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Abstract

When investigating connectivity and microstructure of white matter pathways of the brain using 

diffusion tractography bundle segmentation, it is important to understand potential confounds 

and sources of variation in the process. While cross-scanner and cross-protocol effects on 

diffusion microstructure measures are well described (in particular fractional anisotropy and mean 

diffusivity), it is unknown how potential sources of variation effect bundle segmentation results, 

which features of the bundle are most affected, where variability occurs, nor how these sources 

of variation depend upon the method used to reconstruct and segment bundles. In this study, we 

investigate six potential sources of variation, or confounds, for bundle segmentation: variation 
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(1) across scan repeats, (2) across scanners, (3) across vendors (4) across acquisition resolution, 

(5) across diffusion schemes, and (6) across diffusion sensitization. We employ four different 

bundle segmentation workflows on two benchmark multi-subject cross-scanner and cross-protocol 

databases, and investigate reproducibility and biases in volume overlap, shape geometry features 

of fiber pathways, and microstructure features within the pathways. We find that the effects of 

acquisition protocol, in particular acquisition resolution, result in the lowest reproducibility of 

tractography and largest variation of features, followed by vendor-effects, scanner-effects, and 

finally diffusion scheme and b-value effects which had similar reproducibility as scan-rescan 

variation. However, confounds varied both across pathways and across segmentation workflows, 

with some bundle segmentation workflows more (or less) robust to sources of variation. Despite 

variability, bundle dissection is consistently able to recover the same location of pathways in the 

deep white matter, with variation at the gray matter/ white matter interface Next, we show that 

differences due to the choice of bundle segmentation workflows are larger than any other studied 

confound, with low-to-moderate overlap of the same intended pathway when segmented using 

different methods. Finally, quantifying microstructure features within a pathway, we show that 

tractography adds variability over-and-above that which exists due to noise, scanner effects, and 

acquisition effects. Overall, these confounds need to be considered when harmonizing diffusion 

datasets, interpreting or combining data across sites, and when attempting to understand the 

successes and limitations of different methodologies in the design and development of new 

tractography or bundle segmentation methods.
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1. Introduction

Diffusion-weighted magnetic resonance imaging (dMRI) has proven valuable to characterize 

tissue microstructure in health and disease (Alexander et al., 2019; Jones et al., 2018; 

Novikov et al., 2018). Moreover, the use of dMRI fiber tractography to virtually dissect 

fiber pathways (Jeurissen et al., 2019) is increasingly used to localize microstructure 

measurements to specific white matter bundles (Raffelt et al., 2017; Chamberland et al., 

2019; Yeatman et al., 2012), and to study the connections and shapes of pathways (Jeurissen 

et al., 2019; Maffei et al., 2019; Forkel et al., 2014; Hau et al., 2017; Hau et al., 2016; 

Sarubbo et al., 2019; Sarubbo et al., 2013; Neubert et al., 2015; Neubert et al., 2014; 

Mars et al., 2012). Despite promises of noninvasive measurements of white matter features, 

variability may exist in measurements due to inherent variability within scanners and across 

scanners, differences in acquisition protocol parameters, and differences due to processing 

pipelines, amongst others. These sources of variance challenge the quantitative nature of 

derived measures of microstructure and connectivity, and hinder the ability to interpret 

different findings or combine different datasets.

These effects have been intensively studied for tissue microstructure features, specifically 

diffusion tensor imaging (DTI) (Pierpaoli et al., 1996) indices of fractional anisotropy 

(FA) and mean diffusivity (MD). Numerous studies have characterized intra-scanner and 
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inter-scanner DTI variability (AK Prohl et al., 2019; Mirzaalian et al., 2016; VA Magnotta 

et al., 2012; Landman et al., 2011; Teipel et al., 2011; Vollmar et al., 2010; Farrell et al., 

2007; Landman et al., 2007; Heiervang et al., 2006; Pfefferbaum et al., 2003; Jones, 2003; 

Lori et al., 2002), differences due to acquisition parameters (Farrell et al., 2007; Landman 

et al., 2007; Jones, 2003; Jones et al., 2020; Papinutto et al., 2013; Jones, 2004; Jones 

and Basser, 2004) including image resolution, number of diffusion images, and diffusion 

sensitization (i.e. the b-value), and differences due to processing and algorithmic choices 

(Jones et al., 2007; Chang et al., 2005). These have paved the way towards recommendations 

and guidelines for reliable and reproducible DTI (Jones et al., 2013; Jones, 2010; Jones and 

Cercignani, 2010; DK Jones et al., 1999); however, a standardized universal dMRI protocol 

does not exist, and differences are expected across sites and studies (Fig. 1) (L Ning et 

al., 2020; CM Tax et al., 2019). Yet, there is significant interest in combining data from 

different sites to increase statistical power and benefit from multi-center recruitment abilities 

(Mirzaalian et al., 2016; L Ning et al., 2020; Zhong et al., 2020; Cetin Karayumak et al., 

2019; KM Huynh et al., 2019; Vishwesh Nath et al., 2018; Yu et al., 2018; Mirzaalian et al., 

2018; Fortin et al., 2017), and it is clear that these differences need to be accounted for, or 

removed, prior to data aggregation or joint statistical analysis.

Notwithstanding the increased awareness and improved characterization of dMRI 

microstructural measures, very little work has been performed to characterize and 

understand reproducibility of tractography-derived features across scanners, across 

protocols, and across different tractography bundle segmentation algorithms (Pestilli et al., 

2014; Nath et al., 2019). Variability in tractography estimates of fiber pathways will further 

increase variability in connectivity analyses and impact microstructural characterization, e.g. 

when tractography is used to define ROIs or to perform along-tract profiling. While few 

studies do exist, they are often limited to a single pathway (Chamberland et al., 2018; F 

Rheault et al., 2020), a single dissection protocol (Vazquez et al., 2020; Guevara et al., 

2017), or a single source of potential variation (Schilling et al., 2020), such as test-retest 

or population-based reproducibility (Guevara et al., 2017; F Zhang et al., 2019; Guevara et 

al., 2012). Additionally, they do not investigate where in the brain or along the pathway that 

this variability occurs, and are often limited to characterizing only microstructural features 

of these pathways (i.e., the FA or MD along or within the pathway) (Heiervang et al., 

2006; Wakana et al., 2007). Thus, we currently do not which sources of variation impact 

tractography bundle segmentation the most, which features of the bundle are most affected, 

where variability occurs, nor how these questions are dependent upon the workflow used to 

dissect fiber bundles. Thus, for the first time, we combine, assess, and rank all previously 

studied sources of potential variation in the same study, with a focus on tractography rather 

than just DTI measures.

Here, we investigate and compare the reproducibility of tractography across six confounds, 

or sources of variation: intrinsic variability across scan repeats, differences across scanners, 

across vendors, across different acquisition spatial resolution and acquisition angular 

resolution, and across different diffusion sensitizations (b-values). We employ and examine 

four fully-automated and commonly utilized bundle reconstruction workflows on two cross-

scanner cross-protocol benchmark datasets. We first investigate how these confounds affect 

not only the overlap and location of pathways, but also evaluate variability in topological 
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measures of the bundle including length, area, shape, and volume features. We ask which 

pathways, which bundle segmentation workflow, and which features are most reproducible? 

And what source of variation is most significant for each method? Second, we visualize 

where in the brain, and where within a pathway, tractography is most variable (and 

most robust) and investigate if sources of variation effect this in different ways. Third, 

we quantify and visualize differences in tractography that result when using different 

bundle segmentation workflows. Finally, we analyze traditional DTI measures and quantify 

differences due to these sources of variation as well as the added variance introduced by 

the tractography process over and above that inherent across scanners and across acquisition 

protocols.

2. Methods

2.1. Datasets

Here we utilize two open-sourced multi-subject, multi-scanner, and multi-protocol 

benchmark databases: the MASiVar (Cai et al., 2020) and MUSHAC datasets (L Ning et al., 

2020; CM Tax et al., 2019). We note that other multi-site databases exist (see Discussion), 

although they are often limited to investigating differences across subjects and scanners, 

whereas the two chosen datasets together allow investigation of repeats, scanners, vendors, 

and acquisition protocols (resolution, direction, b-values).

2.1.1. MUSHAC dataset—The MUSHAC database will allow investigation of cross-

scanner, cross-protocol, and cross b-value effects (L Ning et al., 2020; CM Tax et al., 

2019). This database was part of the 2018 and 2019 MICCAI Harmonization challenge. 

Here, we utilize the data acquired from 10 healthy subjects used as training data in the 

challenge, and described in (L Ning et al., 2020; CM Tax et al., 2019). Each subject has 

4 unique datasets. This work focuses on the data acquired on two scanners with different 

gradient strengths: a) 3T Siemens Prisma (80 mT/m), and b) 3T Siemens Connectom (300 

mT/m). Two types of protocols were acquired from each scanner: 1) a ‘standard’ protocol 

with acquisition parameters matched to a typical clinical protocol; and 2) a more advanced 

or ‘state-of-the-art’ protocol where the superior hardware and software specifications were 

utilized to increase the number of acquisitions and spatial resolution per unit time. The 

‘standard’ protocol from both scanners is matched as closely as possible, with an isotropic 

resolution of 2.4 mm, TE = 89 ms and TR = 7.2 s, and 30 diffusion-weighted directions 

acquired at two b-values: b = 1200, 3000 s/mm2 (scan time ∼7.5 min). On the other hand, 

the Prisma ‘state-of-the-art’ data has a higher isotropic resolution of 1.5 mm, TE = 80 ms, 

TR = 7.1 s and 60 directions at the same b-values (∼14.5 min). While the Connectom 

‘state-of-the-art’ data has the highest resolution of 1.2 mm with TE = 68 ms, TR = 5.4 s 

and 60 directions (~11 min). All data was corrected for distortions, motion, eddy currents 

(Andersson et al., 2003), and gradient nonlinearity distortions (Glasser et al., 2013). For 

each subject, the Prisma standard-acquisition dataset was used as a reference space and all 

additional datasets were affinely registered to this space using the corresponding FA maps 

with FSL Flirt with appropriate b-vector rotation.
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2.1.2. MASiVar dataset—The MASiVar database will allow investigation of scan-

rescan and cross-scanner effects. Here we used a subset of Cohort II of this database 

described in (Cai et al., 2020), which consisted of 5 healthy subjects with 6 unique 

“datasets”. Each subject was scanned on four scanners: a) 3T Philips Achieva (80 mT/m) 

and b) a different 3T Philips Achieva (60mT/m) at the same site, c) a 3T General Electric 

Discovery MR750 Scanner at a different site, and d) a 3T Siemens Skyra scanner at a 

different site. These acquisitions were matched as closely as possible and are similar to that 

of the standard-protocol described above: with an isotropic resolution of 2.5 mm, TE = 55 

ms and TR = 6.2 s (7.0 s for scanner-b), and 32 diffusion-weighted directions acquired at b = 

1000s/mm2 (scan time ∼3.5 min). Additionally, the subjects were scanned twice on the first 

scanner, and also had an acquisition that consisted of a 96-direction b = 1000 dataset, both of 

which were also utilized in the current study. We note that one subject did not have a repeat 

scan on the first scanner (a) and one subject did not have a scan on the GE Scanner (b).

All data were corrected for distortions, motion, and eddy currents (Andersson et al., 

2003; Cai et al., 2021). For each subject, the first session on scanner-a was used as a 

reference space and all additional datasets were affinely registered to this space using the 

corresponding FA maps with FSL Flirt (Jenkinson et al., 2012) with appropriate b-vector 

rotation.

2.2. Sources of variation

We investigate several possible sources of variation in the bundle segmentation process.

RESCAN: the effects of repeating a scan on the same scanner (i.e. scan-rescan) in a 

different session, but with a matched acquisition. This effect is quantified using the repeated 

acquisitions from the MASiVar database.

SCAN1: inter-scanner (cross-scanner) effects, with a matched acquisition and of the same 

vendor. SCAN1 is quantified using the matched acquisitions from the MASiVar database 

acquired on different Philips scanners (both Philips Achieva).

SCAN2: inter-scanner (cross-scanner) effects, with a matched acquisition and of the same 

vendor. SCAN2 is quantified using the matched standard acquisitions from the MUSHAC 

acquired on different Siemens scanners (Siemens Connectom and Siemens Prisma).

VEN1: inter-vendor (cross-vendor) effects, with a matched acquisition. VEN1 is quantified 

using the matched acquisitions from the MASiVar database, but acquired on scanners from 

different vendors (Philips Achieva and General Electric Discovery).

VEN2: inter-vendor (cross-vendor) effects, with a matched acquisition. VEN2 is quantified 

using the matched acquisitions from the MASiVar database, but acquired on scanners from 

different vendors (Philips Achieva and Siemens Skyra).

RES1: effects of spatial resolution, with matched scanner, diffusion directions, and b-

value. RES1 is quantified by using the MUSHAC acquisitions from the Prisma standard-

acquisition and from the Prisma state-of-the-art acquisition but with only 30 uniformly 
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distributed directions utilized (to match the standard-acquisition). This represents differences 

between a 2.4 mm isotropic and 1.5 mm isotropic acquisition.

RES2: effects of spatial resolution, with matched scanner, diffusion directions, and b-value. 

RES2 is quantified by using the MUSHAC acquisitions from the Connectom standard-

acquisition and from the Connectom state-of-the-art acquisition but with only 30 uniformly 

distributed directions utilized (to match the standard-acquisition). This represents differences 

between a 2.4 mm isotropic and 1.2 mm isotropic acquisition.

DIR1: effects of number of diffusion-weighted directions, with matched scanner, resolution, 

and b-value. DIR1 is quantified using the MASIvar acquisitions from the first scanner at 32 

directions and the acquisition on the same scanner at 96 directions.

DIR2: effects of number of diffusion-weighted directions, with matched scanner, resolution, 

and b-value. DIR2 is quantified using the MUSHAC acquisitions from the state-of-the 

art Prisma acquisition with only 30 uniformly distributed directions utilized and the full 

state-of-the art acquisition which consists of 60 directions.

BVAL: effects of changing the b-value, on the MUSHAC Prisma scanner with the ‘standard’ 

protocol, from b = 1200 to b = 3000, within the same acquisition.

We note that we also investigated a second effect of b-value (within the state-of-the art 

Prisma protocol, with no statistically significant differences, and for figure simplicity only 

show the above-mentioned b-value analysis). Previous version of this manuscript (and 

preprint) included an ACQ1 and ACQ2 (from state-of-the-art to standard-acquisition) that 

were isolated into both effects of directions (DIR1 and DIR2) and resolution (RES1 and 

RES2).

A final source of variation investigated is that caused by the use of different bundle 

reconstruction workflows. Because all workflows segment different numbers of, and sets 

of, fiber pathways (see below), for this analysis, we investigated only those fiber pathways 

which are common to all algorithms. In this case, we identified 7 (bilateral) pathways which 

are segmented by all automated methods.

2.3. Tractography bundle dissection

We utilized four common, well-validated, and fully-automated fiber bundle reconstruction 

workflows, all implemented using standard and/or recommended settings. It is important to 

highlight that each workflow included differences in local fiber-direction estimation, fiber 

tractography, and bundle segmentation algorithms, and our attempt was to implement the 

entire workflow as would be done in a typical scientific study (see Discussion on limitations 

of confounds due to differences in bundle segmentation process). While there are dozens 

of bundle segmentation algorithms, we have chosen these to be representative of common 

approaches, utilizing regions of interest, atlases, machine learning, templates, etc. (see 

Discussion and Limitations).

2.3.1. TractSeg—TractSeg is based on convolutional neural networks and performs 

bundle-specific tractography based on a field of estimated fiber orientations (Wasserthal 
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et al., 2019; J Wasserthal et al., 2018; J Wasserthal et al., 2018). We implemented 

the dockerized version at (https://github.com/MIC-DKFZ/TractSeg), which generates fiber 

orientations using constrained spherical deconvolution with the MRtrix3 software (Tournier 

et al., 2019). We note that different reconstruction methods could have been chosen to 

generate fiber orientations. This method dissects 72 bundles.

2.3.2. Automatic fiber tractography (ATK)—ATK was performed in DSI Studio 

software using batch automated fiber tracking (Yeh, 2020). Data were reconstructed 

using generalized q-sampling imaging (Yeh et al., 2010) with a diffusion sampling 

length ratio of 1.25. 20 white matter pathways were automatically reconstructed using 

seeding regions defined in the HCP842 tractography atlas (Yeh et al., 2018), randomly 

generated tracking parameters of anisotropy threshold, angular threshold, step size, and 

subsequent segmentation and pruning. The Dockerized source code is available at http://

dsi-studio.labsolver.org.

2.3.3. Recobundles (RECO)—Recobundles (Garyfallidis et al., 2018) segments 

streamlines based on their shape-similarity to a dictionary of expertly delineated model 

bundles (Yeh et al., 2018). Recobundles was run using DIPY (Garyfallidis et al., 

2014) software (https://dipy.org) after performing whole-brain tractography using spherical 

deconvolution and DIPY LocalTracking algorithm. The bundle-dictionary contains 80 

bundles, but only 44 were selected to be included in this study after consulting with the 

algorithm developers based on internal quality assurance (for example, removing cranial 

nerves which are often not used in brain imaging). Of note, Recobundles is a method 

to automatically extract and recognize bundles of streamlines using prior bundle models, 

and the implementation we chose uses the DIPY bundle dictionary (Yeh et al., 2018) for 

extraction, although others can be used, as well as alternative shape-similarity filtering 

criteria.

2.3.4. Xtract—Xtract (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/XTRACT) is a recent 

automated method for probabilistic tractography based on carefully selected inclusion, 

exclusion, and seed regions, defined in a standard space (Warrington et al., 2020). Xtract 

used the ball-and-stick model of diffusion from FSL’s bedpostx algorithm (Jenkinson et al., 

2012), in combination with a probabilistic tractography algorithm probtrackx, to reconstruct 

42 white matter pathways. In contrast to the preceding methods, which result in streamlines, 

this method results in visitation count maps for each pathway.

A list of all segmentations generated from each method and corresponding acronyms 

is given in the appendix. The 7 pathways identified to be common to all tractography 

bundle segmentation techniques includes: arcuate fasciculus (AF), corticospinal tract (CST), 

inferior fronto-occipital fasciculus (IFO), inferior longitudinal fasciculus (ILF), middle 

longitudinal fasciculus (MdLF), optic radiations (OR), and uncinate fasciculus (UF), all 

of which are bilateral including left (_L) and right (_R) hemisphere pathways.

A thorough quality control was performed for all subjects, and for all pathways. This 

included first visualization and verification of adequate alignment of all FA maps (to ensure 

appropriate quantification of overlap measures). Second, all pathways, for a subjects, were 
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visualized in mosaic form using tools from the SCILPY tool-box (https://github.com/scilus/

scilpy), and pathways were visually assessed and removed from analysis if deemed in the 

incorrect location or shape. Finally, individual bundles were removed from analysis if the 

number of segmented streamlines was less than 3 standard deviations away from the mean 

number (for each pathway), or if the total number of streamlines was below 200 (indicating 

failure of tractography), and subjects were removed from analysis (for a given algorithm) if 

> 20% of pathways failed QC.

2.4. Feature extraction

A number of features were extracted from each bundle segmented. First, for simple 

comparisons of the volume occupied by each pathway, all bundles (from all methods) were 

binarized and resampled at 1 mm isotropic resolution. For methods generating streamlines 

(Tractseg, ATK, and RECO) this is equivalent to binarizing based on a streamline density of 

1. Because Xtract output is in the form of a normalized probability distribution, where 

a threshold of 2.5E-4 was chosen based on (Warrington et al., 2020). The binarized 

segmentation was used for measures of Dice overlap (described below).

Second, several descriptors of the shape and geometry of the bundles were extracted. Shape 

analysis was performed using DSI Studio, and made available as matlab code (https://

github.com/dmitrishastin/tractography_shapes/), based on (Yeh, 2020), to derive length, 

area, volume, and shape metrics of a bundle. Briefly, length features include mean length, 

span, diameter, and average radius of end regions. Area features include total surface area 

and the total area of end regions. Volume features include total volume, trunk volume, and 

branch volume. Shape features include pathway curl, elongation, and irregularity.

Finally, microstructure measures of FA and MD (calculated using iteratively reweighted 

linear least squares estimator) within pathways were extracted. In all cases, a simple 

measure of the average value within the binary volume was performed, although we note 

that these measures can also be weighted by certainty or streamline density. To isolate the 

added variation due to tractography from that of the existing sources of variation, these 

measures were extracted in two ways. First, using the binary regions defined in the reference 

scan-space only (i.e., the Prisma standard-acquisition and first session on scanner-a for 

MUSHAC and MASiVar datasets respectively) were used as the same region-of-interest 

across all effects, in order to isolate each source of variation while keeping ROIs constant. 

Second, the binary region defined by tractography for each specific dataset was used to 

extract the average FA (or MD), which includes both variation due to the effect under 

investigation and the variation due to tractography differences.

2.5. Reproducibility evaluation

Reproducibility was evaluated using several metrics, and across each source of variation. 

First, the Dice overlap was calculated for each pair of bundles as an overall measure of 

similarity of volumes. The Dice overlap is calculated as two times the intersection divided 

by the sum of the volumes of each dataset. Results were displayed across all fiber pathways 

for a given source of variation, and differences between effects were calculated using the 

nonparametric paired (i.e. same subject, different effect) Wilcoxon signed rank tests.
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Differences in scalar shape features are calculated as the mean absolute percentage error 

(MAPE), sometimes referred to as the mean absolute percentage deviation. For two different 

scans, this measure is calculated as the difference divided by the mean, and can be converted 

to a percentage error by multiplication by 100. This measure was calculated over all 

subjects, and results were displayed across all fiber pathways for a given source of variation. 

Differences between effects were again calculated using the nonparametric paired (i.e. same 

subject, different effect) Wilcoxon signed rank tests.

For visual comparisons only, all subjects were nonlinearly registered to MNI space, using 

the 1 mm isotropic FA template and the corresponding FA maps with FSL FLIRT + FNIRT. 

Streamlines were directly warped to this space for visualization of agreement/disagreement 

across the cohort. Note that quantification of shape features was performed in native space 

prior to warping.

For all statistical analysis, thresholds were corrected for multiple comparisons. For example, 

when investigating differences in effects of DICE/MAPE, etc., we tested differences 

between 10 effects, resulting in 55 tests performed for each analysis.

3. Results

3.1. Qualitative variation

Fig. 1 shows FA maps of the same subject, but acquired on different scanners and with 

different protocols. In agreement with the literature (L Ning et al., 2020; CM Tax et al., 

2019), differences in magnitude, contrast, and signal-to-noise ratios are readily apparent, and 

dMRI measures qualitatively vary due to scanner and acquisition effects.

Fig. 2 shows tractography bundle segmentation results for an example pathway (the arcuate 

fasciculus; AF) on a single subject, for two scanners, two protocols, two b-values, and all 

four reconstruction methods. For a given bundle segmentation method, minor differences 

are observed in individual gyri and at regions of low streamline density. However, bundles 

are visually very similar across scanners and protocols, with similar shapes, locations, 

curvatures, and connections. Most notably, and as expected (Schilling et al., 2020), the 

biggest differences are observed when comparing the same pathway across different bundle 

segmentation methods.

3.2. Quantitative variation due to rescan, scanner, vendor, resolution, directions, and 
b-value effects

The effects of RESCAN, SCAN1, SCAN2, VEN1, VEN2, DIR1, DIR2, and BVAL on Dice 

overlap coefficient is shown in Fig. 3 for fourteen selected pathways common to all bundle 

segmentation methods. Notably, reproducibility is most dependent on the bundle dissection 

method, with TractSeg consistently resulting in high reproducibility for all sources of 

variation. Within a method, most pathways show similar patterns of reproducibility. For 

example, for TractSeg and Xtract all pathways indicate high RESCAN, DIR(1 and 2) and 

BVAL reproducibility, but are most sensitive to RES, with RES2 showing more variation 

than RES1. Additionally, Dice overlap shows some variation across pathways, for example 
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CST and UF generally have higher overlap than OR, IFO, and AF, although trends are 

different for different workflows.

The results of the Dice overlap coefficient-analysis for each method is shown in Fig. 4, 

but condensed across all pathways within a given bundle segmentation method. Similar 

trends are observed as in Fig. 3, with TractSeg consistently indicating the highest Dice 

overlap, and all methods indicating moderate-to-good overall overlap for most pathways. In 

general, the largest differences are observed when changing resolution, with changes due to 

RES2 resulting in larger differences than RES1. Following this, differences across vendors 

(VEN1 more different than VEN2 comparisons) are greater than across scanners (for both 

SCAN1 and SCAN2), which are greater than the inherently stochastic nature of RESCAN 

variability. Finally, differences caused by DIR (1 and 2) and BVAL are on the level of, or 

even less than, those caused by RESCAN, with the notable exception of ATK, which utilizes 

a reconstruction method and tractography propagation inherently dependent on diffusion 

sensitization.

3.3. Localization of variation

Fig. 5 visualizes locations of tractography bundle segmentation agreement (or consistency), 

and where it disagrees (variability) as hot and cold colormaps, respectively. Agreement 

and disagreement are averaged across all subjects and shown for all sources of variation. 

For display, we have chosen an example pathway that is highly reproducible (the AF from 

TractSeg) and one which displayed lower reproducibility (the SLFII from Xtract). For 

the highly reproducible pathway, all sources of variation show very similar results. The 

agreement is very high throughout the entire pathway (hot colors), and percent-disagreement 

remains fairly low (black and dark blue colors). This means that when two bundles 

disagree, the disagreement is largely randomly distributed, rather than a consistent localized 

bias introduced by a certain source of variation – an effect which would show up as a 

consistent disagreement (i.e. a high percent-disagreement). Disagreement tends to occur at 

the periphery, or boundaries, of the pathway, in particular at the gray-white matter junction, 

and within individual gyri.

For the less reproducible pathway, the agreement is moderate to high in the dense core, or 

center, of the pathway in the deep white matter. Again, disagreements are at the edges, 

and prominent at the white matter and gray matter boundary. However, even though 

disagreement is more noticeable, the percent-disagreement remains low, indicating random 

disagreement as opposed to a consistent bias in the spatial location of this pathway. In this 

case, sources of variation from SCAN2 and RES2 and VEN1 are more noticeable as a larger 

source of variation, in agreement with quantitative results.

3.4. Variation of shape features

Fig. 6 shows the RESCAN reproducibility of shape features as measured by MAPE, for 

all features and all pathways, visualized in decreasing reproducibility. In agreement with 

Dice, TractSeg has higher overall reproducibility, with most features and most pathways 

below 10% MAPE. Similarly, ATK and Reco are able to reproducibly characterize most 

features of most pathways with high consistency. In general, reproducibility of features 
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follows similar order across all methods, with features of Curl, Length, Span, and Diameter 

highly reproducible, and those of surface area, volume, and end area less so. Additionally, 

reproducibility is highly dependent on pathway, with clear variation depending upon the 

bundle being analyzed.

Fig. 7 summarizes the MAPE of different features across different sources of variation. 

Again, Curl, Length, and Span are highly reproducible across all effects, with MAPE always 

below 10%, and surface area and volume result in higher MAPE. Trends are the same 

as those observed for Dice overlap, with generally larger differences due to resolution 

and vendor acquisition effects (RES 1 and 2, VEN 1 and 2), followed by scanner effects 

(SCAN1 showing the largest variation).

To look for systematic differences introduced in the quantification of features, we calculate 

the mean percent variation (i.e., the signed value of MAPE), across all sources of variation, 

for all features (across all bundles). Fig. 8 shows that most effects do not significantly bias 

bundle shape measures. For example, nearly all features derived from TractSeg are within a 

10% variation and largely centered on 0. However, RES2 and VEN2 do introduce a small, 

but consistent, bias, in measures of surface area, end area, and volume (in this case, the 

higher resolution results in smaller values). Similarly, for ATK, a bias is observed in the 

opposite direction for the same features for effects of acquisition resolution. Additionally, 

b-value introduces a significant bias for ATK, with the higher b-value scan resulting in 

larger quantitative values for these features. Reco, in agreement with previous figures, 

has a much wider range of variation, and larger effects due to acquisition for features of 

Diameter, Surface Area, End Areas and Volume. Thus, different sources of variation may 

bias quantitative extraction of shape features, and bias them differently for different bundle 

segmentation methods.

3.5. Variation across bundle segmentation methods

Next, we compared the agreement of the same bundle, but across different bundle 

segmentation methods. Fig. 9 shows the Dice overlap for 14 common bundles, comparing 

each method to every other. There is a low-to-moderate agreement, with Dice overlap values 

between 0.1–0.5 for all pathways. In general, ATK was most similar to TractSeg and Reco 

for most bundles (with some exceptions), while Xtract was most dissimilar to all others. The 

AF, ILF, and MDLF, were the most dissimilar across methods.

Fig. 10 visualizes where agreement and disagreement occurs across bundle segmentation 

methods, with example-pathways AF and OR. Here, while most of the core agrees across 

methods, there is also a consistent disagreement across methods, particularly in the thickness 

of the bundle and in the regions of the temporal lobe for the AF and connections in the 

occipital lobe for the OR. Thus, instead of random differences due to noise, differences 

across methods are reproducible disagreement, likely caused by fundamental differences in 

the segmentation technique and structure to be segmented.

3.6. Variation in diffusion MRI microstructure measures

We next investigate reproducibility of microstructure measures due to the aforementioned 

sources of variation, and tractography variation. Fig. 11 shows the MAPE of FA for all 
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four bundle segmentation methods. In all cases, the standard-color boxplots are variations 

due to the queried source of variation alone, whereas the darker-shaded boxplots are due to 

the source of variation and the added variation of tractography variation. Most notably, 

the MAPE due to RESCAN, SCAN, VEN, DIR, and BVAL alone are highly similar 

for all segmentation methods, with only minor differences due to the slightly different 

representations of the pathways (Fig. 9). These results are in line with the literature, with 

variation < 3% for SCAN rescan (Farrell et al., 2007; Landman et al., 2007; Wakana 

et al., 2007), with 5–15% due to scanner and vendor effects (L Ning et al., 2020; CM 

Tax et al., 2019), and as much as 10% due to differences in acquisition and diffusion 

sensitization (Jones and Basser, 2004; L Ning et al., 2020; Tax et al., 2020). Notably, the 

added variation due to tractography does indeed increase differences in FA (as indicated by a 

solid horizontal line) in many cases, although the% increase in variation is on average < 5%.

Fig. 12 shows the MAPE of MD for different sources of variation. Most noticeable, MD 

is highly different when calculated using two different b-values, as expected (Novikov et 

al., 2018; Landman et al., 2007; Jones, 2004; De Luca et al., 2021; DK Jones et al., 1999), 

followed by differences due to vendors. Differences across RESCAN, SCAN, RES, and DIR 

are typically < 5%. Again, the use of tractography adds to this variance, although on 3% or 

less on average.

4. Discussion

The primary focus of this work was to study variability of diffusion fiber tractography 

bundle segmentation, performing the same analysis on different datasets on different 

scanners or with different acquisition protocols. For the databases investigated here, 

we have shown that the process of tractography bundle segmentation shows significant 

variation across different acquisition resolution and across different vendors, with less, albeit 

significant, variation across scanners and across diffusion sensitization. Variation is indeed 

expected when scanning the same subject twice, with all other experimental parameters 

constant, due to imaging noise and the stochastic nature of the tractography process, 

however, these additional sources of variation add potential confounds to tractography 

analysis that may bias measurements, limit aggregation of datasets, and hinder direct 

interpretation and meta-analysis of different results across studies. While the primary focus 

was on variation due to vendor and scanner effects, acquisition effects, and b-value effects, 

we also show the most bundle segmentation workflows are highly reproducible when 

running the same analysis on data acquired in different sessions, but with the same scanner 

and protocol.

It is well-known that microstructural features at different sites and with different protocols 

are not immediately comparable, and in fact significantly biased due to various effects. 

However, the process of tractography is largely dependent upon fiber orientation estimates, 

rather than features of the signal magnitude directly (i.e., MD/FA), and it is not immediately 

intuitive that differences in scanners, acquisitions, and b-values may lead to significantly 

different results. The results of this work suggest that, indeed, the results of tractography 

and across sites adds variability that must be considered in the interpretation of both 

microstructural and shape features of these pathways.
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4.1. Do we need to harmonize tractography?

“Harmonization” can be considered any effort at reducing variability in quantitative metrics 

between different databases, scanners, and studies. We have known that the voxel-wise 

signal varies across sites, scanners, and acquisitions (as evidenced by the multitude of efforts 

in the literature to study effects on DTI-indices (Alexander et al., 2019; Jones et al., 2018; 

Novikov et al., 2018; Jeurissen et al., 2019; Raffelt et al., 2017; Chamberland et al., 2019; 

Yeatman et al., 2012; Maffei et al., 2019; Forkel et al., 2014; Hau et al., 2017; Hau et 

al., 2016; Sarubbo et al., 2019; Sarubbo et al., 2013; Neubert et al., 2015; Neubert et al., 

2014)) and now confirm that the tractography process itself does as well, and have quantified 

the extent that tractography contributes to variability. The question becomes “do we need 

to harmonize tractography?”. The short answer is “yes”, the long answer is: harmonizing 

likely entails both harmonizing the signal (e.g., FA, MD, RISH measures), harmonizing 

orientation, reducing effects of resolution, and combining the strengths of different bundle 

segmentation approaches.

The field of diffusion MRI harmonization has grown in recent years, with significant 

efforts to make diffusion microstructural measures comparable across sites and scanners 

(Mirzaalian et al., 2016; L Ning et al., 2020; Zhong et al., 2020; Cetin Karayumak et 

al., 2019; KM Huynh et al., 2019; Mirzaalian et al., 2018; Fortin et al., 2017). Yet, these 

endeavors have traditionally not considered variability of tractography, which is ultimately 

influenced at both the local scale of individual voxels and voxel-wise reconstruction as well 

as a global scale of connecting discrete orientation estimates across the brain.

It is unclear what “harmonizing” tractography may entail. Clearly, consistent orientation 

estimates are key, but also streamline generation algorithms robust to voxel-sizes, and 

also segmentation algorithms that are consistently able to identify streamlines belonging to 

a pathway-of-interest. With the vast array of options to reconstruct orientation, generate 

streamlines, and segment bundles, it may be impossible to harmonize data in a way 

that is appropriate for all methods. Some effort has been performed to harmonize fiber 

orientation estimation specifically across time or across scanners (Vishwesh Nath et al., 

2018; Chen et al., 2016; Moyer et al., 2020; KM Huynh et al., 2019). It may be possible that 

harmonizing the microstructural measures themselves may remove some possible confounds 

(i.e., if FA is used as a stopping criteria). Similarly, it is possible that the application and 

process of tractography in a standard space (as performed for XTRACT), or at a standard 

resolution may remove confounds associated with image resolution. Alternatively, various 

multi-site methods used for scalar microstructure features, instead of harmonizing bundles of 

streamlines directly, may be utilized to harmonize features extracted from bundles. Finally, 

even while there is significant variation, large agreement occurs in the core of reconstructed 

white matter pathways, and weighting all derived measures and features by tract density, or 

isolating the trunk of the bundle (Yeatman et al., 2012), may remove sources of variation.

Reassuringly, the automated methods considered are fairly robust to these studied sources 

of variation. Visually, the pathways look remarkably similar across scanners, acquisition, 

and protocols (Fig. 2), for all methods. Quantitatively, methods such as TractSeg, which 

utilize orientation estimates alone, in combination with machine learning techniques in 

order to map out tract orientation maps, endpoints, and binary segmentations are highly 
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reproducible. Similarly, the other methods, while quantitatively having moderately larger 

variation, show similar shapes, locations, and connectivity across all effects. A final 

possible harmonization approach may be to combine the strengths of the various algorithms, 

rethinking the process of bundle segmentation to possibly utilize some combination of 

machine learning (TractSeg), and a volume-based extraction prior to streamline generation, 

followed by atlas-based (ATK, Xtract), or shape-based filtering (Reco) in order to delineate 

bundles consistently across potential confounds.

4.2. Which confounds impact tractography the most?

It is important to emphasize that we are purposefully not attempting to “rank” 

algorithms, or suggest that ones are better than others. Even the methods with apparent 

lower reproducibility of features and shapes are still moderately robust, and different 

implementations of these algorithms may have yielded different quantitative values. For 

example, different thresholding could have been applied to both density-based (Xtract) or 

streamline-based (all others) methods to increase specificity (or vice-versa, specificity), or 

different whole-brain tractography could have been applied prior to bundle dissection using 

Recobundles. However, regardless of implementation and choices of hyperparameters, we 

expect methods to show similar dependencies to the investigated sources of variation.

To our knowledge, this is the first time that multiple sources of variation of tractography 

have been investigated together. Reproducibility across raters, across algorithms, and across 

scanners have previously been investigated. Our results allow comparison of the relative 

impact of changes across sites or scanners, and suggest that, in general spatial resolution 

leads to the most dramatic differences in resulting tractograms. Less tissue-based partial 

volume effects within the white matter may facilitate delineation of white matter bundles (F 

Rheault et al., 2020). Additionally, when quantifying volume overlap and shape features, 

voxel-wise partial volume effects may cause a higher (or lower) estimate due to the 

representation of the bundle as a binary volume at the given spatial resolution. Finally, 

orientation-based partial volume effects are observed with different spatial resolution (Jones 

et al., 2020; Schilling et al., 2017), leading to differences in accuracy of fiber orientation 

distributions, as well as fundamental differences in common diffusion measures such as FA 

(which are often used in the tracking process).

The second biggest contributor to variability was vendor differences. Differences across 

scanners are known to introduce variability due to factors of maximum gradient strength 

(and hence echo times and repetition times), field strengths, gradient nonlinearities, receive 

coil sensitivities, software version, and system calibration (Mirzaalian et al., 2016). Here, we 

show that differences in vendors are typically greater than that due to different scanners (yet 

same vendor) alone. Over and above scanner differences, vendors themselves may variations 

in algorithm choices, algorithms for acquisition, reconstruction, background noise reduction, 

multi-coil fusion (Griswold et al., 2002; Pruessmann et al., 1999), and pulse sequence 

implementation. Here, we have shown that in addition to inconsistencies in DTI measures 

across vendors consistently shown in previous studies (AK Prohl et al., 2019; VA Magnotta 

et al., 2012; Min et al., 2018) there is also a large inconsistency in tractography volumes and 

locations due to differences in vendors.
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Reassuringly, variation of b-value and number of diffusion directions led to relatively 

consistent tractography. While it is well-known that angular resolution affects the ability 

to reconstruct fiber orientations (Jones et al., 2020; Schilling et al., 2018; Canales-Rodriguez 

et al., 2018; Tournier et al., 2013; Tournier et al., 2008; Prckovska et al., 2008), most 

reconstruction methods are robust with as few as 30 directions (or less). Similarly, while 

reconstruction algorithms are dependent on diffusion sensitization (Schilling et al., 2018; 

Daducci et al., 2014), the b-value did not significantly affect tractography results (although 

does affect quantitative metrics association with DTI).

It is also interesting that the relative magnitude of sources of variation depend on the bundle 

dissection method. While variability generally decreases from RESCAN, DIR, BVAL, 

SCAN, then VEN and RES, several notable exceptions occur. ATK is highly sensitive to the 

b-value. This is likely due to the fact that this automated tractography is reconstructed using 

Generalized Q-ball Imaging (Yeh et al., 2010), and tracking thresholds are determined by 

the normalized quantitative anisotropy, which is known to be highly dependent on b-value 

(Yeh et al., 2013). In contrast, XTRACT is a probabilistic method based largely on fiber 

orientation (and its dispersion) alone (from the ball-and-stick model (Sotiropoulos et al., 

2012)), and different b-values give highly similar results of orientation (although dispersion 

will vary). XTRACT is also most sensitive to drastic change in resolution, likely caused 

by the probabilistic nature of the tractography process and subsequent thresholding for 

segmentation.

4.3. Shape variation and location of variation

This is to the best of our knowledge also the first time that reproducibility of different 

shape features of tractography has been investigated. While the variation across and 

within subjects has previously been studied (Yeh, 2020), it is important to understand 

cross-protocol and cross-scanner effects if these features are to be potential biomarkers 

in health and disease. These shape measures show similar patterns of variability, largest 

across resolution, vendors, and scanners, and smallest variation across repeats, directions, 

and b-values. More than variation, different resolutions and b-values can significantly 

bias measures, for example consistently overestimating volume and surface areas at lower 

resolutions where more partial volume effects are expected. Depending on tractography 

method, many features are remarkably robust, with MAPE below 5%, in line with that of 

microstructure features.

We also investigated locations of differences and similarities by visualizing where there was 

consistent agreement and disagreement. Importantly, even with differences in acquisition 

and scanners, methods are able to consistently reproduce the major shape and location of 

the intended pathway, with differences most frequently occurring at the periphery, or edges, 

of the pathway, and along the white matter and gray matter interface. While features of 

shape and geometry may be biased due to sources of variation, these differences do not 

consistently occur at any one location or place along the pathway.
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4.4. Different workflows

Over and above the typically studied sources of variation, we found that differences due 

to the choice of bundle segmentation workflows are most pronounced. For any given 

pathway, overlap from one workflow to another was low-to-moderate. This is in part due 

to the inherent sensitivity/specificity of different algorithms – for example Recobundles 

will look for clusters exhibiting a certain shape, while Tractseg is based on deep-learned 

segmentation, and Xtract will be highly dependent on the chosen threshold – but more 

importantly due to fundamental differences in how the pathway is dissected or defined 

(Schilling et al., 2020; Mandonnet et al., 2018). For example, the definition of a pathway 

by one method may be entirely different from another method, including choices in 

the presence or absence of connections to entire lobes or lobules, or differences in 

estimated spatial extent of pathways. While differences across methods were larger, they 

were importantly consistently different, meaning that comparing findings using different 

methods may result in differing conclusions on connectivity or microstructure. Differences 

between bundle segmentation workflows are also confounded by differences in the entire 

process of tractography, including differences in modeling, generation of streamlines 

(i.e., tractography), and bundle segmentation or filtering. Thus, it is intuitive that major 

differences exist when implementing different standard workflows to study the brain.

4.5. Microstructure variation

Finally, we looked at how much the variation in tractography contribute to the already 

existing cross-protocol and cross-scanner variation in dMRI measures. For FA, difference 

across scanners are known to be as much as 5–15% (L Ning et al., 2020; CM Tax 

et al., 2019), and differences are expected due to different b-values, while scan-rescan 

reproducibility is high (< 5%). The variation in tractography segmentations does indeed 

statistically significantly increase this variation for most effects, although the increase is 

typically very small and < 5%. Similar results are observed for MD, although most changes 

are most pronounced for MD across different scanners. Thus, while tractography has the 

benefit of added specificity over simply propagating atlas-derived regions to subject-space, 

it does potentially increase variability in these measurements. Although methods such as 

tract-based spatial statistics (Smith et al., 2006) have been developed to mitigate these 

effects, we lose the added benefit of characterizing an index of interest along or within the 

full trajectory of the pathway.

4.6. Future studies and limitations

Future studies should investigate additional sources of variation. Manual dissection of fiber 

bundles gives the dissector the ability to interactively manipulate pathways to their liking 

(F Rheault et al., 2020), and it remains to be seen how this is influenced by scanner and 

site given the flexibility of this approach. Further, it is unknown whether these variabilities 

will matter in a clinical setting (Vanderweyen et al., 2020; Mancini et al., 2019; Fekonja 

et al., 2019; Essayed et al., 2017), although with the importance of determining pathway 

boundaries, we hypothesize that the partial volume effects due to acquisition resolution 

will possibly influence decision making. It is worth investigating the potentially large 

array of automated bundle segmentation methods that exist, as some are likely more/less 
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appropriate when comparing or combining datasets with different confounds. Additionally, 

as alternative segmentation methods, or even whole-brain connectome analysis pipelines, 

are proposed, the use of open-source multi-site multi-subject datasets (Koller et al., 2021; 

Avesani et al., 2019; Jack et al., 2008) should be encouraged to investigate the successes 

and limitations of new approaches. Many algorithms for reconstruction and tractography are 

now able to utilize multiple diffusion shells, and the change in variability and precision of 

tractography using these techniques compared to isolated diffusion weightings should be 

compared, but is outside the scope of this work. As along-fiber quantification (Chamberland 

et al., 2019; Yeatman et al., 2012) has proven valuable in the research setting, it would 

be worthwhile to perform investigations which parallel the current study in order to ask 

how and where along the bundle differences occur due to different effects. This has been 

previously investigated, but is largely limited to scan-rescan analysis (Yeatman et al., 2012; 

Koller et al., 2021; Chandio et al., 2020), while the tract-averaged indices are still commonly 

utilized in neuroimaging studies.

A major limitation of the current study is the limited sample sizes of both datasets due 

to challenges associated with scanning the same subjects on different scanners and with 

different protocols. However, there are few multi-site multi-subject databases, and fewer still 

with varied protocols on the same subjects, whereas here we are able to remove effects 

across subjects by analyzing only the same subject with different protocols. It is expected 

that more datasets will become available as big-data and multi-site collaborations become 

more important to the neuroimaging community, and traveling subjects become common 

place in order to harmonize across sites. Exemplar open-sourced datasets include that of 

(Tong et al., 2020) with N = 3 subjects at 20 sites with Prisma scanners and a multi-shell 

dataset (allowing analysis of RESCAN, SCAN, BVAL, DIR), the traveling human phantom 

dataset (VA Magnotta et al., 2012) with N = 5 subjects at 8 center (SCAN, VEN, DIR), 

or consortiums such as Pharmacog (Galluzzi et al., 2016), ADNI (Jack et al., 2008), HCP 

(Glasser et al., 2013), or OASIS (Marcus et al., 2007), all with large sample size and 

repeat scans, but typically limited to RESCAN analysis only or without matched subjects 

across scanners/vendors/protocols. Because of this, for simplicity, we have chosen two 

datasets in this study which allow incorporation of all intended sources of variation without 

compromising readability. While we have looked at a wider range of variability factors than 

previous studies, we emphasize that these results are based only on two specific databases, 

and nalysis should be reproduced on other (and new) databases in future work to show 

generalizability.

Finally, while the primary focus of our study was on variation due to scanner-effects, 

acquisition-effects, and b-value-effects, our analysis was limited to studying these effects 

on only four bundle segmentation workflows. We did not implement all existing automated 

bundle reconstruction pipelines or workflows (Yeatman et al., 2012; Vazquez et al., 2020; 

F Zhang et al., 2019; Guevara et al., 2012; Wakana et al., 2007; Wasserthal et al., 2019; 

F Zhang et al., 2020; F Zhang et al., 2020; F Zhang et al., 2019; O’Donnell and Westin, 

2007; Wassermann et al., 2016; Ros et al., 2013; Zöllei et al., 2019; Schilling et al., 2021), 

however, our selection captures a variety of techniques used to reconstruction bundles, 

including differences in the use of atlases or regions-of-interest, those based on shape 

and/or orientation features, machine learning techniques, and differences in the generation of 
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streamlines – a wide variety of vastly different approaches that we consider a strength of this 

study. To create a tractable parameter space, we have chosen only these four representatives 

of the wide variety of possible approaches.

Finally, we did not directly perform harmonization techniques in this study. There are 

dozens of methods available to do this (see (L Ning et al., 2020; CM Tax et al., 2019)), and 

understanding and characterizing harmonization results across several algorithms would take 

away from the main focus of this study – which is characterization and ranking of variability 

across confounds. Further, harmonization would only affect a subset of results (i.e., those 

looking at FA/MD) as most harmonization approaches leave orientation untouched.

5. Conclusion

When investigating connectivity and microstructure of the white matter pathways of the 

brain using tractography, it is important to understand potential confounds and sources of 

variation in the process. Here, we find that tractography bundle segmentation results are 

influenced by the use of different vendors and scanners, and different acquisition choices of 

resolution, diffusion directions, and diffusion sensitizations, thus results may not be directly 

comparable when combining data or results across studies. Additionally, different bundle 

segmentation protocols have different successes/limitations when dealing with sources of 

variation, and the use of different protocols for bundle segmentation may result in different 

representations of the same intended pathway. These confounds need to be considered 

when designing or developing new tractography or bundle dissection algorithms, and when 

interpreting or combining data across sites.

6. Code

Multi-site, multi-scanner, multi-protocol, and multi-subject databases are available for 

MASIvar (https://openneuro.org/datasets/ds003416) and for MUSHAC (by request). 

Tractography pipelines are implemented as described by each software package using 

default parameters for TractSeg (Release 2.3; https://github.com/MIC-DKFZ/TractSeg), 

ATK (Lct 17 2020 build; http://dsi-studio.labsolver.org), RECO (Dipy 1.2.0; https://

dipy.org), and XTRACT (FSL 6.0.3; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/XTRACT). Shape 

analysis is available in DSI Studio, as Matlab Code (https://github.com/dmitrishastin/

tractography_shapes/).
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Appendix

The bundles resulting from each segmentation pipeline are given as a list below, with 

acronyms used in the text.
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Recobundles:

Anterior Commisure (AC); Arcuate Fasciculus left (AF_L); Arcuate Fasciculus left (AF_R); 

Cerebellum left (CB_L); Cerebellum right (CB_R); Cingulum left (C_L); Cingulum 

right (C_R); Corpus Callosum (CC); Corticospinal Tract left (CST_L); Corticospinal 

Tract Right (CST_R); Corticostriatal Pathway left (CS_L); Corticostriatal Pathway right 

(CS_R); Central Tegmental Tract left (CT_L); Central Tegmental Tract right (CT_R); 

Extreme Capsule left (EMC_L); Extreme Capsule right (EMC_R); Fornix left (F_L); 

Fornix right (F_R); Frontal Aslant Tract left (FAT_L); Frontal Aslant Tract right (FAT_R); 

Fronto-pontine tract left (FPT_L); Fronto-pontine tract right (FPT_R); Inferior Cerebellar 

Peduncle left (ICP_L); Inferior Cerebellar Peduncle right (ICP_R); Inferior Fronto-occipital 

Fasciculus left (IFOF_L); Inferior Fronto-occipital Fasciculus right (IFOF_R); Inferior 

Longitudinal Fasciculus left (ILF_L); Inferior Longitudinal Fasciculus right (ILF_R); 

Middle Cerebellar Peduncle (MCP); Middle Longitudinal Fasciculus left (MdLF_L); 

Middle Longitudinal Fasciculus right (MdLF_R); Medial Lemniscus left (ML_L); Medial 

Lemniscus right (ML_R); Occipito Pontine Tract left (OPT_L); Occipito Pontine Tract right 

(OPT_R); Optic Radiation left (OR_L); Optic Radiation right (OR_R); Parieto Pontine 

Tract left (PPT_L); Parieto Pontine Tract right (PPT_R); Superior Cerebellar Peduncle 

(SCP); Superior longitudinal fasciculus left (SLF_L); Superior longitudinal fasciculus right 

(SLF_R); Uncinate Fasciculus left (UF_L); Uncinate Fasciculus right (UF_R);

TractSeg:

Arcuate fascicle left (AF_L); Arcuate fascicle right (AF_R); Anterior Thalamic Radiation 

left (ATR_L); Thalamic Radiation right; (ATR_R); Commissure Anterior (CA); Rostrum 

(CC_1; Genu (CC_2); Rostral body (Premotor) (CC_3); Anterior midbody (Primary 

Motor) (CC_4); Posterior midbody (Primary Somatosensory) (CC_5); Isthmus (CC_6); 

Splenium (CC_7); Corpus Callosum – all (CC); Cingulum left (CG_L); Cingulum right 

(CG_R); Corticospinal tract left (CST_L); Corticospinal tract right (CST_R); Fronto-

pontine tract left (FPT_L); Fronto-pontine tract right (FPT_R); Fornix left (FX_L); 

Fornix right (FX_R); Inferior cerebellar peduncle left (ICP_L); Inferior cerebellar 

peduncle right (ICP_R); Inferior occipito-frontal fascicle left (IFO_L); Inferior occipito-

frontal fascicle right (IFO_R); Inferior longitudinal fascicle left (ILF_L); Inferior 

longitudinal fascicle right (ILF_R); Middle cerebellar peduncle (MCP); Middle longitudinal 

fascicle left (MLF_L); Middle longitudinal fascicle right (MLF_R); Optic radiation 

left (OR_L); Optic radiation right (OR_R); Parieto-occipital pontine left (POPT_L); 

Parieto-occipital pontine right (POPT_R); Superior cerebellar peduncle left (SCP_L); 

Superior cerebellar peduncle right (SCP_R); Superior longitudinal fascicle III left 

SLF_III_L); Superior longitudinal fascicle III right (SLF_III_R); Superior longitudinal 

fascicle II left (SLF_II_L); Superior longitudinal fascicle II right (SLF_II_R); Superior 

longitudinal fascicle I left (SLF_I_L); Superior longitudinal fascicle I right (SLF_I_R); 

Striato-fronto-orbital left (ST_FO_L); Striato-fronto-orbital right (ST_FO_R); Striato-

occipital left (ST_OCC_L); Striato-occipital right (ST_OCC_R); Striato-parietal left 

(ST_PAR_L); Striato-parietal right (ST_PAR_R); Striato-postcentral left (ST_POSTC_L); 

Striato-postcentral right (ST_POSTC_R); Striato-precentral left (ST_PREC_L); Striato-

precentral right (ST_PREC_R); Striato-prefrontal left (ST_PREF_L); Striato-prefrontal 
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right (ST_PREF_R); Striato-premotor left (ST_PREM_L); Striato-premotor right 

(ST_PREM_R); Thalamo-occipital left (T_OCC_L); Thalamo-occipital right (T_OCC_R); 

Thalamo-parietal left (T_PAR_L); Thalamo-parietal right (T_PAR_R); Thalamo-postcentral 

left (T_POSTC_L); Thalamo-postcentral right (T_POSTC_R); Thalamo-precentral 

left (T_PREC_L); Thalamo-precentral right (T_PREC_R); Thalamo-prefrontal left 

(T_PREF_L); Thalamo-prefrontal right (T_PREF_R); Thalamo-premotor left (T_PREM_L); 

Thalamo-premotor right (T_PREM_R); Uncinate fascicle left (UF_L); Uncinate fascicle 

right (UF_R).

Xtract:

Anterior Commissure (AC); Arcuate Fascile left (AF_L); Arcuate Fascile right (AF_R); 

Acoustic Radiation left (AR_L); Acoustic Radiation right (AR_R); Anterior Thalamic 

Radiation left (ATR_L); Anterior Thalamic Radiation right (ATR_R); Cingulum Bundle 

Dorsal left (CBD_L); Cingulum Bundle Dorsal right (CBD_R); Cingulum Bundle 

Parahippocampal left (CBP_L); Cingulum Bundle Parahippocampal right (CBP_R); 

Cingulum Bundle Temporal left (CBT_L); Cingulum Bundle Temporal right (CBT_R); 

Corticospinal Tract left (CST_L); Corticospinal Tract right (CST_R); Frontal Aslant left 

(FA_L); Frontal Aslant right (FA_R); Forceps Major (FMA); Forceps Minor (FMI); 

Fornix left (FX_L); Fornix right (FX_R); Inferior Fronto-occipital Fasciculus left (IFO_L); 

Inferior Fronto-occipital Fasciculus right (IFO_R); Inferior Longitudinal Fasciculus left 

(ILF_L); Inferior Longitudinal Fasciculus right (ILF_R); Middle Cerebellar Peduncle 

(MCP); Medio-Dorsal Longitudinal Fasciculus left (MDLF_L); Medio-Dorsal Longitudinal 

Fasciculus right (MDLF_R); Optic Radiation left (OR_L); Optic Radiation right (OR_R); 

Superior Longitudinal Fasciculus 1 left (SLF1_L); Superior Longitudinal Fasciculus 1 

right (SLF1_R); Superior Longitudinal Fasciculus 2 left (SLF2_L); Superior Longitudinal 

Fasciculus 2 right (SLF2_R); Superior Longitudinal Fasciculus 3 left (SLF3_L); Superior 

Longitudinal Fasciculus 3 right (SLF3_R); Superior Thalamic Radiation left (STR_L); 

Superior Thalamic Radiation right (STR_R); Uncinate Fasciculus left (UF_L); Uncinate 

Fasciculus right (UF_R); Vertical Occipital Fasciculus left (VOF_L); Vertical Occipital 

Fasciculus right (VOF_R).

ATK:

Arcuate_Fasciculus_L (AF_L); Arcuate Fasciculus R (AF_R); Cortico Spinal Tract 

L (CST_L); Cortico Spinal Tract R (CST_R); Cortico Striatal Pathway L (CS_L); 

Cortico Striatal Pathway R (CS_R); Corticobulbar Tract L (CBT_L); Corticobulbar 

Tract R (CBT_R); Corticopontine Tract L (CPT_L); Corticopontine Tract R (CPT_R); 

Corticothalamic Pathway L (CTP_L); Corticothalamic Pathway R (CTP_R); Inferior 

Cerebellar Peduncle L (ICP_L); Inferior Cerebellar Peduncle R (ICP_R); Inferior Fronto 

Occipital Fasciculus L (IFOF_L); Inferior Fronto Occipital Fasciculus R (IFOF_R); Inferior 

Longitudinal Fasciculus L (ILF_L); Inferior Longitudinal Fasciculus R (ILF_R); Optic 

Radiation L (OR_L); Optic Radiation R (OR_R); Middle Longitudinal Fasciculus L 

(MdLF_L); Middle Longitudinal Fasciculus R (MdLF_R); Uncinate Fasciculus L (UF_L); 

Uncinate Fasciculus R (UF_R).
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Data And Code Availability

The data for this study were selected from two open-sourced multi-subject, multi-scanner, 

and multi-protocol benchmark databases: the MASiVar (Alexander et al., 2019) and 

MUSHAC datasets (Jones et al., 2018; Novikov et al., 2018) – thus the data is freely 

available as found in associated references.
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Fig. 1. 
Microstructure varies across scanners and across acquisitions. An FA map is shown, derived 

from the same subject, on two scanners (Siemens Prisma, left; Siemens Connectom, right) 

and two acquisitions (standard acquisition, top; state-of-the-art acquisition, bottom). See 

Methods for scanner and acquisition details.
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Fig. 2. 
Tractography varies across scanners, acquisitions, b-values, and bundle segmentation 

methods. On the same subject, the arcuate fasciculus is shown for each of the 4 bundle 

segmentation methods, for two scanners and two acquisitions. Note that the pathway is 

visualized as streamlines for TractSeg, ATK, and Reco but a probability density map for 

Xtract. Arrows highlight visible examples of differences in streamlines across scanners 

(solid arrows), across acquisition (dotted arrows), and across b-values (dashed arrows).
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Fig. 3. 
Reproducibility is dependent on all investigated effects, and varies by pathway and by 

dissection method. Effects of scan-rescan (RESCAN; blue), scanners (SCAN1, SCAN2; 

red), vendor (VEN1, VEN2; dark purple), resolution (RES1, RES2; pink), diffusion 

directions (DIR1, DIR2; green) and b-value (BVAL; light purple) on dice overlap coefficient 

for individual bundles. Results are shown for 14 fiber bundles that are common to each 

tractography workflow. Please see Appendix for bundle abbreviations.
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Fig. 4. 
Reproducibility is dependent upon all investigated effects, and each bundle segmentation 

methods is affected differently. Effects of scan-rescan (RESCAN; blue), scanners (SCAN1, 

SCAN2; red), vendor (VEN1, VEN2; dark purple), resolution (RES1, RES2; pink), diffusion 

directions (DIR1, DIR2; green) and b-value (BVAL; light purple) on dice overlap coefficient 

for all fiber bundles dissected using each technique. For each, a Wilcoxon signed rank test 

is performed to investigate differences in effects. Statistically significant results (p <.05/45/4 

comparisons) are shown as a solid line, and those not reaching statistical significance are 

shown as dashed line. Tractseg (top-left), ATK (top-right), Reco (bottom-left), and Xtract 

(bottom-right).
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Fig. 5. Locations of agreement and disagreement across effects.
Maps are computed by overlaying (for each source of variation), maps of where there is 

overlap (i.e. agreement) and non-overlap (disagreement), averaged across all subjects. For 

each effect, the percent agreement indicates areas where a pathway is consistently located 

and is shown using a “hot” colormap, while the percent disagreement indicates areas without 

consistent overlap and is shown using a “cold” colormap. Results are shown for a highly 

reproducible pathway (AF_L dissected using TractSeg) and for a less reproducible pathway 

(SLF2 dissected using XTRACT). Note that even though disagreement is abundant, it does 
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not consistently occur (i.e.,% disagreement remains low; black and dark blue) suggesting 

no systematic bias due to effects, and disagreements are largely attributed to the stochastic 

nature of the tractography and dissection process.
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Fig. 6. Reproducibility of pathway shape features depends on pathway and bundle dissection 
method.
Reproducibility is shown as a MAPE for each tractography segmentation method. For each 

method, the features are ordered (from top to bottom) from lowest to highest average 

MAPE, and pathways are similarly ordered (from left to right) from lowest to highest 

average MAPE. Note that the colormap is nonlinear to better highlight MAPE between 0 

and 0.10. Many shape features are highly reproducible, and with differences across pathways 

and bundle dissection methods. Please see Appendix for bundle abbreviations.
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Fig. 7. 
Variability of shape features is influenced by scanner, vendor, acquisition, and b-value. 

Variability is shown as MAPE for each TractSeg, ATK, and Reco methods, for scan-

rescan (RESCAN), scanners (SCAN1, SCAN2), vendor (VEN1, VEN2), resolution (RES1, 

RES2), diffusion directions (DIR1, DIR2) and b-value (BVAL). Values shown are averaged 

across all pathways within a bundle dissection method. Shape features are ordered (from 

top to bottom) from lowest to highest average MAPE. Many shape features are highly 

reproducible, and MAPE is influenced by all effects investigated.
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Fig. 8. 
Sources of variation may introduce bias in shape features. The mean percent variation 

(MPV), i.e., the signed MAPE, is shown for each bundle segmentation method, for all 

features, with the distribution across fiber pathways. A distribution not centered on 0 

suggests systematic differences introduced by the given effect. For interpretation, RESCAN 

(repeat 2 – repeat 1), SCAN1 (Philips Achieva scanner 2 – Philips Achieva scanner 1), 

SCAN2 (Siemens Connectome standard acquisition – Siemens Prisma standard acquisition, 

VEN1 (GE Discovery - Philips Achieva), VEN2 (Siemens Skyra - Philips Achieva), RES1 

(Prisma state-of-the-art 30 directions - Prisma standard acquisition), RES2 (Connectom 

state-of-the-art 30 directions - Connectom standard acquisition), DIR1 (Philips Achieva 96 

directions – Philips Achieva 32 directions), DIR2 (Prisma state-of-the-art 60 directions - 

Prisma state-of-the-art 30 directions), BVAL (Prisma standard-acquisition b = 3000 – Prisma 

standard-acquisition b = 1000).
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Fig. 9. 
Different workflows result in low-to-moderate Dice overlap of the same pathways.

Dice overlap coefficients for individual bundles, when measuring agreement between 

different bundle dissection methods. Please see Appendix for bundle abbreviations.
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Fig. 10. 
Locations of agreement and disagreement across bundle dissection methods. For each 

comparison, percent agreement indicates areas where methods agree in space and is shown 

using a “hot” colormap, while percent disagreement indicates areas where disagreement 

occurs and is shown using a “cold” colormap. Results are shown for two example pathways 

(AF_R and OR_L). Here, there are areas of high% disagreement between methods, 

indicating a consistent and reproducible difference between bundle dissection methods 

(highlighted by yellow arrows).
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Fig. 11. 
Variation of FA. Effects of scan-rescan (RESCAN; blue), scanners (SCAN1, SCAN2; red), 

vendor (VEN1, VEN2; dark purple), resolution (RES1, RES2; pink), diffusion directions 

(DIR1, DIR2; green) and b-value (BVAL; light purple) on MAPE of the FA for all fiber 

bundles dissected using each technique. The left boxplots are indictive of the variability 

inherent due to each effect, whereas the darker-hued (right) boxplots indicate the added 

variability due to differences in tractograms. For each, a Wilcoxon signed rank test is 

performed to investigate whether tractography adds to (or removes) significant variance to 

this metric, and statistical significance is indicated by a solid black line.
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Fig. 12. 
Variation of MD. Effects of scan-rescan (RESCAN; blue), scanners (SCAN1, SCAN2; red), 

vendor (VEN1, VEN2; dark purple), resolution (RES1, RES2; pink), diffusion directions 

(DIR1, DIR2; green) and b-value (BVAL; light purple) on MAPE of the MD for all fiber 

bundles dissected using each technique. The left boxplots are indictive of the variability 

inherent due to each effect, whereas the darker-hued (right) boxplots indicate the added 

variability due to differences in tractograms. For each, a Wilcoxon signed rank test is 

performed to investigate whether tractography adds to (or removes) significant variance to 

this metric, and statistical significance is indicated by a solid black line.
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