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A B S T R A C T   

The proliferation of the e-commerce market has posed challenges to staff safety, product quality, and operational 
efficiency, especially for cold chain logistics (CCL). Recently, the logistics of vaccine supply under the worldwide 
COVID-19 pandemic rearouses public attention and calls for innovative solutions to tackle the challenges 
remaining in CCL. Accordingly, this study proposes a cyber-physical platform framework applying the Internet of 
Everything (IoE) and Digital Twin (DT) technologies to promote information integration and provide smart 
services for different stakeholders in the CCL. In the platform, reams of data are generated, gathered, and 
leveraged to interconnect and digitalize physical things, people, and processes in cyberspace, paving the way for 
digital servitization. Deep learning techniques are used for accident identification and indoor localization based 
on Bluetooth Low Energy (BLE) to actualize real-time staff safety supervision in the cold warehouse. Both al-
gorithms are designed to take advantage of the IoE infrastructure to achieve online self-adapting in response to 
surrounding evolutions. Besides, with the help of mobile and desktop applications, paperless operation for 
shipment, remote temperature and humidity (T&H) monitoring, anomaly detection and warning, and customer 
interaction are enabled. Thus, information traceability and visibility are highly fortified in this way. Finally, a 
real-life case study is conducted in a pharmaceutical distribution center to demonstrate the feasibility and 
practicality of the proposed platform and methods. The dedicated hardware and software are developed and 
deployed on site. As a result, the effectiveness of staff safety management, operational informatization, product 
quality assurance, and stakeholder loyalty maintenance shows a noticeable improvement. The insights and 
lessons harvested in this study may spark new ideas for researchers and inspire practitioners to meet similar 
needs in the industry.   

1. Introduction 

Recent years have witnessed a thriving growth in cold chain logistics 
(CCL) that bolsters the supply of perishable and medical products. It has 
been revealed that the CCL market in China has risen 15% per year since 
2013 and might attain 80 billion dollars in 2024 [1]. The ever-increasing 
demand challenges product quality assurance, staff safety supervision, 
and operational efficiency enhancement. Under this circumstance, CCL 
service providers endeavor to pursue innovative solutions to tackle these 
issues. 

First, since the efficacy and safety of products in CCL are strictly 

susceptible to temperature and humidity (T&H), most applications focus 
on the monitoring via data loggers or IoT sensors. Under the worldwide 
COVID-19 pandemic, the storage condition of vaccines challenges the 
logistics. Some vaccines need to be stored at − 80 ◦C – − 60 ◦C while some 
at 2 ◦C – 8 ◦C [2]. Note that both higher and lower degrees could 
compromise efficacy or even be life-threatening. In August 2020, it was 
reported that 28 people died of coronavirus vaccination in Korea, and 
0.48 million doses of vaccines were recalled [3]. The experts indicated 
that the refrigeration system in a truck would be responsible for the 
tragedy due to its breakdown without attention. In this case, it man-
ifested the importance of proactive and timely monitoring on storage 
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conditions throughout the vaccine’s lifecycle. However, the use of 
relevant technologies, information systems, and other forms of technical 
assistance still remains immature in practice. 

Second, in addition to concerns about product quality, operators 
working in refrigerated and enclosed rooms envisage potential risks. A 
real-life accident occurred in an air cargo cold storage in Hong Kong. An 
operator fell on the ground for five hours and turned out frozen to death 
[4]. Supervisors stayed in a remote office and failed to perceive this 
accident in time. The news engendered deep grief and, meanwhile, 
served as a wake-up call for effective staff safety management within 
CCL. For problem-solving, it is suggested to integrate an active detection 
on abnormal human motion status and a real-time indoor positioning 
system to facilitate quick response and handling. 

Third, the lack of sufficient data and analytics hampers operation 
improvement and optimization in traditional CCL. The data collection 
mainly relies on forms filling on paper by human beings, which is time- 
consuming and prone to error. Also, most sensors having been deployed 
only store data locally without real-time upload. The information delay 
and incompleteness would erode system timeliness and traceability. As a 
result, the asynchrony between physical and cyber spaces devalues the 
information assembled. 

Overall, three specific research questions are identified in this study. 
First, how to timely detect abnormal human stationary and accurately 
locate people in cold rooms? Second, how to fulfill cyber-physical con-
nectivity and synchronization for the digitalization of resources and 
processes in effect? Third, how to integrate the virtual assets to serve 
different stakeholders in the CCL, regarding product quality assurance, 
staff safety management, and operational informatization? It entails a 
systematic solution that leverages advanced digital technologies to 
make operation conduction and management safer and more efficient. 

Accordingly, an architecture of Internet of Everything (IoE)- and 
digital twin (DT)-enabled service platform for cold chain logistics (ID- 
SCCL) is proposed to address these questions. The IoE, which fosters 
linkages among people, things, processes, and data rather than single 
things (IoT) [5], is intended to gather a myriad of data and reinforce 
hyper-connectivity between physical objects as well as cyber-physical 
spaces. Besides, DT technology is used to map digital representations 
to physical resources and digitalize processes with seamless 
cyber-physical synchronicity and interoperability, paving the way for 
intelligent services provision [6]. The platform applies cloud and edge 
computing to elevate system responsiveness and storage utility. The 
software-as-a-service (SaaS) plays a vital role in real-time decision--
making, information integration and sharing, and practical operation 
conduction. 

Specifically, three scenarios in CCL are mainly concerned here. First, 
operators are working in a cold storage warehouse, with motion and 
location tracked in a timely fashion. Deep learning approaches will be 
used to identify the unusual static status of people and sense their lo-
cations based on Bluetooth Low Energy (BLE) technology. A dynamic 
tracking map visualizes the latest condition of humans to boost spatial- 
temporal visibility for supervision. Second, multiple objects are involved 
in the outbound shipment, including customer orders, products, pack-
ages, trucks, and drivers. A casual pairing mechanism is designed to link 
them up in the digital world and conducted by mobile applications to 
eliminate paper-based operations and make planning and execution 
more flexible. Furthermore, it helps attain information traceability and 
operational accountability. Third, a big concern relates to the storage 
condition of products during transportation, considering the delivery of 
unqualified goods would cause a huge loss in both cost and reputation. 
The BLE tags and IoT gateways will be configured to achieve remote 
T&H monitoring in a real-time manner. Once an out-of-range is detected 
in transit, the system automatically raises warnings to persons in charge 
via multiple ways for product recall. In addition, customers could 
readily access the entire historical data on T&H in a chart using mobile 
applications for preliminary product quality confirmation. Finally, a 
real-life case study has been carried out in a pharmaceutical distribution 

center to validate the feasibility and rationality of the proposed platform 
and methods. The case company assumes the responsibility of dis-
patching vaccines across Hong Kong. The insights and lessons harvested 
here may spark new ideas for scholars and inspire practitioners to 
embark on similar projects. 

The remainder of this article is organized as follows. Section 2 re-
views related work and figures out research gaps. The architecture of the 
ID-SCCL platform is introduced in Section 3. Section 4 presents the 
abnormal stationary detection and indoor positioning algorithm in 
mathematics. Section 5 elaborates on the implementation of the plat-
form and discusses the outcomes. The final section concludes the overall 
work, with future work also addressed. 

2. Literature review 

This section reviews techniques for accident detection and indoor 
positioning in the industry. In addition, the applications of IoE and DT 
technologies to CCL are also presented. Finally, the difference and sig-
nificance of this research will be clarified. 

2.1. Deep anomaly detection 

In effect, detecting accidents in an intelligent environment is likened 
to identifying anomalies from the deal of real-time data collected. A 
novelty or outlier refers to a single dataset deviating from major datasets 
distinctly. A body of research focuses on anomaly detection for different 
application scenarios like traffic accidents, network security, and 
financial auditing [7–9]. Recently, a growing number of studies have 
highlighted the viability and superiority of deep learning techniques 
applied to anomaly detection, namely deep anomaly detection (DAD) 
[10–12]. Amid, four types of DAD approaches are mainly concerned. 
First, predictability modeling is designed to forecast current data in-
stances based on the representations of previous instances within a time 
window by feature learning [13,14]. The advantage of this method is to 
dispose of expressive temporally-dependent low-dimensional represen-
tations, whereas the weakness is to consume a mass of computation and 
easily fall into a suboptimal. Second, the aim of generative adversarial 
networks (GAN) is to extract intrinsic normality from data instances in a 
latent feature space [15,16]. Realistic instances can be generated, 
especially for image data, but model training is exposed to a big issue. 
Third, the features of normality can be learned by the self-supervised 
classification model, and the data inconsistent with the model would 
be regarded as an outlier [17,18]. It is good at discriminating anomalies 
from expressive low-dimensional representations but only for image 
data. Fourth, auto-encoder (AE), by comparison, shows the advantage of 
dealing with different types of data in a set [19–21]. Importantly, AE 
approaches are simple for deployment, thus fitting the industrial context 
well. To the best of our knowledge, this study is the first attempt to apply 
the AE method to fulfill abnormal stationary detection in an air cargo 
cold storage. 

2.2. Indoor positioning 

Solutions to indoor positioning have been studied for decades as the 
global positioning system (GPS) that dominates the outdoor location has 
the limitation of penetrating walls. Specifically, radio frequency-related 
technologies gain popularity in academia and industry [22]. Each 
technology collaborated with different localization techniques owns 
strengths and weaknesses. For example, applying the proximity tech-
nique to the radio frequency identification (RFID) technology shows the 
advantage of simplicity but suffers from short range and low precision 
[23]. A combination of WiFi and fingerprinting technique can realize 
higher location accuracy, and pervasive infrastructures can be leveraged 
to reduce the investment. However, this solution is faced with the 
problems of excessive energy consumption and potential network 
congestion [24]. An ultra-wideband (UWB) system using the 
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trilateration technique performs the best in terms of location accuracy as 
it can attain nearly 10-centimeter error [25], but what hinders its further 
application should be the high cost and low scalability. In contrast, BLE 
technology sparks the public’s interest due to its high location accuracy, 
low energy consumption, low cost, and high scalability [26]. Thus, it 
will be used for staff tracking in this work. Nevertheless, the difficulty it 
faces is concerned with the signal fading intensified by a mass of envi-
ronmental noises, thereby challenging the fingerprinting accuracy. Deep 
neural network is such a promising method to handle this issue and 
make the fingerprinting-based indoor localization more accurate [27]. 
Many studies have probed into multi-layer feedforward neural networks 
(FNN) to harvest good results, whereas using this structure to process 
sequential data remained limited [28,29]. Convolutional neural 
network (CNN) and recurrent neural network (RNN) were effective in 
processing time-series data and thus applied to cope with signal noises 
[30–32]. However, most studies were carried out in labs or educational 
buildings where the environments were less sophisticated than those in 
the industry. Therefore, this paper attempts to explore a proper solution 
to indoor localization in the industrial context using deep neural net-
works based on BLE technology. 

2.3. IoE in cold chain logistics 

The advent of Industry 4.0 urges smart logistics systems to satisfy 
expanded demands. IoT technologies are indeed the core impetus to 
make a network of machines and devices capable of sensing and inter-
acting with other things and systems over the Internet, thus facilitating 
cyber-physical interconnectivity, big data acquisition, and intelligent 
decision-making [33]. Besides, not only can things be reached in the 
network, but everything is expected to be involved for more extensive 
and close ties [34,35]. Accordingly, the Cisco Internet Business Solutions 
Group (2013) gave birth to the IoE, which expanded to four dimensions: 
things, people, processes, and data [5]. People could serve as data 
sources or users with smart devices. For example, IoE technologies are 
beneficial to space optimization [36], environment monitoring [37], 
and process management [38] for smart warehousing. In addition, to 
timely capture and integrate the information on vehicles, cargoes and 
driver situations during transportation could effectively enhance the 
efficiency, ensure the quality and reduce the cost [39]. 

Specifically, IoE has been applied to serve the CCL characterized by 
dealing with environmentally sensitive products [40]. Tsang et al. [41] 
proposed an IoT-based cargo monitoring system for frozen food to 
capture any environmental changes in a cold warehouse and make 
storage condition suggestions in line with specific products using fuzzy 
logic and case-based reasoning techniques. A technical architecture 
aimed at timely circulations of operational information and a conceptual 
model for the supply chain of perishable food were designed on the basis 
of IoTs by Zhang et al. [42] to guarantee safe and economical trans-
portation. Product quality evaluation also drew much attention to take 
advantage of the massive sensing data acquired. Afreen and Imran [43] 
sensed gas luminosity and concentration, altogether with T&H, and 
developed an artificial neural network to classify the status of fruits and 
vegetables. However, the spotlight of major work was shone on things 
per se, with rare on human or human-related operations, which are also 
crucial to overall revenues and multi-level stakeholders’ loyalty. Tsang 
et al. [44] attempted to devise an IoE-based risk monitoring system to 
evaluate occupational safety risk using a fuzzy logic approach in 
consideration of personal health status in different cold chain parties. 
Except for risk prediction, measures of first aid when accidents occur are 
significant to staff safeguard as well, which necessitates real-time 
motional and spatial-temporal information [45]. Overall, the servitiza-
tion of IoE for the smart logistics is far from enough, thus requiring more 
exploratory studies. 

3. Overview of the ID-SCCL platform 

The CCL, featuring condition-sensitive, risk-inherent, and 
surveillance-blind, exposes high demand for remote and timely moni-
toring and raised information traceability and visibility to promote 
overall performance. In this case, the ID-SCCL platform is devised to 
synchronize cyber and physical spaces and servitize the digitalized as-
sets for product quality assurance, staff safety management, and oper-
ational informatization. As Fig. 1 shows, a particular four-layer platform 
architecture is proposed, involving perception, interoperation, syn-
chronization, and application (PISA). Each layer will be elaborated on in 
the following paragraphs. 

At the perception layer are physical objects in CCL, including 
refrigerated trucks, cold boxes, and workers. Those objects would be 
equipped with IoT tags to become capable of sensing and communi-
cating. One cold box holds one beacon tag that incorporates T&H sen-
sors to monitor environmental conditions and broadcast messages 
proactively and periodically. The optimal mounting position in the box 
for tags can refer to the experimental work [46]. When entering cold 
rooms, warehouse operators must embed card-sized beacon tags that 
adopt the BLE protocol into their cardholders for real-time indoor 
tracking. The accelerometer is involved in the beacon tag for abnormal 
stationary detection during operations. 

The IoT gateway dominates the interoperation layer as a bridge for 
cyber-physical connectivity and synchronicity. The sensing devices 
contain diversified wireless communication and networking (WC&N) 
protocols to establish linkages with the physical and digital world, such 
as BLE and broadband cellular networks. Besides, a suite of software 
services is designed primarily with defining, configuring, executing, and 
interacting functions, termed gateway operating systems (GOS). 
Concretely, it defines data transmission flow with heterogeneous devices 
and the cloud, configures basic setups and relevant parameters, executes 
data refinement and decision-making, and interacts with other layers via 
streams of information. The data analytics capability actuates edge 
computing to mitigate cloud computing burdens and attain rational 
storage space allocation. It should be highlighted that there are two 
types of IoT gateways, static and mobile. The static one acts as a micro- 
computer fixed at spots, while the mobile one represents smart devices, 
like smartphones and tablets, that can install proprietary applications to 
function. It not only supplements data collection channels and utilizes 
the ubiquity of those devices to save investment but, importantly, in-
volves people in the network to play a core role in information inte-
gration and interpretation. 

The third layer, synchronization layer, maps the digital world to the 
physical and enables intelligent decision-making, assisted by the cloud. 
It mainly consists of two modules. First, the Docker engine manages all 
the functional software packages running in isolated containers to pre-
vent interference. Amid, cyber-physical agent resembles a cyber gate for 
data gathering and instructions issuing. The centered database connects 
with other modules, copes with massive data, and preserves essential 
information. Models, algorithms, and rules are implemented in data 
analytics engine to process data and make decisions, which ties closely 
with the cyber-physical agent and database. The intent of the applica-
tion server is to maintain services in support of different applications, 
like web and Android applications. Second, DT models are built to 
construct digital representations for things, people, and processes, 
which are highly interconnected. Each element is also labeled with a 
chain of attributes so that, when one object is retrieved or changed, it 
would be easy to capture the holistic relation map or make a corre-
sponding alteration on the whole, respectively. It benefits seamless 
cyber-physical synchronization and intelligent services provision. 

Towards the application layer, different services are authorized to 
different stakeholders. For example, a dashboard depicts each cold box’s 
T&H condition in a timely manner for visible supervision. Once the 
value exceeds the prescribed range, the system would trigger a warning 
in special symbols and sounds via applications. The T&H monitoring 

W. Wu et al.                                                                                                                                                                                                                                     



Journal of Industrial Information Integration 33 (2023) 100443

4

application is open to operators and external customers. A QR barcode is 
attached to the box’s surface, which involves a link to access the basic 
information and historical T&H data regarding the cold box. At the 
arrival of delivery, customers can scan the code to grasp the overall 
condition of products for initial quality confirmation. In addition, a 
dynamic tracking map visualizes staff location and differentiates motion 
status in colors, leading to reinforced spatial-temporal visibility and 
quick response to an emergency. Managers take charge of the entire 
process and thus tend to leverage anomaly alarms and the tracking map 
for risk management. Mobile applications replace paper-based opera-
tions with automatic shipment recording, thereby increasing opera-
tional flexibility and reducing human-made errors. Object and process 
twins can be readily traced and retrieved via desktop applications to 
empower more efficient operation management and optimization. These 
applications can be used by warehouse workers, on-duty directors, and 
drivers to conduct operations in a handy way. The traceable retrieval is 
also a helpful tool for directors to gain reliable evidence of happened 
affairs. 

Overall, this platform intends to tackle three main problems using 
advanced technologies. First, operators’ safety and location can be su-
pervised proactively and vividly when they work in cold storage, which 

elevates the responsiveness of emergency handling. Second, the digita-
lization of outbound shipments is realized, thus alleviating the reliance 
on paper and enhancing traceability and accountability. Third, the 
storage condition of medical products can be monitored remotely in 
real-time throughout their lifecycle so that their quality can be assured 
when delivered to customers. 

4. Methodology 

The motionless status of operators in a cold room is a dangerous 
signal implying a potential accident might be happening. Hence, to 
timely identify an abnormal idle state is necessary for staff safety su-
pervision. Besides, the synchronized spatial-temporal information of 
staff at the workplace plays a vital role in launching a responsive and 
precise rescue, which entails a real-time indoor positioning system as a 
base. Accordingly, the mechanism of abnormal stationary detection and 
indoor tracking algorithm based on deep learning approaches are 
designed to take advantage of the technical infrastructure built above. 
The mathematical models are expressed in the following subsections. 

Fig. 1. The overview of the IoE and DT-enabled service platform for cold chain logistics (ID-SCCL).  
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4.1. SAE-enabled abnormal stationary detection 

Auto-encoder is an unsupervised neural network that encompasses 
encoding and decoding stages. The input data will be compressed into 
lower dimensions at the encoding stage and then restored to the original 
for decoding. With regard to anomaly detection, a big difference be-
tween the input and output would be recognized as an outlier. In this 
study, the stacked auto-encoder (SAE) is applied, which comprises 
several layers of sparse AEs, as portrayed in Fig. 2. Note that the input 
data also works as a label for unsupervised model training. 

In terms of the input, two major factors are concerned for abnormal 
stationary identification, namely distance and acceleration. Operators 
are always expected to take motions in a cold environment, so the tri- 
axial accelerations should remain to fluctuate. A special situation is 
when people may move at a constant speed. In this case, distance shift 
should be considered to expand the difference for distinguishing. It 
needs to normalize the input vector before learning so as to even the 
effect of every factor involved. 

The hidden neural layers are composed of encoder, code, and 
decoder parts. Neighbor layers are fully connected in the encoder and 
decoder. Also, a symmetric scheme is implemented upon these two 
parts, as expressed in the following two formulas. 

x⇀k+1 = F
(

W(k)
ij ⋅x⇀k + b(k)

)

(1)  

x⇀k+1 = F
′

(

W
′ (k)
ij ⋅x⇀k + b

′(k)
)

(2) 

Hereinto, the ⇀x k represents a vector of neural values in the kth layer. 

The W(k)
ij and b(k) stand for weight matrix and bias in the kth layer for 

encoding, respectively. Correspondingly, the W
′(k)
ij and b′(k)contribute to 

decoding. Fand F′ are activation functions yielding the output of each 
neuron. Our network selects the rectified linear units (ReLU) as a 
default, which turns negative values into zeros and keeps positive ones 
the same as before. Exceptionally, the sigmoid function is adopted at the 
end for classification, which is presented as: 

Fs(y) =
1

1 + e− y (3) 

Subsequently, the objective function for model training is set as the 
mean squared error (MSE), which calculates the average of differences 
between the predicted and actual values that also come from the input 
vector ⇀

x Input here. The learning process aims at minimizing the error, as 
denoted below. 

min Diff

(

x⇀Input

)

= min
1
n
∑n

i=1

(

x⇀
(i)
Input − F̃i

(

x⇀Input

))2

(4) 

Then, the acquisition of the optimal solution is achieved by the 
adaptive moment estimation (Adam) algorithm based on the back-
propagation of gradients. This algorithm performs robustly in the face of 
any initialization of hyper-parameters. It engenders iterative updates for 
the entire model parameters, denoted as W , in the direction of gradient 
descent at an adaptive learning rate. If the training dataset is divided 
into m mini-batches, the gradient matrice ψ can be obtained as follows: 

ψ =
1
m
∇W Diff

(
⇀
x Input

)

(5) 

The ∇W computes each parameter’s partial derivatives regarding the 
MSE. Next, the first-order (U ) and second-order (V ) moment at the tth 

state in the Adam can be revamped by: 

U t = κ1U t− 1 + (1 − κ1)ψt− 1 (6)  

V t = κ2V t− 1 + (1 − κ2)ψt− 1 ⊙ ψt− 1 (7) 

The κ1 and κ2 are exponential decay rates in the moment estimation, 
both close to but less than one. The ⊙ connotes a Hadamard product that 
multiplies by elements. The learning rate λ controls the speed of gradient 
regeneration with a decay rate ζ for precise tuning, as given by: 

λt =
λt− 1

1 + ζ⋅t
(8) 

Now, the model parameters can be updated as follows. 

W t = W t− 1 − λt
U t
/(

1 − κt
1

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V t/(1 − κt

2)
√

+ δ
(9) 

The optimal solution is reached after epochs of iterative training, 
with early stopping applied to prevent overfitting. The mean absolute 
error (MAE) is computed for anomaly detection. Compared with MSE, 
MAE can amplify the difference between the output and input, which is 
presented below. 

D′

iff

(

x⇀Input

)

=
1
n

∑n

i=1

⃒
⃒
⃒
⃒x

⇀(i)
Input − F̃i

(

x⇀Input

)⃒
⃒
⃒
⃒ (10) 

Under this condition, a threshold is needed to enable the classifica-
tion, which depends on trials and errors on site. At the early stage, 
several iBeacon tags will be mounted somewhere in the cold storage for 
model initialization and later used for calibration. In this case, normal 
data learned by the model would be actually on behalf of abnormal 
stationary. 

Fig. 2. The structure of stacked auto-encoders.  
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4.2. ResNet-based indoor positioning 

The real-time spatial-temporal information can help enable a quick 
response when an anomaly occurs. Here, the principle of fingerprinting 
based on the received signal strength indicator (RSSI) of BLE is applied 
to realize indoor localization, instead of the range-based technique that 
calculates distances via signal propagation models, which is hard to keep 
pace with the constant change in the industrial environment [47]. The 
fingerprinting technique incorporates offline and online stages. The RSSI 
pattern of each location partitioned, similar to a unique fingerprint, is 
weaved at the offline stage to set up a location database for online 
estimation. Deep neural networks manifested an improved performance 
on the relation mapping so as to attain higher locating accuracy. Spe-
cifically, the CNN is proven to cope with time-series data and images 
efficiently due to its automatic detection on key features. Besides, the 
deeper layers the network contains, the better it performs. Nonetheless, 
the gradient vanishes in the process of weight updating, thus causing 
accumulated training errors. Accordingly, the residual neural network 
(ResNet) is born from CNN, featuring short-cut connections, to retain 
features and accelerate convergence. Hence, we devise a ResNet to 
realize fingerprinting-based indoor localization in this work. Note that 
several calibration points inside cold rooms are configured to make the 
model fulfill online self-adapting in a timely response to surrounding 
transitions. The following parts will outline the ResNet framework and 
the learning process. 

The entire network architecture consists of feature extraction and 
classification phases, as schematized in Fig. 3. In terms of feature 
extraction, once IoT gateways receive messages from an iBeacon tag, an 
exclusive RSSI matrix can be formed immediately. Within a short period 
τ, one location’s signal fingerprint could be represented by: 

Ri(τ) =

⎡

⎢
⎢
⎢
⎣

rGW1
1 rGW1

2 ⋯ rGW1
k

⋮ ⋱ ⋮
rGWp

1 rGWp
2 ⋯ rGWp

n

⎤

⎥
⎥
⎥
⎦

(11) 

Amid, the rGWp
n denotes the nth RSSI value from the pth gateway. Note 

that the number of RSSI values acquired by gateways within the same 
timespan may not be identical because the start time to broadcast is hard 
to be synchronized for all the tags, and a long distance may make the 
communication unstable. Moreover, the number of gateways in the 
fingerprint also varies from location to location, thus causing difficulties 
in model training. Under this circumstance, this study proposes a 
particular feature selection method to pose a filtration on raw data. Two 
steps are needed. The first step intends to pick out the four nearest 
gateways by comparing the averaged signal strength. A bigger RSSI 
value indicates the distance is closer. Then, the maximum, mean, and 
minimum (MMM) values are computed to represent the series of RSSIs in 
line with the nearest gateways. Thus, the fingerprint of a location can be 
updated as: 

R̂i(τ) =

⎡

⎢
⎢
⎣

RGW1
max RGW1

mean RGW1
min

⋮ ⋱ ⋮
RGW4

max RGW4
mean RGW4

min

⎤

⎥
⎥
⎦ (12) 

The final input to the neural network should be constituted by 
several continuous periods of τ, like triple or quadruple, to attain higher 
location accuracy but sacrifice a little responsiveness. For example, the 
input matrix could be given by: 

I
(
Tq
)
= [R̂1(τ), R̂2(τ), R̂3(τ), R̂4(τ)], Tq = Tq− 1 + 4τ (13) 

After the construction of the input tensor, a small matrix of values 
working as a kernel or filter, denoted as K, traverses the input tensor and 
initiates a convolutional transformation for data refinement. A certain 
number (p) of kernels are devised to conduct feature pooling. The in-
dexes of rows and columns for the updated tensor U are marked by m 
and n, respectively, which complies with the following equation. 

U(p)
m,n =

(
I
(
Tq
)

* K(p))[m, n] =
∑

i

∑

j
K(p)

m,n⋅I
(
Tq
)

m− i,n− j (14) 

Given the mini-batch training applied in the optimization, a batch 
normalization (BN) layer is added to accelerate gradient descent and 
prevent overfitting. Next, the normalized output will be fed to an acti-
vation function, namely ReLU. Subsequent layers follow these three 
steps in the same order to deepen feature extraction. It should be 
highlighted that the ReLU is enforced after the additional layer that 
incorporates a skip connection with the early layer to refrain from 
gradient degeneration. After a chain of identical residual blocks follows 
a flatten layer to unfold outputs. Whereafter, the classification phase 
comprises a fully-connected FNN with the softmax activation at the final 
output layer. The nth output at the lth layer satisfies the following 
formula. 

O(l)
n = F

((
∑k

i=1
W(l)

n,i O
(l− 1)
i

)

+B(l)
n

)

(15) 

The W(l)
n and B(l)

n represent the weighting and bias matrix for the nth 

output, respectively. The softmax function is formulated by: 

F softmax(zi) =
ezi

∑n
j=1ezj

(16) 

The number of values in the output vector that only involves one and 
zero equals the entire location classes to be distinguished. The target 
class is assigned with one while zero for the rest. With the establishment 
of the ResNet network, the next step is to resolve the optimal parameters 
by training. 

At first, the categorical cross-entropy loss is set as the optimization 
objective due to the softmax applied. The expected value of the ith output 
is denoted as OE,i, while the corresponding actual output is O(l)

i . Hence, 
the loss function can be expressed as: 

Loss = −
∑n

i=1
OE,i ln

(
O(l)

i

)
(17) 

The Stochastic Gradient Descent (SGD) method is used to enable the 
backpropagation of gradients. The whole parameters to be learned in the 
model are denoted as θ. The gradient φ is computed as follows. 

φ =
1
m
∇θ

∑

i
Loss

(
F ([x1, x2 ,…, xn ]; θ),OE,i

)
(18) 

Fig. 3. The architecture of the residual network (ResNet).  
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The ∇θ represents partial derivatives of the loss towards each 
parameter. The Adam algorithm approaches the optimal solution with 
an adaptive learning rate. The procedure can be referred to in the pre-
vious subsection. Finally, the model learned at the offline stage attains 
parametric initialization, assigned with a timestamp. These parameters 
will keep updating online according to calibration points to effectuate 
long-term accuracy. 

5. Case study 

To verify the effectiveness of the developed ID-SCCL framework and 
relevant algorithms, the holistic solution has been deployed in a phar-
maceutical distribution center in Hong Kong. The case company offers a 
comprehensive package of services across the entire value chain, from 
registration to marketing, promotion, and distribution. Their products 
reach a wide range of customers, including hospitals, clinics, pharma-
cies, doctors, and drugstores. The center is highly incentivized to adopt 
state-of-the-art technologies to provide intelligent services and promote 
operational efficiency. Specifically, they endeavor to realize the digita-
lization of assets and processes to enhance cyber-physical traceability 
and visibility and maintain long-term sustainability. 

5.1. Operation reengineering 

Warehousing operations feature intensive labor and equipment for a 
deal of material handling under time pressure, which increases safety 
risk, especially in a potentially-dangerous workplace like cold storage. 
The boomed demands on CCL have aggravated this situation. Hence, it 
will be of paramount importance to effectively implement staff safety 
management throughout the operations. A real-time detection system to 
identify their abnormal status and recognize the whereabouts becomes 
helpful. Besides, most operations for outbound shipments are still based 
on paper, like the driver taking order lists to pick up goods and noting 
down the loading information, which are time-consuming, tedious, and 
prone to errors. Accordingly, smart device-assisted operations are 
anticipated to improve the efficiency and reduce mistakes, further pro-
pelling process digitalization and data mining. Else, ensuring the quality 
of pharmaceuticals when delivered to customers is vital, since damaged 
products may contaminate supplier reputation and increase reverse lo-
gistics costs. Thus, it would be necessary to remotely monitor the sur-
rounding T&H of products in real-time for quality control. Once the out- 
of-range condition occurs in transit, directors can contact drivers to 
cancel the dispatch ahead of time. 

In this case, aided by IoE and DT technologies, dedicated software 
has been developed as a service to address these concerns. 

Correspondingly, relevant operations should be adjusted and reengi-
neered, as depicted in Fig. 4. The principle to comply with for the design 
is that it is supposed to reserve original operations to the utmost in order 
to minimize the effort and impact. For instance, operators just place 
beacon tags into their cardholders for motion detection and indoor 
localization when entering cold rooms, without any changes in their 
daily operations. The cardholder is hanged around the neck, and its 
effectiveness for motion detection has also been testified. As for ship-
ment digitalization, six key elements are involved and intertwined, 
drivers, orders, cold boxes, BLE tags, gateways, and trucks. Elements 
need to be paired to form a correlated information chain for tracking and 
tracing. In terms of the pairing work, some are realized by scanning QR 
barcodes that contain unique identification via applications, and some 
by physical aggregation or wireless communication. It should be high-
lighted that those jobs can be carried out in advance or on the spot 
thanks to the seamless synchronization between cyber-physical spaces, 
thus augmenting operational flexibility. Mobile applications installed in 
smart devices can help operators accomplish all the outbound tasks and 
make planning and execution more agile. Explicitly, drivers assume the 
responsibility of placing products into cold boxes in line with customer 
orders assigned by directors via the system. When the cold box, paired 
with a BLE tag, is loaded to a truck that is paired with a gateway, a 
linkage between them can be set up automatically as the electronic tag 
can proactively broadcast messages to the gateway. As a result, the T&H 
of the cold box’s inner chamber can be monitored remotely and real- 
timely. To promote customer-centric services, customers can scan the 
QR barcode stuck to the cold box surface to grasp the present and his-
torical in-transit condition of products and confirm the quality prelim-
inarily when the delivery arrives. It diminishes the drug failure rate and 
promotes customer satisfaction. 

5.2. System deployment 

In the light of reengineered operations, the ID-SCCL platform is 
implemented in the cold warehouse to enable digital services. This 
subsection focuses on presenting the practical deployment of IoE hard-
ware and system software. 

Fig. 5 displays actual scenes of hardware installation and related 
operations. In a cold storage covering nearly 2000 m2, gateways are 
mounted in the ceiling and powered by Ethernet, having the advantage 
of plug-and-play. They interact with the IoT tags carried by workers for 
motion monitoring and location tracking. In effect, each room or 
corridor installs one gateway but may be partitioned into several sub-
zones as location units for fingerprinting. Specially, the refrigerated 
room ranging from − 25 to − 15 ◦ and the second buffer room are sealed 

Fig. 4. The reengineered operations for pharmaceutical logistics.  
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tightly enough to block signal transmission, so no subzones are divided 
there. The pseudo-codes to realize unsupervised learning for the SAE 
model and supervised learning for the ResNet are displayed in Algo-
rithms 1 and 2, respectively. 

The real-time location and working status of humans, together with 
gateway layout and operating status, are twined and visualized in a 
tracking map, as demonstrated in Fig. 6. This dynamic map is helpful for 
directors to monitor staff safety and locate people efficiently. Once an 
abnormal idle state is perceived, the system would provoke alarms to the 
persons in charge (PIC) via applications, e-mail, and short message 
services (SMS) for a prompt response. To sense environmental evolution 
and actualize self-adaptive learning in the long term for the neural 
network, eight tags are fixed at scattered spots to serve as calibration 
samples. 

Regarding vaccine delivery, an IoT tag is placed at the bottom of each 
cold box’s interior chamber, which has been testified as the fit layer 
reflecting the maximal temperature in the vertical position. Operators 
just need to bring smartphones to fulfill pairing, planning, and recording 

jobs. Some mobile application interfaces are exhibited in Fig. 7. After 
order-picking, cold boxes are loaded to the truck body, with one 
gateway powered in the head to gather data from tags in real-time. Fig. 8 
shows the application interface that depicts a time series of T&H for all 
the cold boxes in transit and displays a chain of related information to 
fortify traceability and visibility. When T&H exceeds the required range 
in the process, a warning function will pop up in applications to remind 
PICs one by one to handle this anomaly. 

As shown in Fig. 7, PIC can access the entire T&H trend till the 
moment and readily contact the driver to double-check the condition 
and stop the delivery if necessary. It just needs users to click the phone 
button in the interface, which links with the driver’s phone number 
behind. When boxes are returned to the center, operators use the 
application to end the monitoring process for lifecycle management. 

5.3. Results and analysis 

Based on the IoE infrastructure, real-time abnormal stationary 

Fig. 5. The hardware deployment and relevant operations.  

Fig. 6. The dynamic tracking map in explorer.  
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detection and indoor location awareness for operators working in cold 
rooms are conducted. First, to monitor the staff motion status, three 
operators are involved in doing operations as usual and pretending to 

faint in different rooms. Fig. 9 portrays accelerations in three axes and 
amplitudes represented by the size of spheres. Amid, the abnormal status 
is painted in red, while the normal in green. By on-site testing, an 
inherent vibration on the ground is discovered due to goods transfer. At 
the preparation stage, the initial samples used for SAE model training 
should include the vibration. Hence, some iBeacon tags are mounted at 
on-site spots without physical movement for sampling. The experi-
mental results indicated that the accuracy of anomaly detection ach-
ieved by the SAE could attain 100% in effect. 

Second, for the BLE-based indoor tracking, each location’s RSSI 
fingerprint matching with the four nearest gateways has been con-
structed. Apart from the refrigerated rooms, the initial signal map of 
other locations where IoT tags can interact with at least two gateways is 
depicted in Fig. 10. One type of color represents one gateway. It illus-
trates that the differentiation of signal fingerprints for each position 
could lay a fundamental base for deep learning-based classification. 

At the offline training stage, the residual network of CNN is gener-
ated to extract features from a time series of RSSI data and structure the 
mapping relation between signal fingerprints and realistic locations. 
Table 1 lists the values of all the hyperparameters in this network for the 
optimal solution approaching, which are decided by previous experi-
ence or trial and error. 

By virtue of the massive data acquired, the hold-out method is 

Fig. 7. The interfaces of mobile applications.  

Fig. 8. The real-time T&H monitoring dashboard for cold boxes in transit.  

Fig. 9. The tri-axial acceleration and overall amplitude for abnormal motion-
less detection. 
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applied to evaluate the model. We adopt stratified sampling to create 
training, evaluation, and testing datasets to eliminate biases. Fig. 11 
displays the optimization process in consideration of accuracy and loss 
for training and evaluation, which demonstrates the rapid convergence 
benefiting from the skipped connections in ResNet. The average accu-
racy of testing could come to 99.67%. As a result, the optimal model 
parameters obtained in this stage would be stamped by a moment and 
work as the initiator for online estimation. Attributing to calibration 
samples fixed at onsite spots, the neural network can automatically 
adapt to surrounding variations in a periodic manner. 

The deployment of the ID-SCCL platform enables intelligent services 
to enhance staff safety, product quality, operational efficiency, and 
service level. The IoE devices produce a vast amount of real-time data 
and establish close connections among things, people and processes. 
With edge and cloud computing applied, digital twins can seamlessly 

Fig. 10. The initial signal fingerprints for partitioned locations.  

Table 1 
The hyper-parameters in the ResNet.  

Symbol Description Value 

K Kernel matrix 3 × 3 
p Number of kernels in convolutional layers 32 
b Mini-batch size 10 
η0 Initial value of learning rate 0.001 
υ The decay rate of learning rate 0.0002 
f0 Initial value of the first-order moment 0 
s0 Initial value of the second-order moment 0 
ϵ1 The exponential decay rate of the first-order moment 

estimation 
0.9 

ϵ2 The exponential decay rate of the second-order moment 
estimation 

0.999 

δ A minimum value close to zero 10− 7  

Algorithm 1 
The SAE model for anomaly detection.  

Input: Raw sensor data (RSSI , ax , ay, az)

Output: SAE model 
1 Set the initial value of learning rate λ0(= 0.001), and exponential decay ratesκ1 

(= 0.9), κ2 (= 0.999) 
2 Set time window size T(= 10 s) 
3 Initialize the parameter matrix W 0with random values in the range (− 1, 1) 
4 for every time window: 
5 ⇀

x Input
←[R̄SSI , āx, āy, āz]

6 Normalize the vector 
7 Integrate the vector to the training dataset Xtrain 

8 end for 
9 Construct the SAE neural network (4–64–32–64–4) 
10 for epochs with a batch size (m = 5): 
11 ψ←∇W t Diff

(⇀
x Input

)/
m 

12 U t←κ1U t− 1 + (1 − κ1)ψ t− 1 
13 V t←κ2V t− 1 + (1 − κ2)ψ t− 1 ⊙ ψ t− 1 
14 λt←λt− 1/(1 + ζ⋅t)
15 W t←W t− 1 − λt ⋅U t/(1 − κt

1)(
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V t/(1 − κt

2)
√

+ δ)
16 end for 
17 return SAE model  

Algorithm 2 
The ResNet with MMM for indoor positioning.  

Input: RSSI datasets R 
Output: ResNet model 
1 Set the initial value of timewindow and hyperparameters (see Table 1) 
2 for T ← start to end in a step of timewindow do 
3 for each t ∈ Tags do 
4 for τ ← Tk to Tk + 1 in a step of mini-span do 
5 for each g ∈ Gateways do 
6 Ig ← [Min(Rt); Mean(Rt); Max(Rt)]
7 end for 
8 Pn ← [I1, …, Ig] 
9 end for 
10 Form input matrix across time IM ← [P1, …, Pn] with a label l 
11 end for 
12 end for 
13 Randomly split matrices for training, validation and testing 
14 Construct ResNet structure (three blocks of skip connection) 
15 for epochs with a batch size (m = 10): 
16 φ ←1/m ⋅ ∇θ

∑

i
Loss(F([x1,x2 ,…, xn ], θ), OE,i)

17 Adam algorithm (Same as Algorithm 1) 
18 end for 
19 return ResNet model  
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mirror physical resources and processes, leading to valid cyber-physical 
synchronization. On the ground of the platform, the abnormal stationary 
detection approach and ResNet-based tracking algorithm can facilitate 
the supervision of workers’ health status during operations and realize 
prompt responses to accidents. Besides, mobile and desktop applications 
are developed to assist paperless operations conduction and elevate in-
formation traceability and visibility for more efficient operations. 
Workers can take a smartphone to fulfill order-picking and loading tasks 
for shipment informatization, giving rise to agile pairing. In addition, 
the T&H of cold boxes is remotely monitored to ensure vaccine quality 
throughout the lifecycle. Once an anomaly is detected, the system trig-
gers alarms to PICs to handle the issue immediately and prevent further 
loss. Customers are in favor of the service that allows them to access a 
holistic picture of cold box conditions over time by scanning the QR 
barcode on the box. As a consequence, the feasibility and effectiveness of 
the platform can be validated. 

6. Conclusion 

With the surge of demands on cold chain logistics, especially under 
the new normal of post-pandemic, state-of-the-art technologies and so-
lutions are desired to strengthen product quality assurance, staff safety 
management, and operational efficiency improvement. Accordingly, 
this paper proposes a platform architecture based on IoE and DT tech-
nologies to provide intelligent services for different stakeholders in CCL. 
Deep learning techniques have been applied to fully leverage the mass of 
data generated and gathered by the platform to enable the servitization. 

The main contributions of this research can be summarized in three 
aspects. First, the platform of ID-SCCL is proposed to offer services to 
both internal staff and external customers in CCL, including accident 
detection and location tracking in a warehouse for staff safety supervi-
sion, using smart applications for operation informatization, and real- 
time monitoring on storage conditions for product quality assurance. 
IoE and DT technologies are harnessed to digitalize and interconnect 
physical things, people, processes and data to promote cyber-physical 
synchronicity, traceability and visibility. Second, the SAE-based algo-
rithm for abnormal stationary detection and the ResNet-based indoor 
positioning algorithm with the MMM feature selection method are 
designed to real-timely track and monitor operators working in cold 
storage. Both take advantage of the IoE infrastructure to fulfill online 
self-adapting so as to keep pace with surrounding evolutions in the long 
term. Third, the proposed system and methods are deployed in a phar-
maceutical distribution center to demonstrate the viability and ratio-
nality, with dedicated hardware and software developed. The holistic 
platform framework and detail of implementation can work as a refer-
ence for reproduction to meet similar industrial needs or spark new ideas 
for practitioners and researchers. 

This paper probes into new valuable services in the context of CCL, 
which are supported by IoE and DT technologies. However, there are 
still some limitations. For one thing, the positioning scenario only con-
siders the cold rooms on the same floor, while multiple floors may 
trouble the localization due to different patterns of signal interference, 
especially for neighboring floors. For another, the large volume of data 
assembled by the platform is not fully made use of, and the intelligent 
services designed here are still few, with only a logistics service provider 
concerned. Accordingly, certain possibilities for future research can be 
clarified as follows. Firstly, the influence on indoor positioning under 
the industrial environment, caused by the signal propagation between 
multiple floors in the vertical direction, could be tested and analyzed. 
Secondly, it deserves deeper data mining for statistics, decision-making, 
troubleshooting, and risk prediction. More stakeholders along the CCL 
could be involved, like suppliers, manufacturers, and retailers, which 
entails more smart services to improve efficiency and sustainability for 
the supply chain as a whole. Thirdly, not just limited to the applications 
in CCL, IoE and DT technologies could bring benefits to other fields like 
intelligent manufacturing and smart construction. Therefore, more 
meaningful applications wait to be discovered. 
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