Skip to main content
. 2023 Feb 16;33:100443. doi: 10.1016/j.jii.2023.100443

Algorithm 2.

The ResNet with MMM for indoor positioning.

Input: RSSI datasets R
Output: ResNet model
1 Set the initial value of timewindow and hyperparameters (see Table 1)
2 forTstart to end in a step of timewindowdo
3  for each tTagsdo
4    forτTk to Tk + 1 in a step of mini-spando
5     for each gGatewaysdo
6      Ig[Min(Rt);Mean(Rt);Max(Rt)]
7     end for
8     Pn [I1, …, Ig]
9    end for
10   Form input matrix across time IM [P1, …, Pn] with a label l
11  end for
12 end for
13 Randomly split matrices for training, validation and testing
14 Construct ResNet structure (three blocks of skip connection)
15 for epochs with a batch size (m = 10):
16  φ1/m·θiLoss(F([x1,x2,,xn],θ),OE,i)
17  Adam algorithm (Same as Algorithm 1)
18 end for
19 return ResNet model