Skip to main content
microPublication Biology logoLink to microPublication Biology
. 2023 Jan 31;2023:10.17912/micropub.biology.000738. doi: 10.17912/micropub.biology.000738

Macro-ER-phagy receptors Atg39p and Atg40p confer resistance to aminoglycoside hygromycin B in S. cerevisiae

Mahmoud M Daraghmi 1,#, Jacob M Miller 1,#, Connor G Bailey 1, Ellen M Doss 1, Ashley L Kalinski 1, Philip J Smaldino 1, Eric M Rubenstein 1,§
Reviewed by: Anonymous
PMCID: PMC9932795  PMID: 36818312

Abstract

Receptor-mediated autophagic turnover of portions of the endoplasmic reticulum (ER) is mediated by macro-ER-phagy. We hypothesized macro-ER-phagy promotes proteotoxic stress resistance. We predicted Saccharomyces cerevisiae lacking macro-ER-phagy receptors would exhibit enhanced sensitivity to hygromycin B, which reduces translational fidelity and is expected to globally disrupt protein homeostasis, including at the ER. We observed that loss of either of two yeast macro-ER-phagy receptors (Atg39p or Atg40p) compromised cellular resistance to hygromycin B to a similar extent as loss of ER-associated degradation (ERAD) ubiquitin ligases Hrd1p and Doa10p. Our data are consistent with a model whereby macro-ER-phagy and ERAD collaborate to mediate ER protein quality control. Disruptions of macro-ER-phagy have been linked to neuropathy, dementia, and cancer. A dampened capacity to mediate protein quality control may contribute to these conditions.


Figure 1. ATG39 and ATG40 confer resistance to hygromycin B.


Figure 1.

ATG39 
and
 ATG40 
confer resistance to hygromycin B.

Serial dilutions of indicated yeast strains were spotted onto agar plates containing rich growth medium lacking or supplemented with increasing concentrations of hygromycin B. Plates were incubated at 30°C and imaged after 1-2 days. Experiments were performed in triplicate.

Description

Degradation of proteins at the endoplasmic reticulum (ER) is mediated by ER-associated degradation (ERAD) and ER autophagy (ER-phagy). In ERAD, ubiquitin ligases mark individual ER-localized proteins with ubiquitin for proteasomal degradation (reviewed in (Christianson and Carvalho, 2022; Mehrtash and Hochstrasser, 2019)). By contrast, ER-phagy involves the lysosomal destruction of larger portions of ER (reviewed in (Mochida and Nakatogawa, 2022; Yang et al., 2021)). ER-phagy contributes to ER homeostasis under a range of conditions, including ER stress and nutrient limitation (Bernales et al., 2007; Houck et al., 2014; Khaminets et al., 2015; Lipatova and Segev, 2015; Mochida et al., 2015; Nakatogawa and Mochida, 2015; Schuck et al., 2014).

Multiple unique forms of ER-phagy exist with distinct regulation and genetic requirements. In micro-ER-phagy, ER segments are directly degraded by the lysosome (called the vacuole in yeast), independently of characterized core autophagy-related (Atg) proteins and autophagosome formation. Micro-ER-phagy is stimulated by ER stress (elevated abundance of misfolded ER proteins) (Schuck et al., 2014). By contrast, macro-ER-phagy requires the core autophagic machinery. In macroautophagy, unique receptor proteins interact with organelle-specific cargo at the surface of an organelle (Khaminets et al., 2015; Lipatova and Segev, 2015; Mochida et al., 2015). This interaction allows receptor proteins to associate with the phagophore, a double membrane that surrounds the compromised organelle and closes to form an autophagosome (Khaminets et al., 2015; Mochida et al., 2015). Autophagosomes fuse with lysosomes to form autophagolysosomes, wherein encapsulated contents are degraded (Berg et al., 1998; Itakura et al., 2012; Takats et al., 2013). Macro-ER-phagy promotes vacuolar degradation of excess integral membrane proteins (Lipatova and Segev, 2015) and reduces accumulation of aggregation-prone ER proteins (Cui et al., 2019).

Two proteins, Atg39p and Atg40p, serve as macro-ER-phagy receptors in Saccharomyces cerevisiae . Atg39p facilitates turnover of perinuclear ER, while Atg40p promotes cytoplasmic and cortical macro-ER-phagy (Mochida et al., 2015). The mammalian homolog of Atg40p (FAM134Bp) enables ER-phagy by a similar mechanism (Khaminets et al., 2015). ATG39 / ATG40 expression and Atg39p/Atg40p-dependent macro-ER-phagy are induced by ER stress, nitrogen starvation, and rapamycin (Cui et al., 2019; Mizuno et al., 2020; Mochida et al., 2015). Whether macro-ER-phagy is required under conditions of global proteotoxic stress has not been determined. We determined whether ATG39 and ATG40 promote resistance to hygromycin B, an aminoglycoside produced by Streptomyces hygroscopicus . Hygromycin B distorts the ribosome aminoacyl site, thereby reducing translational fidelity, and is expected to broadly perturb the cellular proteome (Brodersen et al., 2000; Ganoza and Kiel, 2001). We and others have previously shown several ER and nuclear ubiquitin ligases and associated proteins are required for optimal growth in the presence of hygromycin B (Bengtson and Joazeiro, 2010; Crowder et al., 2015; Doss et al., 2022; Runnebohm et al., 2020a; Verma et al., 2013; Woodruff et al., 2021). Given that approximately one third of eukaryotic proteins are imported into the ER en route to their subcellular or extracellular destination, we hypothesized that macro-ER-phagy collaborates with ER and nuclear ubiquitin ligases to promote survival during proteotoxic stress.

To investigate potential general contributions of Atg39p and Atg40p to protein quality control, we cultured wild type yeast, yeast lacking genes encoding both primary ERAD ubiquitin ligases, DOA10 and HRD1 (Buchanan et al., 2019), and yeast lacking either ATG39 or ATG40 in the absence or presence of increasing concentrations of hygromycin B (Figure 1A). The atg39 Δ and atg40 Δ strains were taken from the Yeast Knockout Collection (Giaever and Nislow, 2014). All strains exhibited similar growth in drug-free media. As previously observed (Crowder et al., 2015; Niekamp et al., 2019), hrd1 Δ doa10 Δ yeast exhibited markedly reduced growth relative to wild type cells with increasing hygromycin B concentrations. Deletion of ATG39 or ATG40 also sensitized yeast to hygromycin B, consistent with our hypothesis that macro-ER-phagy mitigates stress associated with a broadly disrupted proteome. To validate the observation that ER-phagy receptor loss impairs hygromycin B resistance, we evaluated growth of independently generated single and double knockout yeast lacking ATG39 and/or ATG40 (Lipatova et al., 2020). Consistent with data in Figure 1A, these atg39 Δ and atg40 Δ yeast exhibited impaired growth in the presence of hygromycin B; simultaneous loss of both genes modestly further enhanced drug sensitivity (Figure 1B).

Our results demonstrate that macro-ER-phagy receptors are required for maximal resistance to the aminoglycoside hygromycin B. Modestly enhanced hygromycin B sensitivity of atg39 Δ atg40 Δ relative to either single mutant is consistent with Atg39p and Atg40p possessing partially overlapping function, which may be expected given the physical continuity and partially overlapping proteome of the ER and nuclear envelope (Deng and Hochstrasser, 2006). Indeed, previous reports indicate contribution of both Atg39p and Atg40p to turnover of the same model macro-ER-phagy substrates (Mizuno et al., 2020; Mochida et al., 2015).

A role for Atg39p and Atg40p in combatting proteotoxic stress is consistent with quality control functions of macro-ER-phagy receptors suggested by other reports (Cui et al., 2019; Lipatova et al., 2020; Mizuno et al., 2020). Additional studies will be required to determine whether (and by what mechanism) Atg39p and Atg40p abundance increases in the face of proteotoxic stress (as occurs following ER stress, nitrogen limitation, and rapamycin treatment (Cui et al., 2019; Mizuno et al., 2020; Mochida et al., 2015). Further, analyses of macro-ER-phagy-defective mutants cultured in the presence of drugs that perturb proteostasis by different mechanisms may better define the range of stress conditions against which Atg39p and Atg40p protect. Consistent with a role in protein quality control for macro-ER-phagy, a negative genetic interaction between mutations of ATG40 and STE24 (which encodes a zinc metalloprotease with ER protein quality control function (Ast et al., 2016; Runnebohm et al., 2020b)) has been detected in a large-scale interaction study (Costanzo et al., 2016). Future experiments may be conducted to directly assess the overlap between macro-ER-phagy and ERAD in mitigating proteotoxic stress. Macro-ER-phagy defects are associated with a number of ailments in humans and mammalian research models, including neuropathy, dementia, and cancer (Haque et al., 2016; Islam et al., 2017; Khaminets et al., 2015; Kong et al., 2011; Kurth et al., 2009). The extent to which impaired quality control contributes to the development of these conditions remains to be determined.

Methods

Yeast growth assays. Yeast growth experiments were performed as described (Watts et al., 2015). Four μl of sixfold serial dilutions were transferred to agar plates containing yeast extract-peptone-dextrose (YPD) medium (Guthrie and Fink, 2004) lacking or possessing hygromycin B (Gibco). Plates were incubated at 30°C and imaged on the indicated days.

Reagents

Name

Genotype

Reference

VJY305 (alias SKY252)

MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 hrd1 Δ ::kanMX4 doa10 Δ ::kanMX4

(Habeck et al., 2015)

VJY421

MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 atg39 Δ ::kanMX4

(Tong et al., 2001)

VJY422

MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 atg40 Δ ::kanMX4

(Tong et al., 2001)

VJY476 (alias BY4741)

MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0

(Tong et al., 2001)

VJY1054 (alias NSY2000)

MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 atg39 Δ ::kan

(Lipatova et al., 2020)

VJY1055 (alias NSY2001)

MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 atg40 Δ ::kan

(Lipatova et al., 2020)

VJY1056 (alias NSY2004)

MATa his3 Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 atg39 Δ ::nat atg40 Δ ::kan

(Lipatova et al., 2020)

Acknowledgments

Acknowledgments

Experiments to determine sensitivity of atg39Δ and atg40Δ yeast to hygromycin B were piloted by undergraduate students in the Fall 2021 Methods in Cell Biology (BIO 315) course at Ball State University (Morgan L. Adkins, Ella G. Boardley, Natalee H. Christian, Josie L. Cialkowski, Feona R. Dabson, Alexandra N. Doerner, Samuel J. Elliott, Kaylee M. Fender, Andrew J. Galvez, Logan K. Hale, Katelyn R. Harris, Benjamin S. Houchin, Victoria N. Hutchings, Ava D. Kinser, Ellie E. Malloy, Beethoven G. Meginnis, Amanda R. Nelson, Nyssa M. Oliva, Leah H. Pham, Katelynn L. Pranger, Jennifer M. Riedel, Felix Saldivar Zaragoz, James D. Schwer, Hayden T. Snider, Zachary E. Stephens, Lillie M. Sutton, Tylar C. Tebben, Macy V. Walters, Hannah L. Wilkison, Aaliyah C. Winters, Anizha J. Young, and Katie S. Zeiger) and validated in the research laboratory of EMR. We thank the Ball State University Department of Biology for supporting the incorporation of authentic research experiences into undergraduate coursework. We thank Nava Segev and Sarah Zhao for generously sharing yeast strains and constructive feedback.

Funding

This work was funded by NIH grant R15 GM111713 (EMR) and the Ball State University Department of Biology. Work in the lab of PJS is funded by NIH grant R15 G067291, NIH grant R15 CA252996, and the Miami Foundation for Cancer Research. Work in the lab of ALK is funded by the Indiana Academy of Science, Ball State University Provost Laboratory Start-up funds, and a Johns Hopkins Merkin Peripheral Neuropathy and Nerve Regeneration Center Grant. This project was conceived while EMR was supported in part by a Ball State University Excellence in Teaching award (sponsored by the Ball State University Division of Online and Strategic Learning and the Office of the Provost).

References

  1. Ast T, Michaelis S, Schuldiner M. The Protease Ste24 Clears Clogged Translocons. Cell. 2016 Jan 14;164(1-2):103–114. doi: 10.1016/j.cell.2015.11.053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bengtson MH, Joazeiro CA. Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature. 2010 Sep 12;467(7314):470–473. doi: 10.1038/nature09371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berg TO, Fengsrud M, Strømhaug PE, Berg T, Seglen PO. Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J Biol Chem. 1998 Aug 21;273(34):21883–21892. doi: 10.1074/jbc.273.34.21883. [DOI] [PubMed] [Google Scholar]
  4. Bernales S, Schuck S, Walter P. ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy. 2007 May 1;3(3):285–287. doi: 10.4161/auto.3930. [DOI] [PubMed] [Google Scholar]
  5. Brodersen DE, Clemons WM Jr, Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell. 2000 Dec 22;103(7):1143–1154. doi: 10.1016/s0092-8674(00)00216-6. [DOI] [PubMed] [Google Scholar]
  6. Buchanan BW, Mehrtash AB, Broshar CL, Runnebohm AM, Snow BJ, Scanameo LN, Hochstrasser M, Rubenstein EM. Endoplasmic reticulum stress differentially inhibits endoplasmic reticulum and inner nuclear membrane protein quality control degradation pathways. J Biol Chem. 2019 Nov 13;294(51):19814–19830. doi: 10.1074/jbc.RA119.010295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Christianson JC, Carvalho P. Order through destruction: how ER-associated protein degradation contributes to organelle homeostasis. EMBO J. 2022 Feb 16;41(6):e109845–e109845. doi: 10.15252/embj.2021109845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, Wang W, Usaj M, Hanchard J, Lee SD, Pelechano V, Styles EB, Billmann M, van Leeuwen J, van Dyk N, Lin ZY, Kuzmin E, Nelson J, Piotrowski JS, Srikumar T, Bahr S, Chen Y, Deshpande R, Kurat CF, Li SC, Li Z, Usaj MM, Okada H, Pascoe N, San Luis BJ, Sharifpoor S, Shuteriqi E, Simpkins SW, Snider J, Suresh HG, Tan Y, Zhu H, Malod-Dognin N, Janjic V, Przulj N, Troyanskaya OG, Stagljar I, Xia T, Ohya Y, Gingras AC, Raught B, Boutros M, Steinmetz LM, Moore CL, Rosebrock AP, Caudy AA, Myers CL, Andrews B, Boone C. A global genetic interaction network maps a wiring diagram of cellular function. Science. 2016 Sep 23;353(6306) doi: 10.1126/science.aaf1420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Crowder JJ, Geigges M, Gibson RT, Fults ES, Buchanan BW, Sachs N, Schink A, Kreft SG, Rubenstein EM. Rkr1/Ltn1 Ubiquitin Ligase-mediated Degradation of Translationally Stalled Endoplasmic Reticulum Proteins. J Biol Chem. 2015 Jun 8;290(30):18454–18466. doi: 10.1074/jbc.M115.663559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cui Y, Parashar S, Zahoor M, Needham PG, Mari M, Zhu M, Chen S, Ho HC, Reggiori F, Farhan H, Brodsky JL, Ferro-Novick S. A COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation. Science. 2019 Jul 5;365(6448):53–60. doi: 10.1126/science.aau9263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Deng M, Hochstrasser M. Spatially regulated ubiquitin ligation by an ER/nuclear membrane ligase. Nature. 2006 Oct 19;443(7113):827–831. doi: 10.1038/nature05170. [DOI] [PubMed] [Google Scholar]
  12. Doss EM, Tragesser-Tiña ME, Huang Y, Smaldino PJ, True JD, Kalinski AL, Rubenstein EM. APC/C (Cdh1p) and Slx5p/Slx8p ubiquitin ligases confer resistance to aminoglycoside hygromycin B in Saccharomyces cerevisiae. MicroPubl Biol. 2022 Mar 24;2022 doi: 10.17912/micropub.biology.000547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ganoza MC, Kiel MC. A ribosomal ATPase is a target for hygromycin B inhibition on Escherichia coli ribosomes. Antimicrob Agents Chemother. 2001 Oct 1;45(10):2813–2819. doi: 10.1128/AAC.45.10.2813-2819.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Giaever G, Nislow C. The yeast deletion collection: a decade of functional genomics. Genetics. 2014 Jun 17;197(2):451–465. doi: 10.1534/genetics.114.161620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Guthrie C, Fink GR. 2004. Guide to Yeast Genetics and Molecular and Cell Biology. Elsevier, San Diego.
  16. Habeck G, Ebner FA, Shimada-Kreft H, Kreft SG. The yeast ERAD-C ubiquitin ligase Doa10 recognizes an intramembrane degron. J Cell Biol. 2015 May 18;209(4):621–621. doi: 10.1083/jcb.20140808804292015c. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Haque MH, Gopalan V, Chan KW, Shiddiky MJ, Smith RA, Lam AK. Identification of Novel FAM134B (JK1) Mutations in Oesophageal Squamous Cell Carcinoma. Sci Rep. 2016 Jul 4;6:29173–29173. doi: 10.1038/srep29173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Houck SA, Ren HY, Madden VJ, Bonner JN, Conlin MP, Janovick JA, Conn PM, Cyr DM. Quality control autophagy degrades soluble ERAD-resistant conformers of the misfolded membrane protein GnRHR. Mol Cell. 2014 Mar 27;54(1):166–179. doi: 10.1016/j.molcel.2014.02.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Islam F, Gopalan V, Wahab R, Lee KT, Haque MH, Mamoori A, Lu CT, Smith RA, Lam AK. Novel FAM134B mutations and their clinicopathological significance in colorectal cancer. Hum Genet. 2017 Jan 31;136(3):321–337. doi: 10.1007/s00439-017-1760-4. [DOI] [PubMed] [Google Scholar]
  20. Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell. 2012 Dec 7;151(6):1256–1269. doi: 10.1016/j.cell.2012.11.001. [DOI] [PubMed] [Google Scholar]
  21. Khaminets A, Heinrich T, Mari M, Grumati P, Huebner AK, Akutsu M, Liebmann L, Stolz A, Nietzsche S, Koch N, Mauthe M, Katona I, Qualmann B, Weis J, Reggiori F, Kurth I, Hübner CA, Dikic I. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature. 2015 Jun 3;522(7556):354–358. doi: 10.1038/nature14498. [DOI] [PubMed] [Google Scholar]
  22. Kong M, Kim Y, Lee C. A strong synergistic epistasis between FAM134B and TNFRSF19 on the susceptibility to vascular dementia. Psychiatr Genet. 2011 Feb 1;21(1):37–41. doi: 10.1097/YPG.0b013e3283413496. [DOI] [PubMed] [Google Scholar]
  23. Kurth I, Pamminger T, Hennings JC, Soehendra D, Huebner AK, Rotthier A, Baets J, Senderek J, Topaloglu H, Farrell SA, Nürnberg G, Nürnberg P, De Jonghe P, Gal A, Kaether C, Timmerman V, Hübner CA. Mutations in FAM134B, encoding a newly identified Golgi protein, cause severe sensory and autonomic neuropathy. Nat Genet. 2009 Oct 18;41(11):1179–1181. doi: 10.1038/ng.464. [DOI] [PubMed] [Google Scholar]
  24. Lipatova Z, Gyurkovska V, Zhao SF, Segev N. Characterization of constitutive ER-phagy of excess membrane proteins. PLoS Genet. 2020 Dec 4;16(12):e1009255–e1009255. doi: 10.1371/journal.pgen.1009255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lipatova Z, Segev N. A Role for Macro-ER-Phagy in ER Quality Control. PLoS Genet. 2015 Jul 16;11(7):e1005390–e1005390. doi: 10.1371/journal.pgen.1005390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mehrtash AB, Hochstrasser M. Ubiquitin-dependent protein degradation at the endoplasmic reticulum and nuclear envelope. Semin Cell Dev Biol. 2018 Oct 9;93:111–124. doi: 10.1016/j.semcdb.2018.09.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mizuno T, Muroi K, Irie K. Snf1 AMPK positively regulates ER-phagy via expression control of Atg39 autophagy receptor in yeast ER stress response. PLoS Genet. 2020 Sep 28;16(9):e1009053–e1009053. doi: 10.1371/journal.pgen.1009053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mochida K, Nakatogawa H. ER-phagy: selective autophagy of the endoplasmic reticulum. EMBO Rep. 2022 Jun 27;23(8):e55192–e55192. doi: 10.15252/embr.202255192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mochida K, Oikawa Y, Kimura Y, Kirisako H, Hirano H, Ohsumi Y, Nakatogawa H. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature. 2015 Jun 3;522(7556):359–362. doi: 10.1038/nature14506. [DOI] [PubMed] [Google Scholar]
  30. Nakatogawa H, Mochida K. Reticulophagy and nucleophagy: New findings and unsolved issues. Autophagy. 2015;11(12):2377–2378. doi: 10.1080/15548627.2015.1106665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Niekamp JM, Evans MD, Scott AR, Smaldino PJ, Rubenstein EM. TOM1 confers resistance to the aminoglycoside hygromycin B in Saccharomyces cerevisiae . . MicroPubl Biol. 2019 Dec 6;2019 [PMC free article] [PubMed] [Google Scholar]
  32. Runnebohm AM, Evans MD, Richardson AE, Turk SM, Olesen JB, Smaldino PJ, Rubenstein EM. Loss of protein quality control gene UBR1 sensitizes Saccharomyces cerevisiae to the aminoglycoside hygromycin B. . Fine Focus. 2020 Oct 26;6(1):76–83. doi: 10.33043/FF.6.1.76-83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Runnebohm AM, Richards KA, Irelan CB, Turk SM, Vitali HE, Indovina CJ, Rubenstein EM. Overlapping function of Hrd1 and Ste24 in translocon quality control provides robust channel surveillance. J Biol Chem. 2020 Oct 8;295(47):16113–16120. doi: 10.1074/jbc.AC120.016191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schuck S, Gallagher CM, Walter P. ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. J Cell Sci. 2014 Jul 22;127(Pt 18):4078–4088. doi: 10.1242/jcs.154716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Takáts S, Nagy P, Varga Á, Pircs K, Kárpáti M, Varga K, Kovács AL, Hegedűs K, Juhász G. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J Cell Biol. 2013 May 13;201(4):531–539. doi: 10.1083/jcb.201211160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Pagé N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science. 2001 Dec 14;294(5550):2364–2368. doi: 10.1126/science.1065810. [DOI] [PubMed] [Google Scholar]
  37. Verma R, Oania RS, Kolawa NJ, Deshaies RJ. Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome. Elife. 2013 Jan 22;2:e00308–e00308. doi: 10.7554/eLife.00308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Watts SG, Crowder JJ, Coffey SZ, Rubenstein EM. Growth-based determination and biochemical confirmation of genetic requirements for protein degradation in Saccharomyces cerevisiae. J Vis Exp. 2015 Feb 16;(96):e52428–e52428. doi: 10.3791/52428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Woodruff KA, Richards KA, Evans MD, Scott AR, Voas BM, Irelan CB, Olesen JB, Smaldino PJ, Rubenstein EM. Inner Nuclear Membrane Asi Ubiquitin Ligase Catalytic Subunits Asi1p and Asi3p, but not Asi2p, confer resistance to aminoglycoside hygromycin B in Saccharomyces cerevisiae . . MicroPubl Biol. 2021 Jun 1;2021 doi: 10.17912/micropub.biology.000403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yang M, Luo S, Wang X, Li C, Yang J, Zhu X, Xiao L, Sun L. ER-Phagy: A New Regulator of ER Homeostasis. Front Cell Dev Biol. 2021 Jul 9;9:684526–684526. doi: 10.3389/fcell.2021.684526. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from microPublication Biology are provided here courtesy of California Institute of Technology

RESOURCES