquitously distributed across archaea. Thus, the r-protein compo
sition of ribosomes varies between archaeal species. This opens up 
the possibility to investigate how the minimal set of A/E-specific r- 

I. Kisly and T. Tamm Computational and Structural Biotechnology Journal 21 (2023) 1249–1261

1257



proteins influences the structure and the functionality of the ribo
some. It is possible that ribosomes with different A/E-specific r- 
protein composition have a bias towards translation of specific 
mRNAs, which in turn may be reflected in the cellular proteome. 
Future investigations may reveal the existence of such regulation.

The A/E-specific r-proteins are good examples of how r-proteins 
have evolved into multifunctional proteins. Their primary function is 
devoted to the assembly and stabilization of the complex structure 
of the ribosome. In addition, these r-proteins have acquired new 
functions connected with the increasing complexity of the ribo
somes. Structures of ribosomes and ribosomal complexes from a 
wide range of organisms have provided a framework for under
standing how ribosomal components are organized into a sophisti
cated network and how the components are interacting with 
translational factors. These structures have also made it possible to 
observe how A/E-specific r-proteins have changed during evolution. 
Several non-globular extensions and internal loops have been added 
to the r-proteins that make up the eukaryotic ribosome. It has been 
suggested that these structural variations may reflect the functional 
specialization of r-proteins. Thus, functional studies based on 
structural data are important to extend the understanding of the 
functional roles of A/E-specific r-proteins in protein synthesis. 
Recent advances in genetic engineering will allow more such studies 
to be carried out in higher eukaryotes.
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