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SUMMARY
Biobanks of linked clinical patient histories and biological samples are an efficient strategy to generate large
cohorts for modern genetics research. Biobank recruitment varies by factors such as geographic catchment
and sampling strategy, which affect biobank demographics and research utility. Here, we describe the Mich-
igan Genomics Initiative (MGI), a single-health-system biobank currently consisting of >91,000 participants
recruited primarily during surgical encounters at Michigan Medicine. The surgical enrollment results in a bio-
bank enriched for many diseases and ideally suited for a disease genetics cohort. Compared with the much
larger population-based UK Biobank, MGI has higher prevalence for nearly all diagnosis-code-based pheno-
types and larger absolute case counts formany phenotypes. Genome-wide association study (GWAS) results
replicate known findings, thereby validating the genetic and clinical data. Our results illustrate that opportu-
nistic biobank sampling within single health systems provides a unique and complementary resource for
exploring the genetics of complex diseases.
INTRODUCTION

Genome-wide association studies (GWASs) have identified

thousands of genetic variants associated with a wide range of

human phenotypes.1 Traditionally, GWASs have been designed

with a specific phenotype or handful of related outcomes in

mind. Participants are specifically recruited on the basis of that

phenotype and data collection restricted to the specific outcome

of interest and relevant confounding variables. This design strat-

egy optimizes power for a single particular phenotype but has

limited reuse potential for studying additional outcomes.

The recent wave of biobank repositories linking individual-

level genetic data with dense clinical health history has dramat-

ically changed the phenotyping paradigm for genetic studies.2

Biobanks allow broad phenotyping across a common set of

genotyped samples, often by leveraging existing patient elec-

tronic health records (EHRs), allowing the investigation of a

wide range of clinically important outcomes within the same

cohort. Rather than being optimized for a single phenotype,

the biobank design creates a resource for repeated use across

diverse phenotypes and study questions. The rich clinical data

allows fine-tuned inclusion criteria and phenotype definitions
This is an open access article under the CC BY-N
on a per-study basis using combinations of diagnoses, clinical

lab results, medication usage, imaging results, and more.

Thus, the same biobank cohort can yield GWASs for thousands

of phenotypes, with each GWAS being highly cost and time

effective since participant recruitment, consent, and genotyping

are completed in advance and phenotyping is performed on

existing clinical data. In addition, biobanks have spawned novel

analytic methods that leverage the unique feature of having the

entire phenome measured on the same set of samples. For

example, the phenome-wide association study (PheWAS) tests

individual genetic variants for associations across the phenome,

allowing investigation of comorbid outcomes and pleiotropic

genetic effects, again without the need for additional participant

recruitment or data collection.3

Althoughbiobanksshareacommonthemeof linkedclinical and

biological data, they are otherwise remarkably heterogeneous.

Differences in target population demographics, recruitment strat-

egy and criteria, consent procedures, and data sharing introduce

distinct benefits and limitations. Large national biobanks such

as UK Biobank (UKB),4 BioBank Japan,5 and All of Us6 aim to

capture a diverse set of individuals across their respective

nations using broad geographical recruitment strategies. This
Cell Genomics 3, 100257, February 8, 2023 ª 2023 The Authors. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:mattz@umich.edu
mailto:szoellne@umich.edu
https://doi.org/10.1016/j.xgen.2023.100257
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xgen.2023.100257&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


MGI Cohort

Clinical Data

Genetic Data

91K Consented
Participants

GWAS Analysis

SAIGE

Sample-level QCArray Genotypes
(570K Markers)

Freeze 3 Cohort
(57K High 

Quality Samples)

TOPMed
Imputation 
(52M Well-

Imputed Markers)

Genetic Ancestry
Inference 

(PCA)

51K Inferred
European
Samples

Phecode Mapping
(R PheWAS)

76M EHR 
ICD Codes

1,817 Phecode
traits

Summary Statistics

Effect Size (OR)
& p-values

(1,547 traits w/ ≥ 60 cases)

Figure 1. Overview of the Michigan Genomics Initiative (MGI) resource and analysis
MGI currently consists of �91,000 participants recruited while seeking care at the Michigan Medicine health system. Recruitment is predominantly through the

Department of Anesthesiology during inpatient surgical encounters. Participants agree to link a blood sample obtained during consent with their electronic health

records for broad research purposes. Genotypes for �570,000 genetic variants are obtained from DNA extracted from the blood sample using a customized

Illumina Infinium CoreExome-24 array. In this article, we describe the MGI ‘‘Freeze 3’’ cohort consisting of �57,000 samples having passed sample-level quality

control filtering and imputed for >50 million variants using the TOPMed reference panel. We extracted all available International Classification of Disease (ICD)

diagnosis codes from patient electronic health records and mapped to broader dichotomous phecode traits using the PheWAS software. We performed GWASs

within a subset of�51,000 European-inferred samples from the Freeze 3 cohort using a linearmixed-effect regressionmodel implemented in the SAIGE software.

We report results and share GWAS summary statistics for 1,547 traits with R60 cases.
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‘‘population-based’’ approach to recruitment is effectiveatgener-

ating very large sample sizes, with UKB notably containing

>500,000 samples and All of Us aiming for >1 million samples.

To achieve these massive sizes, participants are potentially

recruited from across multiple health systems, and it can require

substantial effort to merge the heterogeneous sources of

clinical data.

An alternative biobank design is localized recruitment within

a single healthcare system.7–9 In this article, we describe the

Michigan Genomics Initiative (MGI), a single-health-system bio-

bank recruited from adult patients receiving care at Michigan

Medicine, the University of Michigan’s health system. MGI

recruitment began in 2012 with the goal of creating a resource

to accelerate biomedical and precision health research at the

University of Michigan. Recruitment has primarily occurred

through the Department of Anesthesiology during inpatient

surgical procedures at Michigan Medicine. Recruiting during a

surgical encounter provides a convenient opportunity to obtain

patient consent, complete questionnaires, and collect a blood

sample biospecimen. MGI participants consent to linkage of

their blood sample, which is subsequently stored in the University

of Michigan Central Biorepository, to their existing and future

clinical data, including their MichiganMedicine EHR. The consent

form, which covers broad research purposes and recontact

potential, is intentionally brief and accompanied by an easy-to-

read pamphlet describing the risks andbenefits in layman’s terms

and pictorial descriptions to maximize participant understanding

of the project (https://precisionhealth.umich.edu/our-research/

michigangenomics/). The resulting dataset is a rich resource

freely available to University of Michigan researchers. Already,

MGI has yielded a wide range of research contributions including

novel variant discovery for clinical laboratory measurements10;
2 Cell Genomics 3, 100257, February 8, 2023
PheWAS-based identification of polygenic risk score-trait

associations11; pharmacogenetic analysis of chemotherapeutic

toxicity12; integration of MGI participants as ‘‘external’’ controls

into GWAS13; and pre-operative phenotypic characterization

and opioid usage for surgical patients.14

This article provides a description of theMGI cohort, details our

rigorous quality control procedures, and provides proof-of-

principle GWAS results for 1,547 phenotypes based on diagnosis

codes (Figure 1). We investigate the impact of the opportunistic

recruitment of inpatient surgical patients in MGI by comparing

case counts for a broad range of clinical phenotypes with the

much larger population-based UKB. We demonstrate the

valuable contribution that single-health-system biobanks can

provide to the broader genetic research community by sharing

the complete set of GWAS results presented in this article

through an interactive ‘‘PheWeb’’ application15 that includes

Manhattan plots, regional association plots, and PheWAS

analysis (https://pheweb.org/MGI/). The corresponding GWAS

summary statistics are available to the research community for

replication analysis, meta-analysis, and hypothesis-driven look

ups. Information on requesting summary statistics is available

at https://precisionhealth.umich.edu/our-research/documents-

for-researchers/.

RESULTS

As of April 30, 2022, 91,695 patients receiving care at the

Michigan Medicine health system have consented to participate

in the MGI. Participants are recruited on a rolling basis and

genotyped in batches at the university’s Advanced Genomics

Core. Enrollment has steadily increased since project initiation,

beginning at approximately 730 samples per month in 2013 to

https://precisionhealth.umich.edu/our-research/michigangenomics/
https://precisionhealth.umich.edu/our-research/michigangenomics/
https://pheweb.org/MGI/
https://precisionhealth.umich.edu/our-research/documents-for-researchers/
https://precisionhealth.umich.edu/our-research/documents-for-researchers/


Figure 2. MGI recruitment, demographics, and clinical follow-up

(A) MGI recruitment over time. The solid line is overall recruitment, and the dashed line is participants with self-reported race other than White.

(B) Age and sex distribution of MGI participants.

(C) Clinical follow-up time for MGI participants. Follow-up is the amount of time between a participant’s first and most recent diagnosis codes in the Michigan

Medicine electronic health records (EHRs).

(D) Distribution of ages for MGI participants is nearly identical across follow-up times.
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just over 1,000 samples permonth in 2019, prior to suspension of

enrollment in 2020 due to the pandemic (Figure 2A). Notably,

enrollment of individuals who self-report their race as something

other than White has likewise increased from 71 individuals per

month in 2013 to 292 samples per month in 2019 (note:

throughout the main text, ‘‘White’’ has been used in place of

‘‘Caucasian,’’ which was the terminology used in the self-re-

ported data). In this article, we describe the genetic and clinical

data for MGI ‘‘Freeze 3’’ (March 23, 2020) comprised of 57,055

participants and present results from GWASs for 1,547 traits in

a set of 51,583 European samples.

Demographic and clinical description of the cohort
MGIparticipants range in age from18 to over 90 years (Figure 2B;

Table S1). There are slightly more females (53%), with male

participants being slightly older (58.4 versus 54.7 years; Fig-

ure 2B). The majority of participants self-report race as White

(n = 49,605, 87%), with African American (n = 3,223, 5.6%) and

Asian (n = 1,324, 2.3%) the next most common, and 805

individuals indicating Hispanic or Latino ethnicity (Table S1).

The number of International Classification of Disease (ICD)

codes differ across participants, reflecting inter-individual differ-

ences in overall health and utilization of the health system. To

measure the length of time each participant has interacted with

the Michigan Medicine healthcare system, we compute follow-

up time, defined as the difference in time between the oldest

andmost recent ICD diagnoses for an individual. The distribution

of follow-up time is U-shaped, with the most frequent follow-up
times being <1 year and�19 years (Figure 2C). The upper bound

of approximately 20 years corresponds to the beginning of

electronic capture of diagnosis codes beginning at Michigan

Medicine in 2000. The distribution of participant age is almost

identical across follow-up times, suggesting that follow-up

time is largely independent of participant age (Figure 2D).

Phecode traits
Due to the granularity and redundancy of ICD codes, wemapped

individual ICD codes to broader binary phecode traits using the

PheWAS software.16 Individual phecode traits can be grouped

into 17 general categories of clinically similar traits. For example,

hypertension (phecode 401), myocardial infarction (411.2), and

myocarditis (420.1) are eachmapped to the ‘‘circulatory system’’

phecode group. In total, we observed case samples for 1,817

phecode traits, with 1,712 traits having at least 20 cases (Table 1).

The most common traits are related to high-prevalence diseases

(Figure 3A), including hypertension (phecodes 401 and 401.1);

lipid disorders (272 and 272.1); obesity (278 and 278.1); esoph-

agus/gastroesophageal reflux disease (GERD; 530, 530.1, and

530.11); and mental health disorders (mood disorders: 296;

anxiety: 300, 300.1; depression: 296.2). Several pain-related

traits (pain in joint: 745; abdominal pain: 785; pain: 338) also

appear among the most common phecodes, likely due in part

to the enrollment of surgical patients through anesthesiology.

The number of phecodes per sample was strongly right skewed

(median: 31, mean: 44.2, max: 435) and positively correlated

with both age (Figure 3B) and follow-up time (Figure 3C).
Cell Genomics 3, 100257, February 8, 2023 3



Table 1. Summary of phecode traits and GWAS results in European MGI participants

Phecode category

Total phecode

traits

Analyzed traits

(R60 cases)

Traits with R1 GWS

loci (MAF >1%)

Number of GWS

loci (MAF >1%) Strongest association (MAF >1%)

Circulatory system 171 160 108 (43) 200 (72) atrial fibrillation (427.21),

p = 1.2e�37, chr4:110,762,205

Congenital anomalies 56 44 18 (3) 36 (3) genitourinary congenital anomalies

(751), p = 4.0e�09, chr2:161,318,326

Dermatologic 95 77 53 (17) 93 (22) psoriasis vulgaris (696.41),

p = 4.7e�28, chr6:31,274,954

Digestive 162 149 95 (39) 198 (59) other chronic non-alcoholic liver

disease (571.5), p = 3.0e�54,

chr22:43,928,975

Endocrine/metabolic 169 129 92 (65) 277 (180) type 1 diabetes (250.1),

p = 4.2e�106, chr6:32,658,525

Genitourinary 173 157 101 (25) 191 (39) nephritis and nephropathy in diseases

classified elsewhere (580.31),

p = 1.4e�19, chr6:32,706,117

Hematopoietic 62 45 32 (16) 65 (26) primary hypercoagulable state (286.81),

p = 2.8e�157, chr1:169,549,811

Infectious diseases 69 54 28 (8) 37 (8) aspergillosis (117.4), p = 4.3e�17,

chr7:117,559,590

Injuries and poisonings 122 93 49 (5) 79 (6) salicylates causing adverse effects

in therapeutic use (965.3),

p = 2.4e�10, chr6:33,091,097

Mental disorders 76 63 39 (11) 64 (12) dementias (290.1), p = 2.1e�18,

chr19:44,908,684

Musculoskeletal 132 114 71 (19) 121 (20) ankylosing spondylitis (715.2),

p = 2.9e�35, 6:31,357,491

Neoplasms 141 129 76 (29) 194 (85) other non-epithelial cancer of skin

(172.2), p = 1.8e�38, chr6:396,321

Neurological 85 74 50 (11) 79 (14) restless legs syndrome (327.71),

p = 6.8e�29, chr2:66,523,432

Pregnancy

complications

46 28 18 (7) 23 (7) rhesus isoimmunization in

pregnancy (654.2), p = 1.4e�54,

chr1:25,257,119

Respiratory 85 78 57 (22) 96 (26) cystic fibrosis (499), p = 9.8e�49,

chr7:117,559,590

sense organs 127 112 65 (18) 105 (25) Fuchs’ dystrophy (364.51),

p = 2.0e�31, chr18:55,543,071

Symptoms 46 41 25 (2) 43 (2) fever of unknown origin (783),

p = 2.9e�08, chr7:37,808,912

Total 1,817 1,547 977 (340) 1,901 (606)

We report results for phecode traits with at least sixty cases. The strongest association column contains the phecode trait name (numerical phecode), p

value, and chromosomal location for the association with smallest p value in each phecode category. A threshold of p = 5e�8 was used for genome-

wide significance (GWS).
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We compared phecode traits between MGI and the substan-

tially larger UKB. Overall, MGI has higher prevalence for nearly

all phecode traits (Figure S1). We observed 1,772 phecode traits

for which eitherMGI or UKB had at least one case. Of these, UKB

has no cases for 354 phecodes, and MGI has no cases for 22,

many of which are common conditions. For example, there are

no phecode-defined cases in UKB for basal cell carcinoma

(172.21), insulin pump user (250.3), and hypo- (275.51) and

hypercalcemia (275.6). The missing cases for these traits reflect

different ICD code systems or differential use of ICD codes
4 Cell Genomics 3, 100257, February 8, 2023
between the two biobanks rather than an actual lack of these

traits in the cohorts.

As the power of association studies depends most strongly on

the number of cases, it is more informative to compare the

overall number of cases between MGI and UKB: MGI has a

higher case count for 557 (41%) of the 1,358 phecodes for which

both biobanks have cases (Figure 4). MGI has traits with greater

case counts across all phecode categories, particularly within

endocrine/metabolic and neurological categories. There are 48

phecode traits for which MGI has over 10-fold number of cases



Figure 3. MGI clinical data

(A) Most common phecode traits among MGI participants.

(B) Number of phecode case assignments per sample increases with participant age.

(C) Number of phecode case assignments per sample increases with participant follow-up time. Outlier values were excluded from boxplots to improve

readability.
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found in UKB (Table S2), including ‘‘vitamin D deficiency’’

(phecode: 261.4); ‘‘pain’’ (phecode: 338); ‘‘migraine with aura’’

(phecode: 340.1); ‘‘insomnia’’ (phecode: 327.4); and ‘‘varicella

infection’’ (phecode: 079.1). Phecode traits for which MGI has

more cases than UKB and a case count >10,000 include over-

weight/obesity (278, 278.1); mood disorders (296); depression

(296.2); anxiety (300, 300.1); sleep apnea (327.3); allergic rhinitis

(476); other symptoms of respiratory system (512); pain (338);

pain in joint (745); and back pain (760).

Genetic data
Overall, genetically inferred ancestry is consistent with self-

reported race and ethnicity obtained from appointment intake

surveys (Figure 5A). The majority of participants that self-report

as White clustered with European Human Genome Diversity

Project (HGDP) populations at the top of the familiar continental

principal-component analysis (PCA) plot. Nearly all self-reported

African American participants in MGI cluster between the HGDP

African and European reference populations, consistent with

admixture between those populations. Self-reported Asian

participants show two distinct clusters corresponding to

Western Asian and Central/Southern Asian HGDP populations.

As expected, participants that reported Hispanic/Latino ethnicity

overwhelmingly appear between European and Asian continen-
tal populations.17 We identified numerous genetically inferred

familial configurations among MGI participants (Figure 5B).

Overall, 10,246 (18%) participants have at least one third-degree

or closer relationship with another MGI participant, including

1,496 parent-offspring pairs and 838 full-sibling pairs. Various

complex, multi-generational configurations are observed when

considering second- and third-degree relationships (Figure S2).

We compared the number and quality of imputed genotypes in

MGI participants between the TOPMed and HRC reference

panels. Imputation using TOPMed produces 51,857,319 variants

post quality control (QC) filtering compared with 32,477,751 using

theHRCreferencepanel,with the largestgain in imputablevariants

at the lower end of the allele frequency spectrum (Figure S3);

TOPMed imputation results in45,399,294variantswithminor allele

frequencies (MAFs) between 0.01% and 5% and imputation Rsq

>0.3 compared with 26,769,074 of such variants based on HRC.

Moreover, TOPMed-imputed variants are more accurate across

the frequency spectrum, particularly for variants with MAFs <5%

(Figure S4). Comparing the reference panels across samples

from different ancestries reveals that the increased diversity in

TOPMed reference haplotypes leads to increased imputation

accuracy inall non-Europeansamples (Figure5C). ThemajorityAf-

rican ancestry samples showed the largest improvement in impu-

tation accuracy, even for common variants, reflecting the large
Cell Genomics 3, 100257, February 8, 2023 5



Figure 4. Comparison of phecode case counts between MGI and UKB by disease category

MGI has phecode traits with more cases than UKB across all disease categories.
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proportion of African American individuals in TOPMed compared

with in HRC. We observe a more modest increase in accuracy

among Asian MGI samples, likely because TOPMed contains

comparatively fewer Asian haplotypes.
GWAS results
We initially conductedGWASs of the 1,712 phecode traits with at

least 20 cases in the set of 51,583 MGI samples with genetically

inferred European ancestry across 51,857,319 SNPs with MAFs

>0.01% and imputation score Rsq >0.3. Evaluation of genomic

control values indicated that traits with less than 60 cases

were highly susceptible to inflation (Figure S5). Thus, we present

results for the 1,547 traits withR60 cases (Table 1).We identified

1,901 distinct genome-wide significant loci across 977 phecode

traits, including at least one genome-wide significant association

for each of the 17 phecode categories. Many of the associations

occur at low-frequency SNPs, which have higher false-positive

rates at the standard 5e�8 threshold for genome-wide signifi-

cance.18 Among SNPs with MAFs >1%, we observe 606 associ-

ations in 340 traits.

To assess the quality of our genetic data and phecode traits,

we compared our 30 most significant associations at MAF >1%

variants with previously identified associations reported in the

GWAS Catalog (Table 2). Among this list, there are 15 unique

SNPs because several were associated with multiple related

phecode traits, reflecting the hierarchical nature of ICD coding.

For 10 of the SNPs, we observed an association with a related

trait in the GWAS Catalog at the exact chromosomal location.

Four SNPs had a relevant association within a 50 kb window.

The one association for which we did not observe a close pheno-

typically relevant association within the GWAS Catalog was for

the insertion or deletion (indel) rs113993960 (chr7:117,559,590:

ATCT:A) and cystic fibrosis (phecode 499). The indel, however,

is a low-frequency, pathogenic in-frame shift within CFTR.19
6 Cell Genomics 3, 100257, February 8, 2023
Our strongest association occurred between rs6025

(chr1:169,549,811, also known as the Factor V Leiden mutation

p.Arg506Gln) and primary hypercoagulable state (phecode:

286.81). This SNP is among our top associations for multiple

phecode traits related to coagulation (286.8: hypercoagulable

state; 286: coagulation defects; 286.7: other and unspecified

coagulation defects; 286.12: congenital deficiency of other

clotting factors [including factor VII]). Associations between

rs6025 and venous thromboembolism20 and thrombosis have

previously been reported.21 rs143260331 was associated with

two nested atrial fibrillation phecode traits (427.2 and 427.21)

and was nearby previous associations for atrial fibrillation and

flutter.

We also observed several strong associations between SNPs

in the HLA locus and phecodes related to type 1 diabetes. These

associations have been reported for related traits in the GWAS

Catalog. For example, we observed an association between

chr6:32,658,525, near HLA-DQB1, with the phecode 250.1:

type 1 diabetes (4.23e�106), which has been previously reported

for diabetes medication use.29 Broadly, our results replicate

known signals, indicating that phenotyping and genotyping in

MGI enable well-calibrated GWASs.
DISCUSSION

This article describes the recruitment, data collection, and quality

metrics for the MGI biobank and contrasts it with UKB, a large

population-based biobank. It validates the design of a biobank

based on localized recruitment within a tertiary healthcare center,

primarily during pre-surgical inpatient encounters. The emphasis

on surgical patients introduces a selection bias, which distorts

population measures such as disease prevalence but provides

distinct advantages for a genetic research resource. Specifically,

MGI is enriched for nearly all disease outcomes compared with



Figure 5. Summary of genetically inferred ancestry and relatedness in MGI participants

(A) Comparison of self-reported race/ethnicity and genetically inferred ancestry. MGI samples are projected in the principal component (PC) reference space

created by worldwide samples from the Human Genome Diversity Project (HGDP). Each panel shows all MGI participants, with participants colored by the

indicated self-reported race or ethnicity.

(B) Unique genetically inferred familial configurations containing parent-offspring and full-sibling relationships among MGI participants. The numbers are the

observed count for each configuration.

(C) Comparison of TopMed andHRC imputation accuracy by inferred ancestry groups. TopMed providesmore accurate imputation in all populationswith notable

gains among non-European participants.
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the general health systempopulation aswell as larger population-

sampled biobanks. Although some of the observed case count

differences betweenMGI and UKB are likely the result of differing

diagnostic coding criteria, they nevertheless reflect the ability to

identify cases within the respective biobanks. This case enrich-

ment mirrors non-random sampling techniques routinely used

in GWASs, for example case-control and extreme phenotype

selection, specifically designed to increase statistical power.

The result is that MGI provides powerful GWAS testing despite

being substantially smaller than biobanks with national recruit-

ment. This is confirmed by our GWAS analysis of ICD-derived

phecode traits, which yielded 1,901 genome-wide significant as-

sociations, the strongest of which replicate known genotype-

phenotype associations. Not surprisingly, the localized recruit-

ment also led to the enrollment of many related participants in

MGI, including various complex, multi-generational configura-

tions. Depending on the analysis, related samples can either be

informative or introduce statistical challenges to a genetic study.

The degree of relatedness amongMGI participants highlights the

importance of using methods that properly account for sample

relatedness when performing GWAS on biobank data.36

Single-health-system biobanks provide numerous benefits to

genetic research, most importantly at the local institution but
also to the broader community. At the local institution, biobanks

democratize genetic research by providing open access to a

state-of-the-art resource containing individual-level genotypes

and rich clinical data. Investigators at the University of Michigan

(UM) are required to obtain Institutional Review Board approval

for proposed projects, but the MGI data are otherwise free to

use. Moreover, UM investigators are supported with a free-of-

charge HIPAA-secure computing environment to store and

analyze data and genetic analysis support. This equitable access

to a large-scale, multi-use cohort with centralizedQChas the po-

tential to dramatically accelerate research efforts. It is particu-

larly empowering to junior researchers whomay lack the funding

to recruit their own cohort and collect genetic and phenotypic

data. Moreover, the resource encourages investigators with

limited genetics experience to engage in genetic research

without the daunting tasks of collecting and performing QC on

data with which they are unfamiliar.

The benefits of single-health-system biobanks extend to

researchers outside of the local institution despite the fact that

access to individual-level data is usually restricted to investiga-

tors at the institution. For example, we have provided access

to all GWAS summary statistics reported in this article through

an interactive PheWeb website. Downloadable MGI summary
Cell Genomics 3, 100257, February 8, 2023 7



Table 2. Top thirty strongest associations among MAF >1% SNPs in MGI Freeze 3 GWASs

rsid; chromosome position Alleles

Allele 2

frequency

Trait description

(phecode) Cases/controls

Log odds

ratio p value

Relevant GWAS

catalog citation

rs6025; chr1:169,549,811 C/T 0.0282 primary hypercoagulable

state (286.81)

727/43,826 6.41 2.81e�157 venous

thromboembolism20

– – – hypercoagulable state

(286.8)

755/43,826 6.13 1.19e�153 –

– – – coagulation defects

(286)

2,693/43,826 2.03 1.80e�83 –

– – – other and unspecified

coagulation defects

(286.7)

1,942/43,826 1.86 6.73e�50 –

– – – congenital deficiency

of other clotting

factors, including

factor VII (286.12)

94/43,826 11.12 5.24e�39 –

– – – other venous embolism

and thrombosis (452)

4,201/36,930 0.98 1.82e�36 –

– – – deep vein thrombosis

(452.2)

3,162/36,930 1.10 3.01e�34 thrombosis21

rs72660908; chr1:25,257,119 C/G 0.3856 rhesus isoimmunization

in pregnancy (654.2)

145/26,348 2.25 1.40e�54 blood protein levels22

rs4148325; chr2:233,764,663 C/T 0.3272 disorders of bilirubin

excretion (277.4)

321/48,830 1.84 6.00e�82 bilirubin levels23

rs143260331; chr4:110,762,205 T/C 0.1226 atrial fibrillation (427.21) 4,825/31,060 0.49 1.17e�37 atrial fibrillation24,a

– – – atrial fibrillation and

flutter (427.2)

4,978/31,060 0.48 2.42e�37 atrial fibrillation/

atrial flutter25,a

rs1800562; chr6:26,092,913 G/A 0.0602 disorders of iron

metabolism (275.1)

201/47,321 4.33 1.07e�51 hemoglobin26

rs185937162; chr6:31,357,491 T/G 0.0428 ankylosing spondylitis

(715.2)

190/35,793 4.34 2.92e�35 ankylosing

spondylitis27,a

rs2040410; chr6:32,634,921 C/T 0.1260 celiac disease (557.1) 407/37,236 1.63 5.91e�39 celiac disease28,a

rs9273364; chr6:32,658,525 T/G 0.2769 type 1 diabetes (250.1) 2,266/36,631 0.80 4.23e�106 medication use: drugs

used in diabetes29

– – – type 2 diabetes with

ophthalmic

manifestations (250.23)

1,522/36,631 0.54 1.32e�34 –

rs9273368; chr6:32,658,698 G/A 0.2713 type 1 diabetes with

ophthalmic

manifestations (250.13)

760/36,631 1.41 2.91e�101 latent autoimmune

diabetes versus type

1 diabetes30

– – – type 1 diabetes with

renal manifestations

(250.12)

509/36,631 1.55 4.02e�80 –

– – – type 1 diabetes with

neurological

manifestations (250.14)

559/36,631 1.43 6.99e�76 –

– – – type 1 diabetes with

ketoacidosis (250.11)

205/36,631 1.75 1.23e�40 –

rs1794269; chr6:32,706,117 C/T 0.3760 diabetic retinopathy

(250.7)

1,544/43,849 0.60 4.53e�52 type 2 diabetes31,a

– – – insulin pump user

(250.3)

3,155/36,631 0.37 1.04e�39 –

rs12203592; chr6:396,321 C/T 0.1616 Other non-epithelial

cancer of skin (172.2)

6,627/41,896 0.36 1.83e�38 basal cell carcinoma32

– – – skin cancer (172) 8,228/41,896 0.32 1.65E-36 –

(Continued on next page)
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Table 2. Continued

rsid; chromosome position Alleles

Allele 2

frequency

Trait description

(phecode) Cases/controls

Log odds

ratio p value

Relevant GWAS

catalog citation

– – – basal cell carcinoma

(172.21)

3,509/41,896 0.47 2.36e�36 –

rs113993960; chr7:117,559,590 ATCT/A 0.0146 cystic fibrosis (499) 97/51,358 18.90 9.80e�49 lung function:

FEV1/FVC33,b

rs28929474; chr14:94,378,610 C/T 0.0179 alpha-1-antitrypsin

deficiency (270.34)

60/48,887 21.05 1.71e�52 serum albumin level34

rs1421085; chr16:53,767,042 T/C 0.4156 morbid obesity

(278.11)

7,255/32,074 0.25 1.65e�36 body mass index33

rs3747207; chr22:43,928,975 G/A 0.2296 other chronic

non-alcoholic liver

disease (571.5)

2,973/41,006 0.52 2.95e�54 alanine transaminase

levels in high alcohol

intake35

– – – chronic liver disease

and cirrhosis (571)

3,150/41,006 0.50 7.98e�53 –

The GWASs were conducted on 1,712 phecode traits with at least 20 cases in the set of 51,583 MGI samples with genetically inferred European

ancestry across 51.8 million SNPs with MAFs >0.01% and imputation score Rsq >0.3. The relevant GWAS catalog citation column provides a pheno-

type and citation identified in the GWAS Catalog for a related trait at the indicated SNP in MGI.
aGWAS Catalog association is within 50 kb of the indicated SNP.
bGWAS Catalog association is within 1 Mb of the indicated SNP.
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statistics are available to external investigators through a data

usage agreement (see resource availability in the STAR

Methods). Most importantly, the data generated for single-

health-system biobanks benefit the broader community through

incorporation in meta-analyses and consortium. Notably, nearly

a quarter of the >2 million participants in the Global Biobank

Meta-Analysis are from health-system-based biobanks.37

As biobanks continue to increase in number, they will remain

major contributors to the large-scale GWAS meta-analyses

that drive genetic discovery. As such, it is important to under-

stand the distinct features of individual biobanks. Here, we

have shown that a biobank recruited within a single health

system can strategically recruit sufficiently large sample sizes

for powerful genetic analysis and provides a valuable multi-use

institutional resource that is complementary to large national

biobank projects. With a sample size expected to top 100,000

participants during 2023, we anticipate that MGI will play an

important role in future research both at the UM and the broader

genetics community.

Limitations of the study
Our analysis revealed some limitations to MGI and similarly

designed single-health-system biobanks. These biobanks have

the potential for gaps in the health history of participants result-

ing from events that occur outside the respective health system.

The bimodal distribution of participant follow-up time suggests

that MGI is a mixture of long-time users of the health system

with lengthy follow-up times and newer patients to Michigan

Medicine with follow-up times of less than one year. Participants

with short follow-up times are likely individuals who receive

primary care from a different health system and are utilizing

Michigan Medicine for the first and potentially only time during

the surgical procedure in which they enrolled in MGI. We found

that patients with longer follow-up times had higher numbers

of phecode case assignments despite the fact that patient age
was relatively consistent across follow-up times. It is possible

that participants with longer follow-up times, despite being of

similar age, simply have more health problems. A more plausible

explanation is that participants with shorter follow-up times are

out-of-system enrollees receiving temporary, specialized care

at UM and therefore missing aspects of their medical history in

the Michigan Medicine EHRs. For these participants, we are

likely misclassifying them as controls for disease outcomes

with missing diagnoses in the Michigan Medicine EHRs.

An additional limitation of the single-health-system design is

that the demographics of the biobank naturally reflect the patient

population served by the health system. In the case of MGI, the

cohort largely comes from the surrounding Ann Arbor community

and thus overrepresents individuals of European ancestry relative

to both thepopulation ofMichigan and theUS.Moreover, theMGI

cohort itself is lessdiverse in termsof age, sex, race, ethnicity, and

socioeconomic status than the overall clinical population atMich-

igan Medicine.38 Underrepresentation of minority individuals in

particular can result in non-generalizable results and exacerbate

existing health inequities.39,40 There is a clear need to improve

enrollment of underrepresented populations beyond what is ob-

tained in the current recruitment strategy. To meet this need,

MGI is initiating recruitment efforts that leverage epidemiological

studies inminority populations and targeted recruitment using the

Michigan Health Care patient portal. Given that major differences

exist in recruitment strategies between single-health-system bio-

banks, a careful analysis is required to evaluate the unique limita-

tions and blind spots of a biobank.

The limitations of single-health-system biobanks underscore

the continued importance of large, national biobanks with popu-

lation-based recruitment in medical and public health research.

In addition to the large sample sizes afforded by these biobanks,

which is critical in collection of cases for very rare diseases,

population-based recruitment of broader geographic and demo-

graphic segments of the populations increase biobank diversity.
Cell Genomics 3, 100257, February 8, 2023 9
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Further, gaps in health records from individual health systems

can potentially be addressed by combining health histories

from multiple sources.

Finally, phenotype development from EHRs requires making

sense of dense, imperfect data. The wealth of available clinical

data means there is no definitive definition for any phenotype of

interest. In fact, one of the main strengths of EHR-based

phenotyping is the ability to fine-tune case definitions. In this

article, we used the PheWAS software, which provides a conve-

nient approach tomap granular ICD codes to phecode traits. The

advantage of this technique is the rapid and automated genera-

tion of the phenome across all individuals in a biobank. Given

the ubiquity of ICD codes, the PheWAS software provides a

realistic strategy for consistent and harmonized large-scale

phenotyping across biobanks. Thus, the phenotype definitions

in this article are well defined and, importantly, replicable in other

biobanks. That our strongest association results replicate known

signals indicate that phecodes are an effective tool for broad

phenotyping at the phenome scale. The phecode mappings,

however, are not sufficiently precise to correctly identify cases

or controls with perfect sensitivity. The phecode system also ne-

glects clinical data sources like laboratory results, physician

notes, and medication history that can be informative for eluci-

dating true disease status. To maximize power and obtain unbi-

ased effect size estimates for specific traits, it may be advanta-

geous to carefully extract all relevant information from the EHR

data and apply more complex validated electronic phenotype

algorithms, for example, as described by the Phenotype

KnowledgeBase (https://phekb.org).
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Software and algorithms
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BLAT Kent49 http://genome.ucsc.edu

FlashPCA2 Abraham et al. 201750 https://github.com/gabraham/flashpca
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Lead contact
Further information should be directed to and fulfilled by the lead contact, Matthew Zawistowski (mattz@umich.edu).

Materials availability
This study did not generate new unique reagents or material.

Data and code availability
The individual level genetic and clinical MGI data reported in this study cannot be deposited in a public repository because of patient

confidentiality. Summary statistics of Genome-Wide Association Studies reported in this study can be viewed through an interactive

phewebwebsite (https://pheweb.org/MGI/) that requires registration with a gmail e-mail address and acknowledgment that users will

not (i) attempt to scrape genetic data from the pheweb website, (ii) attempt to identify or contact individuals upon whom these an-

alyses are based, (iii) use the summary statistics contained on the website for commercial use. Summary statistics can be requested
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for download by emailing a completed Data Use Agreement form available at https://precisionhealth.umich.edu/our-research/

documents-for-researchers/ to phdatahelp@umich.edu.

This paper does not report original code. DOIs for pre-existing code and external data sources used in this paper are listed in the

key resources table.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
Participants in theMichigan Genomics Initiative (MGI) consent to allow research on both their biospecimens and EHR data, as well as

linking their EHR data to national data sources such as medical and pharmaceutical claims data. As of April 30th 2022, 91,695

participants have enrolled in the study. Participants are primarily recruited through the MGI - Anesthesiology Collection Effort

(n = 72,461) while awaiting a diagnostic or interventional procedure either at a pre-operative appointment or on the day of their

operative procedure at the University of Michigan Health System (Michigan Medicine). Additional participants are recruited through

the Michigan Predictive Activity and Clinical Trajectories (MiPACT) Study (n = 7,616), the Michigan Genomics Initiative-Metabolism,

Endocrinology, and Diabetes (MGI-MEND) Study (n = 4,153), the Mental Health BioBank (MHB2; n = 2,361), The Michigan and You –

Partnering to Advance Research Together (MY PART) Study (n = 2,037), Providing Mental Health Precision Treatment (PROMPT;

n = 1619) and the Biobank to Illuminate the Genomic Basis of Pediatric Disease (BIGBiRD; n = 226) among others.

We collect various self-reported demographic data provided by participants as part of routine appointment questionnaires for the

health system. Participant age is computed based on self-reported date of birth and defined as age as of April 2020 or age at death if

the participant is deceased. Self-reported race is based on a multiple-choice question with available options: Caucasian, African

American, Asian, American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, Other/Unknown. Likewise, self-re-

ported ethnicity is based on a multiple-choice question with available options: Hispanic or Latino, Not Hispanic or Latino, Unknown).

Data were collected according to the Declaration of Helsinki principles.51 MGI study participants’ consent forms and protocols were

reviewed and approved by the University of Michigan Medical School Institutional Review Board (IRB IDs HUM00071298,

HUM00148297, HUM00099197, HUM00097962, and HUM00106315). Opt-in written informed consent was obtained. Additional

details about MGI can be found online (https://precisionhealth.umich.edu/our-research/michigangenomics/).

METHOD DETAILS

Genetic data
Samples were genotyped by the University of Michigan Advanced Genomics Core on one of two customized versions of the Illumina

Infinium CoreExome-24 bead array platform. These array versions have nearly identical 570K marker backbones synthesized in two

batches. The array design contains customized probes incorporated to detect candidate variants from GWAS for multiple diseases

and traits (�2,700), nonsense and missense variants (�49,000), ancestry informative markers (�3,300), and Neanderthal variants

(�5,300).52

Genetic quality control procedures
We perform sample-level quality control (QC) on a rolling basis as batches of samples are genotyped. We estimate pairwise relat-

edness using KING (v2.1.3),45 and cross-sample contamination using VICES.46 Using PLINK (v1.9), we determine sample level

call-rates.44We exclude individual samples for any of the following: (1) the participant withdraws from the study, (2) genotype-inferred

sex does not match the self-reported gender or self-reported gender was missing, (3) sample has an atypical sex chromosomal

aberration, (4) kinship coefficient >0.45 with another participant with a different study ID, (5) sample-level call-rate <99%, (6) sample

is a technical duplicate or twin of another sample with a higher call-rate either within the same array or across arrays, (7) estimated

contamination level exceeds 2.5%, (8) missingness on any chromosome exceeds 5%, or (9) sample is processed in a DNA extraction

batch that is flagged for severe technical problems.

We estimate the genetic ancestry of participants passing QC using principal component analysis (PCA) and admixture analysis using

SNP data for 938 unrelated samples of known worldwide ancestry from the Human Genome Diversity Panel (HGDP) as ancestry refer-

ence samples.41,53 We define continental labels for the individual populations based on mappings available from the Center for the

Study of HumanPolymorphism’swebsite (https://cephb.fr/en/hgdp_panel.php).We first calculate a reference space of worldwide prin-

cipal components (PCs) for the HGDP samples using PLINK.We then project MGI samples into this space and broadly infer the genetic

ancestry ofMGI samples based on their proximity to the knownHGDPcontinental labels. We defineMGI participants to be of European

ancestry if their first two PCs are containedwithin a circle defined by a radius 1/8 the distance between the centroid formed by European

HGDP samples and the centroid formed between European, East Asian, and African HGDP samples in the PC1 vs. PC2 space.11 We

estimate the fraction of each MGI participant’s genome that originates from European, African, East Asian, Central/South Asian, West

Asian, Native American, or Oceaninan ancestral HGDP continental populations using ADMIXTURE (v1.3.0)48 (Figure S6). Wemerge ge-

notypes of MGI participants and HGDP reference samples prior to running ADMIXTURE in supervised mode using the total number of

HGDP continental population labels (K = 7) as a template. We define the ADMIXTURE-based majority global ancestry for each MGI

participant as the largest Q value (ancestry fraction) reported by ADMIXTURE.
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We merge samples across genotyping batches and apply SNP-level QC procedures. We exclude SNPs with poor intensity

separation based on metrics from the GenomeStudio Genotyping Module (GenTrain score <0.15 or Cluster Separation score <0.3)

and drop SNPs with overall call-rate <99% or HardyWeinberg p < 10�4 within each array. To identify potential batch effects between

arrays, we test for differences in allele frequency between array versions using the Fisher Exact Test and exclude variants with

p value <10�3, then merge the genotype data from the two arrays.

We phase the genotypes of the full set of merged samples using EAGLE (v2.4.1)54 without the use of a reference panel (‘‘within-

cohort’’ phasing). We then impute samples with both the Haplotype Reference Consortium (HRC) reference panel (64,940 predom-

inantly European haplotypes containing 40,457,219 genetic variants)42 and the Trans-Omics for Precision Medicine (TOPMed)

reference panel (194,512 ancestrally diverse haplotypes containing 308,107,085 genetic variants).43 We measure imputation quality

using the estimate of imputation accuracy (Rsq) and the squared correlation between imputed and true genotypes (EmpRsq) metrics

produced by the imputation software Minimac4 (v1.0.0).55

Clinical phenotype data
We extract all available ICD 9 and 10 diagnosis codes for MGI participants from the Michigan Medicine EHR. These codes are

mapped to binary phecode phenotypes based on ICD inclusion and exclusion criteria using the PheWAS R package v0.99.5.-5.16

We use the default PheWAS package requirements for case and control definitions: cases require two instances of an inclusion

ICD code and controls have neither inclusion nor exclusion ICD codes. We also account for sex-specific phenotypes using the re-

strictPhecodesByGender() function and the genotype-inferred sex.

Genetic analysis
We performGWAS in MGI samples of genetically inferred European ancestry on a total of 1,712 phecode traits with case countR20.

The GWAS cohort contains 51,583 MGI participants, including 49,689 with inferred European ancestry by the HGDP projection PCA

and an additional 1,894 participants with inferred majority European ancestry by ADMIXTURE, but not identified as East Asian or Af-

rican by the projection PCA. GWAS are run on the TOPMed-imputed genetic dataset using a mixed model implemented in SAIGE

v0.43.3 to account for relatedness and case-control imbalance.36 For each phecode trait, we analyze variants with minor allele

frequency (MAF) > 0.01% and adjusted for age, inferred sex, genotyping array, and the first ten genetic PCs. We compute the

genomic control inflation factor for the GWAS of each phecode trait to assess stratification and test inflation.56

We identify quasi-independent genome-wide significant loci for each GWAS in the following manner: For each trait, we extract all

SNPs with GWAS p value < 5e-8 and create 1Mb intervals centered around each SNPs. Overlapping intervals are combined and we

report the SNP with the lowest p value from each of the resulting intervals as the genome-wide significant peak SNP.

We compared the 30 associations with smallest p value for variants withMAF>1%with associations reported in theGWASCatalog

(flat file downloaded August 16, 2021).1 We considered only associations in the GWAS Catalog that had a minimum reported p

value < 5e-10 to decrease potential false positives within the Catalog. We defined an exact regional match as Catalog associations

reported at the same chromosomal position location as the peak SNP. If an exact positional match was found, wemanually scanned

the list of Catalog associations for the same or a clinically similar phenotype to the corresponding phecode trait that produced the

genome-wide significant association in MGI. If multiple related traits were reported in the Catalog for that SNP, we reported the trait

with lowest p value except in one case where the top association appeared to be a sub-analysis that was more specific than our

definition (e.g. for rs4148325 associated with "Disorders of bilirubin excretion," we reported "Bilirubin levels" as the GWAS Catalog

match which had p = 5e-62 in the Catalog, even though the Catalog also listed this SNP for "Bilirubin levels in extreme obesity"

at p = 5e-93). If an exact positional match was not found, we expanded our search to a 50kb window surrounding the peak SNP

and followed the same protocol. In only one case was an association not found within a 50kb window and we expanded to a

1Mb region for this association.

Phecodes in UK biobank
We computed phecodes for a cohort of 408,595 individuals of White British ancestry with high-quality genetic data in the UK Biobank

(UKB). We used ICD codes and genotyped derived data from open-access UK Biobank data. UK Biobank received ethical approval

from the NHS National Research Ethics Service North West (11/NW/0382). The present analyses were conducted under UK Biobank

data application number 24460.

We excluded samples which were flagged by the UK Biobank quality control documentation (Resource 531) as (1) ‘‘het.missing.

outliers’’, (2) ‘‘putative.sex.chromosome.aneuploidy’’, (3) ‘‘excess.relatives’’, (4) ‘‘excluded.from.kinship.inference’’, (5) the reported

gender (‘‘Submitted.Gender’’) did not match the inferred sex (‘‘Inferred.Gender’’), (6) withdrew from the UKB study and (7) were not

included in the phased and imputed genotype data of chromosomes 1–22, and X (‘‘in.Phasing.Input.chr1_22 and in.Phasing.

Input.chrX’’). Furthermore, we reduced the data to samples of White British ancestry (see UK Biobank Resource 531, ‘‘in.white.

British.ancestry.subset’’). We used the PheWAS R package to aggregate the ICD9 and ICD10 codes into phecode traits, requiring

one inclusion code for case definitions.
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