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Serum opacity factor rescues fertility among female
Scarb1−/− mice by reducing HDL-free cholesterol
bioavailability
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Abstract Human female infertility, 20% of which is
idiopathic, is a public health problem for which bet-
ter diagnostics and therapeutics are needed. A novel
cause of infertility emerged from studies of female
mice deficient in the HDL receptor gene (Scarb1).
These mice are infertile and have high plasma HDL
cholesterol (C) concentrations, due to elevated HDL-
free cholesterol (FC), which transfers from HDL to
all tissues. Previous studies have indicated that oral
delivery of probucol, an HDL-lowering drug, to fe-
male Scarb1¡/¡ mice reduces plasma HDL-C concen-
trations and rescues fertility. Additionally, serum
opacity factor (SOF), a bacterial virulence factor,
disrupts HDL structure, and bolus SOF injection into
mice reduces plasma HDL-C concentrations. Here, we
discovered that delivering SOF to female Scarb1¡/¡

mice with an adeno-associated virus (AAVSOF) in-
duces constitutive SOF expression, reduces HDL-FC
concentrations, and rescues fertility while normal-
izing ovary morphology. Although AAVSOF did not
alter ovary-FC content, the ovary-mol% FC correlated
with plasma HDL-mol% FC in a fertility-dependent
way. Therefore, reversing the abnormal plasma
microenvironment of high plasma HDL-mol% FC in
female Scarb1-/- mice rescues fertility. These data
provide the rationale to search for similar mecha-
nistic links between HDL-mol% FC and infertility
and the rescue of fertility in women by reducing
plasma HDL-mol% FC.
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Human female infertility, some of which (∼20%) is
idiopathic (1, 2), is a public health problem for which
better diagnostics and therapeutics are needed. The
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influence of dysfunctional lipoproteins on female
infertility is relatively unexplored, despite observations
implicating them, especially HDL. In pregnant women,
fetal development is associated with elevated HDL
concentrations and the expression of placental HDL
receptors that mediate HDL-free cholesterol (FC)
transfer between the maternal circulation and the fetus
(3). Early forms of HDL, that is, pre-β-HDL, have been
implicated in the regulation of human placental lac-
togen expression during pregnancy (4). Lipoproteins
transport lipids that are essential to fertility, including
FC and steroid hormones, among tissues either directly
or via their metabolites (5, 6). In humans, HDL, the only
lipoprotein occurring in meaningful concentrations in
the follicular fluid surrounding the developing oocyte
in the ovary (7–9), may deliver lipids to the follicular
cumulus cells and oocytes for membrane synthesis and
multiple processes essential to oocyte maturation. The
sizes and compositions of human serum- and follicular
fluid-HDL are similar, the main difference being that
relative to follicular fluid HDL, serum HDL is
phosphatidylcholine-rich, deficient in lysophosphati-
dylcholine and acidic phospholipids (PLs), and con-
taining a smaller fraction of HDL occurring as preβ1
HDL. (10) Given spontaneous, reversible FC transfer
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among lipid surfaces on a time scale of minutes (11),
HDL is also a donor and acceptor of FC flux (12–14),
which maintains FC homeostasis. Therefore, abnor-
malities in HDL metabolism that affect its structure,
abundance, or function could compromise female
fertility. Mice deficient in the HDL receptor, encoded
by Scarb1, are a model of female infertility linked to
dysfunctional HDL. Plasma HDL-FC concentrations
among Scarb1−/− mice are ∼7–10 times that of WTmice
(15), which increases HDL-FC bioavailability (HDL-
FCBI) expressed as the product of HDL particle num-
ber (HDL-P) and HDL-mol% FC (100 × molesFC/
[molesFC + molesPL]) (16, 17). Thus, HDL-FCBI = HDL-P
x HDL-mol% FC. Notably, in this context of high HDL-
FCBI, female Scarb1-/- mice are infertile (18).

HDL is unstable because it resides in a kinetic trap
from which it escapes in response to thermal and cha-
otropic perturbations, which typically displace APOA1
from the HDL surface and leave an APOA1-poor
remnant (19, 20). All major HDL-modifying activi-
ties—esterification, (21) lipid transfer (22–24), lipolysis
(22), SR-B1-mediated selective uptake (25), and disrup-
tion by bacterial serum opacity factor (SOF)—also alter
HDL structure. (26) The effect of SOF is
profound—in vitro, SOF quantitatively converts HDL
to three products (supplemental Fig. S1): a small
remnant called neo HDL, a large cholesteryl ester-rich
particle (CERM) containing APOE plus the neutral
lipids of >100,000 HDL particles, and lipid-free (LF)
APOA1, the major HDL protein (26–28). Injecting SOF
into mice diverts HDL cholesterol as CERM to APOE-
mediated uptake by the hepatic LDL receptor with a
subsequent ∼40% reduction in plasma HDL concen-
trations (29). Given that daily treatment of female
Scarb1−/− mice with probucol, an HDL-lowering drug,
reduces HDL concentrations and rescues fertility
among these mice, we tested the hypothesis that
constitutively expressing SOF via an adeno-associated
virus (AAVSOF) will rescue fertility among female
Scarb1−/− mice by reducing HDL concentrations and
HDL-FCBI.
MATERIALS AND METHODS

SOF expression and isolation
Recombinant SOF, an 80 kDa truncated protein containing

full opacification activity, was expressed and isolated from a
bacterial expression system as previously described (26, 28).
In vitro SOF kinetics
The kinetics of the SOF reaction versus WT and Scarb1-/-

mouse HDL isolated by sequential flotation at d = 1.063 and
1.21 g/ml were compared according to the changes in turbidity
that are induced by the formation of CERM, large light-
scattering particles that underlie the opacification phenome-
non (26). Briefly, SOF (1 μg/ml) and HDL (1 mg/ml) were
preincubated at 37◦C, mixed in a temperature-controlled
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cuvette with a stir-bar within the cell compartment of an
Aviv Model ATF 107 spectrofluorimeter also at 37◦C, and the
light scattering (325 nm) followed over time. Light-scattering
versus time data were analyzed using a two-parameter rising
exponential fit in SigmaPlot (Systat Software, Inc.). Rate con-
stants are expressed as mean ± SD.
Size-exclusion chromatography
Size-exclusion chromatography (SEC) was performed on an

AKTA FPLC liquid chromatograph (GE-HealthCare, Inc.)
equipped with two Superose HR6 size-exclusion columns.
Column effluent was monitored by absorbance at 280 nm.
AAVSOF development and production
A pUCIDT-AMP plasmid encoding the SOF gene flanked

by EcoRI and HindIII sites was synthesized by Integrative
DNA Technologies. SOF DNA was isolated by restriction
enzyme digestion and cloned into a pAAV-TBG-mcs plasmid.
The pAAV-TBG-mcs-SOF plasmid was sequenced to confirm
proper gene integration and orientation, amplified, and sub-
mitted to the University of Pennsylvania (UPENN) Vector Lab
for virus production. Control pAAV-TBG-mcs-GFP plasmid
was also purchased from UPENN. Transfection of Huh7
hepatocytes with pAAV-TBG-mcs-GFP confirmed good
transcription efficiency, while transfection of pAAV-TBG-
mcs-SOF confirmed expression and secretion of SOF protein.
Mice
All mouse strains originated from The Jackson Laboratory

(Bar Harbor, Maine). WT C57BL/6 mice, which exhibit good
reproductive performance—a litter size of 6 ± 0.2 and a ste-
rility rate of 8%, were used as controls. (30) Heterozygous
Scarb1 (Scarb1+/−) breeders were used to derive homozygous
Scarb1 knockout (Scarb1−/−) mice. Female Scarb1−/− mice
receiving AAVSOF and nontreated male Scarb1−/− mice were
mated to generate Scarb1−/− progeny. Mice were periodically
genotyped to confirm genetic fidelity; expression of the
targeted and WT Scarb1 alleles was confirmed by PCR
amplification of DNA extracted from ear punches (primers
5′-GAT-GGG-ACA-TGG-GAC-ACG-AAG-CCA-TTCT-3′ and
5′-TCT-GTC-TCC-GTC-TCC-TTC-AGG-TCC-TGA-3′). Mice
were maintained on a sterilized normal laboratory diet
(Envigo). To optimize viral load, SOF-expressing and control
mice were injected with AAVSOF and AAVGFP, respectively,
intraperitoneally at the rates of (0.3–2) × 1011 genome copies/
mouse. AAVSOF produced marked reduction in plasma total
cholesterol (TC) and HDL-C levels.
Fertility studies
During preliminary studies of AAVSOF development, we

observed that some of the female Scarb1−/− mice produced
pups. This observation provoked a systematic, controlled
study which was performed in triplicate in groups of eight-
week-old female Scarb1-/- mice assigned to one of two treat-
ments during which they received a normal laboratory diet
(Harlan). One group (ntotal 27, subgroups of 9 each) received
probucol, which was added to their diet (0.5%, wt/wt). The
other group (ntotal 32, subgroups of 12, 11, and 9 each) received
AAVSOF (1.15 × 1011 genome copies). In addition, a small group
of female mice received AAVGFP to confirm that the AAV
alone did not impact fertility. All groups were paired with
male Scarb1−/− mice for mating at eight weeks of age, that is,



immediately following initiation of treatment with probucol
or AAVSOF. The mice were followed for five months, during
which they were maintained in a continuous monogamous
breeding scheme in which the offspring were weaned be-
tween 21 and 28 days. Our metrics for fertility were number
of days to first litter, litter size, percent fertile females, and
survival expressed as the percent of litters surviving until
weaning.
Plasma and tissue FC analyses
Mice were sacrificed by CO2 inhalation, and plasma was

collected by heart puncture followed by organ collection.
Whole plasma and tissue lipids were determined using
enzyme-based assays for FC, TC, PL, and triglyceride (Fujifilm
Wako Diagnostics Inc.). Cholesteryl ester (CE) concentrations,
determined as μg CE, were calculated as (μg TC – μg FC) × 1.6.
Protein was determined by the DC Protein Assay (Bio-Rad,
Inc.). The plasma, HDL, and ovary lipid analyses for WT and
Scarb1−/− have been previously reported (17) and are
included here in Figs. 5 and 6 for comparison to the data for
the AAVSOF–treated mice. Histology slides were prepared by
the Pathology Core in the Department of Comparative Med-
icine Program at Houston Methodist Research Institute.
Ovaries were fixed in 4% paraformaldehyde and embedded
in paraffin blocks. Tissue blocks were cut into seven-μm serial
sections by a microtome, mounted onto slides, and stained
with hematoxylin/eosin for analysis.
Statistical analysis
Data are mean ± SD or SEM, as indicated in the figure

legends. Group means were compared by Student’s t test in
Prism 9.2 or Microsoft Excel (Office 16). For comparisons
between more than two groups, one way ANOVA for all
Fig. 1. Serum opacity factor reaction. A: Kinetics of reaction versus
lines are the experimental data and the data fitted lines, respectivel
were mixed at 37◦C, and opacification was monitored by right-ang
action products versus HDL that were collected after completion of
Scarb1−/− (C, E) mice. Profiles are expressed as protein absorbance
with red fill are the protein absorbance (280 nm) profiles of HDL b
exclusion chromatography.
groups was followed by Tukey comparison of mean values
when the ANOVA p was significant, that is, P<0.05 (Prism 9.2).

Study approval
All animal studies were approved by the institutional ani-

mal use and care committee.

RESULTS

WT and Scarb1¡/¡ mouse HDL is SOF-reactive
We compared the in vitro effects of SOF versus HDL

from WT and Scarb1-/- mice by kinetic turbidimetry
(Fig. 1A), by analyzing the reaction products by SEC, in
which the eluent was monitored by absorbance
(280 nm), which reflects the elution of protein (HDL,
neo HDL, and LF APOA1) and light scattering for the
CERM (elution volume = ∼15 ml; Fig. 1B, C), and by
chemical analysis of the collected fractions (1 ml) for
cholesterol (Fig. 1D, E). There were differences. First,
the rate of reaction of SOF against HDL from Scarb1−/
− mice is ∼50% slower than that against WT HDL
(Fig. 1A). Second, confirming previous reports (31, 32),
HDL from Scarb1−/− mice elutes earlier than that from
WTmice (red-filled curves in Fig. 1B, C). In both groups,
SOF catalyzed the formation of all three expected SOF
products: CERM, neo HDL, and LF APOA1 (Fig. 1B, C).
The SOF reaction versus HDL from WT mice was
quantitative. In contrast, some HDL from Scarb1−/−

mice was unreactive even after a longer incubation of
>3 h (data not shown). According to the cholesterol
distribution, SOF catalyzed the transfer of ∼90% of WT
HDL fromWT and Scarb1−/− mice as labeled. Dashed and solid
y, to a rising exponential fit. HDL (1 mg/ml) and SOF (1 μg/ml)
le light scattering. B–E: SEC analysis of aliquots of the SOF re-
the kinetic studies. SOF incubated with HDL fromWT (B, D) and
(280 nm, B, C) and cholesterol concentration (D, E). The profiles
efore treatment with SOF. SOF, serum opacity factor; SEC, size-
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Fig. 2. SEC of (A) mouse plasma at low (L—), medium (M—),
and high (H—) AAVSOF doses. B: SEC of 250 μl HDL (1 mg/ml)
after incubation with plasma (5 μl) from mice receiving L-, M-,
and H-dose AAVSOF. Gray-fill, HDL. C: Plasma total cholesterol
14 days after M-AAVSOF dosing. *P < 0.05. D: PCR analysis of
multiple tissues using primers for SOF, LDLR, and GAPDH as
labeled for WT mice, Scarb1-/- mice not treated with AAVSOF
(NT SKO), and Scarb1-/- mice treated with AAVSOF (SOF SKO).
SEC, size-exclusion chromatography; SOF, serum opacity factor.
mouse HDL-C to CERM (Fig. 1D), but only ∼15% of the
HDL from Scarb1−/− mice was converted to CERM by
30 min (Fig. 1E).

AAVSOF induces constitutive SOF activity in mice
We conducted two tests of in vivo SOF activity

following AAVSOF injection into mice. First, we injected
low, medium, and high AAVSOF doses ([0.3, 1.15, and 2] ×
1011 genome copies, respectively) into WT mice. One
week postinjection, plasma was collected, and SOF ac-
tivity was measured as CERM formation and analyzed
by SEC. These data revealed a dose-dependent increase
in CERM formation, thereby confirming that the mice
expressed active SOF, which entered the plasma
compartment and interacted with HDL to form CERM
(Fig. 2A; A280 nm peaks for neo HDL and LF APOA1 are
obscured by LF plasma proteins). Given that the me-
dium and high AAVSOF doses gave similar responses,
we conducted a second test in which we incubated
plasma (5 μl) from the same mice with human HDL
(250 μl, 1 mg/ml; 24 h, 37◦C) and analyzed the reaction
by SEC. Our data revealed a robust, quantitative con-
version of HDL into the expected SOF products: CERM,
neo HDL, and LF APOA1 (Fig. 2B). Injecting AAVSOF

into Scarb1−/− mice effected a similar redistribution of
HDL-C to CERM. Cholesterol analysis of the plasma
from WT and Scarb1−/− mice revealed that AAVSOF

catalyzes a profound reduction in plasma cholesterol
concentrations (Fig. 2C). We also measured the
expression of LDLR and SOF in multiple tissue sites
(Fig. 2D). These data reveal the highest LDLR expres-
sion in liver and spleen and that SOF is only expressed
in liver of the mice receiving AAVSOF; SOF mRNA was
not observed in ovaries. Finally, the AAVSOF modifies
the distribution of APOA1 and APOE. Supplemental
Fig. S2 shows the SEC profiles of plasma from WT,
Scarb1−/−, and (Scarb1−/− + AAVSOF) mice along with
immunoblots for APOA1 and APOE according to
fraction number. The effects of AAVSOF delivery were
similar to those we observed previously, (29) that is,
following bolus SOF injection, APOE appears in the
void volume where the CERM elutes and in the larger
HDL subfractions from both Scarb1−/− and (Scarb1−/
− + AAVSOF) mice. As expected, the only APOA1-
positive band observed at Fraction 21, where neo HDL
elutes, was from plasma of (Scarb1−/− + AAVSOF) mice.
Thus, the plasma of mice receiving AAVSOF contains
catalytically active concentrations of SOF that decrease
plasma cholesterol.

AAVSOF rescues fertility and restores ovarian
morphology among Scarb1¡/¡ mice

We compared the fertility of female Scarb1−/− mice
receiving oral probucol with those given a single dose
of AAVSOF. According to multiple criteria—time to
first litter, litter size, and percent fertile mice—the
rescue of fertility by AAVSOF and probucol treatments
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(Fig. 3) was similar. Moreover, there was no difference
in pup survival. The ovaries of mice in all three groups
were collected and submitted for histological analysis.
The effects of Scarb1 ablation on morphology were
profound. The ovaries of WT mice contained the ex-
pected features associated with normal ovarian func-
tion. The major functional components could be clearly
identified: primordial, primary, and secondary follicles
and the conspicuously much larger corpus luteum
(Fig. 4A). Qualitatively, these features were duplicated
in the ovaries of Scarb1−/− mice, but these mice also
exhibited more oocytes/primordial follicles, fewer
follicles undergoing maturation, and the total absence
of corpora lutea (Fig. 4B), which is an essential feature
of normal ovary morphology, function, and fertility.
Additionally, compared to WT, ovaries from Scarb1−/−

mice appeared more fibrotic with less ovarian stroma,
which may contribute to ovarian dysfunction. Similar
studies of ovaries from Scarb1-/- mice receiving
AAVSOF revealed that the rescue of fertility was asso-
ciated with the recovery of normal ovary morphology,
including the corpus luteum, a marker of successful
ovulation (Fig. 4C).



Fig. 3. Fertility among female Scarb1-/- mice receiving pro-
bucol or AAVSOF. Four markers of fertility were measured in
three separate studies in which >10 mice per treatment were
followed according to (A) the number of days until the first
litter following treatment, (B) number of pups per litter, (C)
percent of fertile females, and (D) percent surviving pups. Data
are mean ± SD. Other details are in the Materials and methods
section.

Fig. 4. AAVSOF normalizes ovary morphology. Panels show
the representative histology of ovaries from (A) WT mice, (B)
Scarb1−/− mice, (C) Scarb1−/− receiving AAVSOF. Primordial
follicle, PF (black); primary follicle, P1F (blue); secondary folli-
cle, S2F (green); corpus luteum, CL (red). Notably, the corpus
luteum, which is not formed in ovaries from Scarb1−/− mice, is
restored by AAVSOF. The ages of the mice studied ranged from
12 to 20 weeks and there was no meaningful within-group dif-
ference among the ovaries.
AAVSOF alters plasma and HDL lipid compositions
The lipid compositions, mol% FC, and FC/TC ratios

of plasma and HDL from WT and Scarb1−/− mice were
compared. The latter included three groups: untreated
Scarb1-/- mice, fertile mice that had received AAVSOF,
and infertile mice that had received AAVSOF. As pre-
viously reported, (17) Scarb1 deletion increased the
plasma concentrations of all major lipids, the mol% FC,
and the FC/TC ratio (Fig. 5A–C). Delivery of AAVSOF

to Scarb1-/- mice reduced the plasma concentrations of
all lipids, the mol% FC, and the FC/TC ratio among
fertile mice, but not in AAVSOF-treated mice that
remained infertile. The effects of AAVSOF on HDL
cholesterol concentration were similar. AAVSOF

decreased HDL-TC, FC, and cholesteryl ester (CE) to
WT levels in fertile but not infertile Scarb1-/- mice, as
well as the mol% FC and the FC/TC ratio among fertile
but not infertile mice (Fig. 5D–F).

AAVSOF alters ovary lipid compositions
The ovaries of multiple mice were collected and

analyzed. As a surrogate for ovary mass, we determined
ovary protein and observed that ovary protein among
Scarb1−/−micewas less thanhalf that ofWTbut restored
to near WT values by AAVSOF delivery to both fertile
and infertile Scarb1-/- mice (Fig. 6A). The effects of
Scarb1 deletion and AAVSOF treatment on ovary lipid
compositions were distinct from the effects on plasma
Serum opacity factor rescues fertility 5



Fig. 5. Lipid compositions of plasma (A–C) and HDL (D–F) from WT and Scarb1-/- mice. As labeled, the mice were grouped as WT,
Scarb1−/− untreated, Scarb1−/− treated with AAVSOF and fertile, and Scarb1-/- treated with AAVSOF and infertile. (A) Plasma lipid
compositions, (B) Plasma-mol% FC, (C) Plasma-FC/TC weight ratios, (D) HDL lipid compositions, (E) HDL-mol% FC, (F) HDL-FC/TC
weight ratios. Mol% plasma FC = 100 × molesFC/(molesFC + molesPL). The respective mean age ± SD and age ranges (weeks) were as
follows: WT—20.4 ± 2.5 and 16–23; Scarb1−/−—19.5 ± 3.7 and 14–23; AAVSOF Scarb1−/− Fertile—39.5 ± 4.5 and 27–43; AAVSOF
Scarb1−/− Infertile—42.8 ± 1.4 and 41–45. The respective number of mice per group were 12, 11, 12, and 13. FC, free cholesterol; TC,
total cholesterol.
andHDL.Ovary PLwas lower among Scarb1−/−mice, an
effect that was not reversed by AAVSOF treatment.
Ovary-FC was similar in all four groups, whereas ovary-
CE for Scarb1-/- mice was lower than that of WT.
AAVSOF further significantly reduced ovary-CE. The
ovary-mol% FC was higher than that of WT among
Scarb1-/-mice and remainedelevated inAAVSOF-treated
mice (Fig. 6C). The ovary FC/TC ratio was significantly
increased by Scarb1 ablation and further increased by
AAVSOF (Fig. 6D).We compared ovary versusHDL lipids
amongWT, Scarb1−/−, Scarb1−/−+AAVSOF (fertile), and
Scarb1−/− + AAVSOF (infertile) mice (Fig. 6E–G). Com-
parison revealed a negative correlation between ovary-
CE and HDL-CE; there was no correlation between
ovary-FC and HDL-FC. In contrast, the ovary-mol% FC
and HDL-mol% FC positively correlated. Thus, the
restorationof fertilitywithAAVSOF treatment correlates
with reduction in the HDL- and ovary-mol% FC and not
with ovary-FC or CE content.

DISCUSSION

HDL-FCBI
Within membranes and lipoproteins, PL and FC are

confined to a common compartment in which the PL is
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the essential FC solvent. FCBI is determined by the
relative amounts of FC and PL in these compartments
and has been expressed as “accessible” (33–35), “active”
FC (36, 37), and by the physico-chemical term,
“fugacity” (37). We formulated a metric for HDL-FCBI
calculated as the product of the number of HDL par-
ticles and the mol% FC within the particles (16), that is,
mol% FC = 100 × XFC/(XFC + XPL), where XFC and XPL

are the number of moles of HDL-FC and PL, respec-
tively. In a subsequent test, we reported that the high
plasma mol% HDL-FC of Scarb1-/- versus WT mice was
associated with a high mol% FC in some but not all
tissues (17). Notably, the ovary-mol% FC of Scarb1−/−

mice, which are infertile, was twice that of WT mice
(17). Fertility among Scarb1-/- mice is restored by inac-
tivating the gene for the major HDL protein, APOA1,
and by administering the HDL-lowering drug, probucol
(18). Given that intravenous infusion of bacterial SOF
transiently reduces plasma HDL-FC in mice (26), we
tested the following hypotheses: a) infertility among
female Scarb1−/− mice is due to a high ovary mol%-FC
provoked by a high HDL-mol% FC and b) constitutive
SOF expression by AAV rescues infertility by reducing
the ovary-mol% FC induced by a reduced HDL-mol%
FC. Our hypotheses were only partly validated.



Fig. 6. Lipid compositions of ovaries from WT and Scarb1−/− mice. As labeled, the mice were grouped as WT, Scarb1−/−, Scarb1−/−

receiving AAVSOF and fertile, and Scarb1−/− receiving AAVSOF and infertile. (A) Total protein per ovary, (B) ovary lipid compo-
sitions, (C) ovary mol% FC, (D) ovary FC/TC weight ratios. (E) Ovary CE content versus HDL-CE (m = −19 + 11; r2 = >0.05; P = 0.09), (F)
Ovary FC content versus HDL-FC (m = 0.22 + 2.4; r2 = 0.33; P = 0.37), (G) Ovary mol% FC versus HDL mol% FC (m = 0.51 + 0.11; r2 =
0.33; P < 0.0001). Ovary mol%-FC = 100 × molesFC/(molesFC + molesPL). Ages and number of mice per group are the same as in
Figure 5 legend. FC, free cholesterol; TC, total cholesterol.
SOF reaction versus Scarb1¡/¡ and WT HDL
The SOF reaction rate versus HDL from Scarb1−/−

mice is slower than that against WT HDL (Fig. 1A) and
does not go to completion (Fig. 2), suggesting that WT
and Scarb1−/− HDL are structurally different and likely
functionally different as well. The underlying cause of
Scarb1−/− HDL’s greater resistance than WT HDL to
opacification may be differences in their structures.
Scarb1−/− HDL is larger than WT HDL: 12.5 and
10.2 nm, respectively. (15) However, SOF quantitatively
converts various sizes of human HDL to the three ex-
pected products (26). The respective surface lipid
compositions of WT and Scarb1−/− HDL are also
different: 17 and 58 mol% FC, respectively (15). As with
apolipoproteins A1 and A2 (38, 39), the higher mol% FC
in Scarb1−/− versus WT HDL may make the former
resistant to penetrance by SOF. Despite the resistance of
some HDL from Scarb1−/− mice to disruption by SOF
in vitro (Fig. 2), fertility is still robustly rescued by
AAVSOF, which induces constitutive SOF activity. The
spontaneity of the SOF reaction supports the concept
that both WT and Scarb1−/− HDL reside in a kinetic
trap (19) from which they can escape without energy
input.

Fertility
Female Scarb1−/− mice are infertile due in part to

excess oocyte FC, which induces premature activation
and escape from MII arrest (40). We observed that
ovaries from these mice have an abnormal morphology
(Fig. 4). Ovaries of Scarb1−/− mice were smaller,
according to protein content, and the corpora lutea,
markers of successful ovulation, were absent (Figs. 4
and 6A). In Scarb1-/- versus WT mice, the less abun-
dant ovarian stroma—the connective tissue that binds
the ovarian structures, including the follicles, togeth-
er—could contribute to infertility. Ovarian stromal cells
are important in follicle development, hormone pro-
duction and responsiveness, and ovulation, and the
lower abundance of ovarian stromal cells could explain
Serum opacity factor rescues fertility 7



the absence of mature follicles in the Scarb1-/- ovaries.
The greater fibrosis in Scarb1−/− ovaries, which are
characterized by more fibroblasts and extracellular
matrix, than in WT ovaries could also reduce ovarian
function and fertility.

The effects of AAVSOF and probucol on fertility
were similar, including time to first litter, litter size,
fertility rate, and pup survival (Fig. 3) (18). In addition,
AAVSOF normalized ovary morphology, including or-
gan size and the appearance of corpora lutea (Figs. 4
and 6A). Scarb1 ablation reduces ovary PL and CE
and increases ovary-mol% FC and FC/TC ratio. If these
changes were mechanistically linked to infertility, one
would expect one or more of them to approach WT
values with the rescue of fertility; this was not observed
(Fig. 6B–D). Ovary lipid compositions did not correlate
with infertility and its rescue.

We then studied whether the lipid compositions of
plasma, which comprise the ovary micro-environment,
determine fertility. In mice, HDL is the dominant li-
poprotein species (41), so we focused on comparing
HDL lipids and ovary lipids (Figs. 5 and 6). Our study
revealed no correlation between ovary-FC and HDL-FC
concentration (Fig. 6F, P = 0.37). It is striking that the
concentration of FC in ovaries was constant across all
four groups tested (Fig. 6B), even though CE varied by
six-fold between the WT and Scarb1−/− groups, indi-
cating the importance of maintenance of FC homeo-
stasis in ovaries. Moreover, ovary-CE and HDL-CE
concentration showed a weak inverse correlation
(Fig. 6E, P = 0.09) and would not be expected to affect
cells because, in mice, CE are metabolically silent. First,
CEs are confined to the core of HDL, so their in-
teractions with cells are blocked by the HDL-surface
monolayer of PL and proteins. Second, mice do not
express cholesteryl ester transfer protein, which moves
CE to the APOB-containing lipoproteins for hepatic
extraction. Lastly, because they lack SR-B1, the HDL
receptor, ovarian CE uptake is limited in Scarb1−/−

mice. In contrast, ovary-mol% FC and HDL-mol% FC
positively correlated (P = 0.0001). HDL bioavailability,
measured as mol% FC, could contribute to infertility via
interactions with ovaries but without the net transfer of
FC, even though FC can spontaneously transfer
through the aqueous phase between lipid surfaces
without a carrier. (11) While the change in the mol%
HDL-FC is large, the mechanism by which such a
change in the microenvironment could induce such
profound changes in ovary biology is not immediately
clear.

The relevance of mol% FC in fertility is illustrated by
studies of PDZK1-/- mice (42), which have lower SR-B1
protein expression than WT mice in liver and intes-
tine, but not in ovary, adrenal, and testis. Moreover,
PDZK1−/− mice are fertile despite plasma lipoprotein
profiles that are similar to those of Scarb1-/- mice. As
with Scarb1−/− mice, their plasma cholesterol
8 J. Lipid Res. (2023) 64(2) 100327
concentration is nearly twice that of WTmice, and their
HDL is larger and APOE-rich. However, their plasma
mol% FC was lower (26 mol%) than that of both WT
(34 mol%) and Scarb1−/− mice (57 mol%). Given that
nearly all plasma cholesterol in mice is carried by HDL,
the differences in the plasma mol% FC are likely due to
underlying differences in HDL mol% FC. These data
showing that a lower HDL-mol% FC among PDZK1−/−

versus Scarb1−/− mice, despite otherwise similar plasma
lipoprotein profiles, is associated with normal fertility
provide independent support for the hypothesis that a
plasma microenvironment of a high HDL-mol% FC
contributes to infertility. Although excess HDL-FC does
not increase the FC content of all tissues, (17) all tissues
are in contact with a high concentration of HDL-FC,
which may initialize a signal transduction pathway of
unknown identity, which has been described as “a
complex interaction between the ovary and the extra-
ovarian environment (i. e., the hypothalamic-
hypophyseal ovarian axis)”(18).

The rescue of fertility among Scarb1−/− mice by pro-
bucol andAAVSOF confirmed the finding that ovary SR-
B1 expression is not needed for fertility (18). Probucol
and AAVSOF induce similar reductions in plasma lipid
concentrations, but with different underlying effects.
Probucol reduces concentrations of the large HDL par-
ticles formed in Scarb1-/- mice (18). In contrast, AAVSOF

induces a greater reduction in the concentration of the
smallHDLparticles. Thus, the ovary-toxic effects ofhigh
HDL concentrations are independent of HDL particle
size. The mechanisms are also different. Probucol re-
duces plasma HDL concentrations, in part, by reducing
HDL synthesis (43). SOF disrupts HDL structure (28)
thereby diverting HDL-C to the hepatic low-density li-
poprotein receptors via largeAPOE-containingparticles,
CERM, that contain nearly all HDL-C (26, 29). Although
the cholesterol-lowering effects of probucol and
AAVSOF were similar, the former requires daily oral
delivery, whereas a single AAVSOF dose effected
constitutive cholesterol lowering lasting more than
30 weeks and restored fertility among Scarb1-/- mice.

Some human genetic alterations in SCARB1 adversely
impact cholesterol metabolism in the ovaries, thereby
reducing fertility, and although some SCARB1 single-
nucleotide polymorphisms are associated with human
female infertility, underlying mechanisms are not
known (44, 45). The only human loss-of-function
SCARB1 mutation reported was a female with two
children (46). Thus, the SCARB1-fertility axis likely in-
volves contributions from other genes.

Conclusions
Nearly all clinical laboratories determine TC, which

comprises FC and CE, each of which has a distinct
metabolic itinerary, so that connections between HDL-
FC and various pathologies, including infertility, elude
detection. Our findings provoke the hypothesis that very



high plasma HDL-FC concentrations also underlie some
forms of human female infertility. This hypothesis can
be readily tested using routine lipid tests as described
above to compare the HDL-FC concentrations of
women visiting a clinic for in vitro fertilization with the
HDL-FC concentration of control fertile women. Glob-
ally, nearly two million cycles of in vitro fertilization are
performed annually (47) at a conservatively estimated
cost of $10,000 per cycle. Thus, the option for an inex-
pensive medical solution is attractive even if it only
benefits a small subset of women with HDL-associated
infertility. Validation of our hypothesis linking high
HDL-FC concentrations with infertility would provoke
tests of HDL-FC-lowering therapies such as probucol or
even SOF as fertility agents in infertile women with a
high plasma HDL-FC.
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