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Abstract

BACKGROUND: We sought to characterize methylation changes in brain and blood associated 

with major depressive disorder (MDD). As analyses of bulk tissue may obscure association signals 

and hamper the biological interpretation of findings, these changes were studied on a cell type–

specific level.

METHODS: In 3 collections of human postmortem brain (n = 206) and 1 collection of blood 

samples (N = 1132) of MDD cases and controls, we used epigenomic deconvolution to perform 
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cell type–specific methylome-wide association studies within subpopulations of neurons/glia for 

the brain data and granulocytes/T cells/B cells/monocytes for the blood data. Sorted neurons/glia 

from a fourth postmortem brain collection (n = 58) were used for validation purposes.

RESULTS: Cell type–specific methylome-wide association studies identified multiple findings 

in neurons/glia that were detected across brain collections and were reproducible in physically 

sorted nuclei. Cell type–specific analyses in blood samples identified methylome-wide significant 

associations in T cells, monocytes, and whole blood that replicated findings from a past 

methylation study of MDD. Pathway analyses implicated p75 neurotrophin receptor/nerve growth 

factor signaling and innate immune toll-like receptor signaling in MDD. Top results in neurons, 

glia, bulk brain, T cells, monocytes, and whole blood were enriched for genes supported by 

genome-wide association studies for MDD and other psychiatric disorders.

CONCLUSIONS: We both replicated and identified novel MDD–methylation associations in 

human brain and blood samples at a cell type–specific level. Our results provide mechanistic 

insights into how the immune system may interact with the brain to affect MDD susceptibility. 

Importantly, our findings involved associations with MDD in human samples that implicated many 

closely related biological pathways. These disease-linked sites and pathways represent promising 

new therapeutic targets for MDD.
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Major depressive disorder (MDD) has high prevalence (1), can start early in life, and is 

often chronic, making it the leading cause of disability worldwide (2). DNA methylation 

studies offer unique opportunities to improve the understanding and treatment of MDD by 

identifying molecular signatures of disease features or the traces of environmental insults 

that influence susceptibility (3–5). These studies also have profound translational potential, 

as methylation is modifiable and may potentially serve as a diagnostic biomarker.

There exists good evidence that MDD has a systemic component that involves both the brain 

and peripheral immune system (6,7). Therefore, we sought to characterize MDD-linked 

methylation changes in both brain and blood. Methylation studies are typically performed 

in bulk tissue that contains multiple cell types. Failure to account for multiple cell types 

has several drawbacks (8). First, false-positives may occur when cell type abundances vary 

between cases and controls (9,10). Second, associations may not be detectable in bulk when 

case-control differences are in opposite directions between cell types or when the most 

common cell types obscure signals in cells of low abundance. Third, knowing which cell 

type harbors an association is key for the biological interpretation of results and the design 

of follow-up experiments.

We examined methylation differences between MDD cases and controls in 3 collections of 

brain samples totaling 264 individuals, as well as in 1132 independent blood samples. To 

perform cell type–specific methylome-wide association studies (MWASs) for neurons/glia 

and granulocytes/T cells/B cells/monocytes, we applied epigenomic deconvolution (11,12) 

and studied physically sorted neuron/glia nuclei from case and control brains. Methylation 
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findings that were detected across the brain collections were identified by meta-analysis, 

and findings in blood were compared with those of previous methylation study of MDD. 

Finally, we tested for over-representation of top MWAS findings among top results from 

genome-wide association studies (GWASs) for MDD and related disorders.

METHODS AND MATERIALS

Samples

We used methylation enrichment-based sequencing data from 206 postmortem brain samples 

from 3 collections, as previously described (13). The sample collections were predominantly 

from Australia (AUS) (30 MDD, 31 control; Brodmann area [BA] 25), United States of 

America (USA) (44 MDD, 37 control; BA 10) and Canada (CAN) (39 MDD, 25 control; 

BA 10). Additionally, we used array-based methylation data from physically sorted neurons 

(28 MDD, 29 control) and glia (29 MDD, 29 control) from an independent sample collection 

(14). Methylation enrichment-based sequencing data from whole blood of 812 cases and 

320 controls was from the Netherlands Study of Depression and Anxiety (NESDA) (13,15). 

Descriptions of study participants are presented in Supplement 1.

Cell Type–Specific MWASs

It is impractical to sort and assay methylation in each cell type for every sample in 

large-scale studies. Therefore, we used epigenomic deconvolution (Figure 1) to perform 

cell type–specific MWASs using the bulk brain and whole blood data. Deconvolution 

is commonly used in gene expression studies (12,16) and may readily be applied to 

methylation data (11,17,18). The approach has been validated by showing that it can detect 

known associations in artificial data as well as associations observed with empirical data 

from purified cells (12,17). We further showed through simulations (Code S1 in Supplement 

3) 1) that if there are no effects, the model properly controls the type I error, or 2) that if the 

cell type proportion estimates have errors, the model is fairly robust. We also performed cell 

type–specific MWASs after permuting case-control labels. The resulting quantile-quantile 

plots for brain (Figure S3 in Supplement 1) and blood (Figure S8 in Supplement 1) showed 

that the p values were close to the main diagonal with average lambdas that were not 

significantly different from 1. Cell type–specific MWASs are performed by first estimating 

cell type proportions in all study samples with bulk data using a reference panel (9,19). 

These reference panels comprise methylation profiles of physically sorted subtypes of cells 

generated from a small subset of subjects. We sorted nuclei/cells from 5 frozen postmortem 

brain and 6 fresh whole blood samples. Simulations (Figure S1 in Supplement 1) showed 

that whereas the total number of sites used to estimate cell type proportions is critical, the 

number of subjects per panel has little impact on the precision of the estimates. Thus, the 

simulations show that our panel was sufficiently large (see Supplement 1). These predicted 

cell type proportions are then used to test case-control differences in methylation on a cell 

type–specific level using all study samples with available bulk data. To declare methylome-

wide significance we applied an appropriate (20,21) false discovery rate (FDR) threshold of 

0.1.
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Reference Panels for Brain and Blood Cell Types.—For methylation enrichment-

based sequencing references for neurons (NeuN+) and glia (NeuN−), we sorted nuclei (22) 

from 5 control samples from brain banks in AUS, CAN, The Netherlands, and USA (sources 

of MWAS samples). To generate methylation enrichment-based sequencing references for 

blood cell types, we obtained fresh whole blood samples from 6 USA subjects (23). 

Granulocytes (CD15+), T cells (CD3+), B cells (CD19+), and monocytes (CD14+) were 

isolated from whole blood using EasySep magnetic separation (Stemcell Technologies, 

Cambridge, MA). DNA extracted from sorted nuclei/cells was then assayed using methyl-

CG binding domain sequencing (24–26). Details are discussed in Supplement 1.

Model.—While Figure 1 and its legend explain the basic principles underlying the 

deconvolution method, here we present the statistical model [also see equation 2 in the 

Methods section of Zheng et al. (17)]:

Y bulk = ∑
c = 1

nc
mcPc + ∑

c = 1

nc
mcMDD MDD × Pc + E

Thus, methylation measurements in bulk tissue Ybulk are regressed on c = 1 to nc, cell type 

proportions Pc, and the product of disease status for MDD coded as 0 or 1 by cell type 

proportions (MDD × Pc). The model allows for covariates (not shown) and residual effects 

E. Coefficient mc is the effect of cell type c. MDD is coded 0 or 1, mcMDD is the case-control 

difference for cell type c that is used to test the null hypothesis that cell type methylation 

means are equal for cases and controls. Note that the model has no constant, because 

∑
c = 1

nc
Pc ≅ 1. Expanded discussion and robustness analyses are presented in Supplement 1.

Covariates in Methylome-wide Association Testing

To test each CpG site for association with MDD, we performed multiple regression analyses 

that included several classes of covariates. We included measured technical variables 

including the quantity of methylation-enriched DNA captured, batch, and peak location 

(26), as well as demographic variables for age and sex. For NESDA blood samples, we 

also included smoking status, alcohol use, body mass index, and 3 principal components 

(PCs) from a GWAS to capture ancestral differences. For brain, we included postmortem 

interval. PC analysis on the methylation data was performed on the covariate-adjusted data 

to capture any remaining unmeasured sources of variation. We used a scree test to select 

the methylation PCs to include in the final MWAS (1 PC for AUS, CAN, USA, and 

NESDA). In the bulk brain and whole blood MWASs, predicted cell type proportions were 

also included as covariates to control for cell type heterogeneity (23). Raw array-based data 

were processed following Lehne et al. (27), and demographics, technical variables, and PCs 

were included as covariates. For all analyses, covariates and PCs were included in the final 

MWASs.
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Meta-analyses

To identify top bulk brain and cell type–specific MWAS findings that replicated among 

the 3 sets of brain collections (AUS, CAN, USA), we performed a meta-analysis using 

Stouffer’s weighted z score method (28) after transforming t statistics from each MWAS into 

z statistics.

Pathway, Colocalization, and Gene Overlap Testing

Pathway, colocalization, and gene overlap testing were performed using circular 

permutations (29) that generate the empirical test-statistic distribution under the null 

hypothesis while preserving the correlational structure of the data (see Supplement 1). 

Pathway analyses were performed with the Reactome (30) database using 10,000 circular 

permutations. Pathway tests were restricted to only the top 1000 findings to prevent 

oversaturation. We also tested whether our MWAS findings colocalized with UCSC Genome 

Browser genomic feature tracks, Roadmap Epigenomics Project chromHMM 15-state 

chromatin model tracks (31), Genotype-Tissue Expression (GTEx) expression quantitative 

trait loci (eQTLs), known expression quantitative trait methylation (eQTMs) (32,33), or 

colocalized and/or shared top genes from previous MDD MWASs and GWASs using 

100,000 circular permutations. In general, we tested the top 0.5%, 0.1%, or 0.05% of sites 

from our MWASs for enrichment testing across asymmetrical datasets (i.e., methylation 

enrichment-based sequencing vs. methylation arrays) and corrected for testing multiple 

thresholds. Expanded details can be found in Supplement 1.

RESULTS

Cell Type–Specific MWASs in Brain

Predicted proportions of neurons to glia (approximately 1:3) matched expectations for 

cortex (34) and showed no significant case-control differences (Table S1 in Supplement 

1). Quantile-quantile plots for the cell type–specific MWASs (Figure S3 in Supplement 1) 

suggested that multiple CpGs had discernible effects within individual cell types. MWAS of 

permuted case-control status for each analysis yielded average lambdas of approximately 1 

(Figure S4 in Supplement 1), which indicated no evidence of test-statistic inflation under 

the empirical null. To identify top findings in neurons, glia, and bulk brain, we performed 

meta-analyses across the AUS, CAN, and USA brain sample collections for 17,321,920 

CpGs.

Neurons and Glia.—No CpGs reached methylome-wide significance (FDR 0.1) among 

the meta-analyses for the MWASs for neurons or glia (Tables S2 and S3 in Supplement 

2). The top site in neurons (p value = 8.52 × 10−8) was found in an intergenic region 

situated between the serotonin receptor gene HTR4 and the beta-adrenergic receptor gene 

ADRB2. In glia, the top site (p value = 5.18 × 10−8) was also intergenic in a region that 

was most near TPRA1. Many top results were shared between neurons and glia (i.e., 419 of 

the top 1000 from both) and were found at genes such as RBFOX2, HERC2, TRIM3, and 

RNF111. Encoding splicing regulators that are important for neuronal development (35), the 

RBFOX regulatory network has been implicated in previous genetic (36) and methylation 
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(37) studies of depression. HERC2, TRIM3, and RNF111 all encode ubiquitin ligases that 

influence neurodevelopment and synaptic plasticity (38–43).

The top findings that were unique to neurons included those at TRAPPC9 (p value = 1.04 

× 10−6) and HRH4 (p value = 1.77 × 10−6). Highly expressed in neurons and involved in 

nuclear factor-κB and nerve growth factor (NGF) signaling (44), rare variants in TRAPPC9 
have been associated with intellectual disability (45,46). Encoding a histamine receptor, 

HRH4 is located in a region implicated in a pharmacogenomic study of citalopram response 

(47).

Finally, among top unique glia findings were sites (top p value = 4.43 × 10−7) located in an 

intergenic region nearest to ZC3H12A, which is involved in innate immune regulation (48), 

and GRIK3, which is involved in glutamate signaling. Notably, GRIK3 has been linked to 

recurrent MDD (49).

The top findings for neurons were enriched at DNase I hypersensitivity sites, and both 

neuron and glia results were enriched at introns and transcription factor binding sites (Tables 

S4 and S5 in Supplement 2). Results for neurons and glia were not overrepresented at 

chromHMM chromatin states (31) nor eQTLs for brain (Tables S4 and S5 in Supplement 

2). However, as chromatin states and eQTLs for brain were generated from bulk tissue, they 

may not accurately capture cell type–specific states. For neurons, 81 top CpGs mapped to 

known eQTMs (Table S6 in Supplement 2), and for glia, 71 sites mapped to eQTMs (Table 

S7 in Supplement 2).

Complementary Analyses in Sorted Neurons and Glia.—To check the results 

obtained via epigenomic deconvolution, we performed MWASs on array-based methylation 

data from sorted neuronal (28 MDD, 29 control) and glial (29 MDD, 29 control) nuclei 

of independent samples (14) (Tables S8 and S9 in Supplement 2; Figures S6 and S7 in 

Supplement 1). We tested for CpG colocalization between the top sites from deconvoluted 

neurons/glia and nominally significant MWAS findings (p value <.05) from the sorted 

nuclei. The top 0.05% of results for deconvoluted neurons were significantly enriched 

among nominally significant results for sorted neurons (70 CpGs, p value = 4.20 × 10−3). 

Results for deconvoluted glia colocalized with 270 CpGs among nominally significant 

results for sorted glia but were not enriched (p value = .48).

Bulk Brain.—Bulk brain analysis may have better power for sites that are affected in 

similar fashion across multiple cell types. Therefore, we also performed meta-analyses 

among the MWASs of bulk brain methylation data. However, no CpG reached methylome-

wide significance (FDR 0.1) in the meta-analysis for bulk brain (Table S10 in Supplement 

2), where the top site (p value = 1.03 × 10−7) was situated in an intergenic region between 

the glucose transporter SLC5A4 and human telomerase reverse transcriptase regulator 

RFPL3. This finding is notable given the abnormal glucose tolerance, decreased telomere 

length, and increased epigenetic aging that is observed in patients with MDD (50–53).

The top findings in bulk brain also included sites located in ASTN2 (p value = 1.29 × 10−6) 

and RBFOX1 (p value = 2.09 × 10−6). Variants in both the neuronal–glial adhesion molecule 
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ASTN2 and the RNA-slicing regulator RBFOX1 obtained genome-wide significance in a 

recent meta-analysis of large MDD GWASs (36). Bulk brain results were not enriched for 

any particular genomic feature consensus track or eQTLs but were significantly enriched 

at predicted chromatin states for “Bivalent-Poised TSS” and “Flanking Bivalent TSS-Enh” 

(Table S11 in Supplement 2) with 86 CpGs mapping to known eQTMs (Table S12 in 

Supplement 2).

Cell Type–Specific MWASs in Blood

Mean predicted cell type proportions were 55.8%, 31.3%, 9.3%, and 3.6% for granulocytes 

(CD15), T cells (CD3), B cells (CD19), and monocytes (CD14), respectively. With the 

exception of monocytes, the predicted cell type proportions differed significantly between 

cases and controls (Table S13 in Supplement 1). Cases tended to have increased myeloid cell 

(granulocytes, monocytes) and decreased lymphocyte (T cells/B cells) levels, as generally 

expected (54,55).

After quality control, 21,869,561 CpGs were available for testing. The quantile-quantile 

plots (Figure S8 in Supplement 1) suggested that associations mainly involved monocytes 

and T cells. No methylome-wide significant findings (FDR 0.1) were observed for 

granulocytes or B cells. Permutations of case-control status for each MWAS (Figure S9 

in Supplement 1) again suggested that the observed effects were not inflation artifacts.

Monocytes.—The MWAS for monocytes yielded 904 methylome-wide significant CpGs 

(Table S14 in Supplement 2). Top genic findings for monocytes included ITPR2, 

SHANK2, KATNAL2, and GRIA1. Also present among methylome-wide significant 

results for monocytes were sites within CDC42BPB that was implicated by a previous 

methylation meta-analysis of depressive symptoms (56). Findings for monocytes were 

significantly enriched at 5′- and 3′-UTRs, CpG islands and shores, brain-specific DNase 

I hypersensitivity sites, genes, transcription factor binding sites, and promoters (Table S15 

in Supplement 2). Overlap with chromatin state tracks showed enrichment at “Active TSS,” 

“Strong Transcription,” “Weak Transcription,” and “ZNF Genes and Repeats,” along with 

significant enrichment at blood eQTLs (Table S15 in Supplement 2) and mapping of 137 top 

results to known eQTMs (Table S16 in Supplement 2).

T Cells.—In T cells, 9 CpGs passed methylome-wide significance (Table S17 in 

Supplement 2) with the top site (p value = 3.57 × 10−9) found in an intergenic region 

located most near GRIA2 and FAM198B. Significant genic findings for T cells involved 

MTA3, DAB2IP, and STRADB. Top results for T cells were enriched for a number of 

genomic features including 5′-UTRs, DNase I hypersensitivity sites, and introns, as well at 

chromatin states for “Flanking Bivalent TSS-Enhancer” and “Bivalent Enhancer” (Table S18 

in Supplement 2) with 142 top sites mapping to eQTMs (Table S19 in Supplement 2).

Whole Blood.—Only one intergenic site in whole blood passed the FDR threshold of 

0.1 employed in the current analysis (top site p = 2.54 × 10−9) that was most proximal to 

CYP2J2 and HOOK1 (Table S20 in Supplement 2). As the cell types showing the largest 

signals in our MWASs are of relatively low abundance (T cells and monocytes), statistical 
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power may be lacking to detect many of these differences in whole blood, as they represent 

a minority of cells. Nonetheless, top results from whole blood were significantly enriched 

at features like CpG islands, exons, splice sites, promoters, and virtually all regulatory 

chromatin states (Table S21 in Supplement 2), with 145 top sites mapping to known eQTMs 

(Table S22 in Supplement 2).

Top Findings Are Replicated at Loci Implicated in Past Methylation Studies of Depression

Story Jovanova et al. (56) reported significant associations at CDC42BPB and ARHGEF3 
from a large multicohort MWAS meta-analysis for depressive symptoms in whole blood. We 

tested for enrichment between our top results versus the top 41 loci from the meta-analysis 

of Story Jovanova et al. The most significant enrichment was observed for the top 0.05% 

of our whole blood results (6 CpGs, p value = 2.50 × 10−3), which was driven by the 

CpG at CDC42BPB. In contrast, our results for T cells/monocytes and neurons/glia/bulk 

brain were not enriched for CpGs implicated by Story Jovanova et al. However, their study 

was performed in whole blood rather than on a cell type–specific level, included some 

cohort data that was not corrected for cell type heterogeneity, and again relied on sparse 

methylation array data.

Thus, we additionally tested whether genes implicated by our top results were significantly 

overrepresented for genes at the top 41 loci reported by Story Jovanova et al. Results showed 

that genes implicated by the top 0.5% sites of our MWASs for whole blood (43 genes, p 
value = 3.00 × 10−5), T cells (37 genes, p value = 2.03 × 10−2), monocytes (40 genes, p 
value = 2.10 × 10−4), neurons (37 genes, p value = 1.25 × 10−2), glia (35 genes, p value = 

2.56 × 10−2), and bulk brain (37 genes, p value = 5.04 × 10−3) were indeed over-represented 

for those that had been previously reported to harbor methylation associations (including 

CDC42BPB and ARHGEF3) with depressive symptoms. Thus, different methylation sites 

may influence the same disease-related genes in multiple tissues and cell types.

Top Findings Are Overrepresented at Genes From GWAS of MDD and Other 
Neuropsychiatric Disorders

We tested for overlap of genes between the top findings of our cell type–specific MWASs 

and the top 10,000 variants from GWASs for attention-deficit/hyperactivity disorder (57), 

anxiety disorders (58), autism spectrum disorder (59), bipolar disorder (60), MDD (36), 

and schizophrenia (60). We also tested against 869 variants for neurodegenerative disease 

collected from GWAS Catalog data (61). To check for specificity, we also tested our findings 

versus the top 10,000 variants for breast cancer (62).

Given the large differences in power and strength of association signals between our 

different methylation studies, we conservatively selected only the top 1000 findings from 

each MWAS to test for gene overlap against GWAS. As expected, none of our MWAS 

results were enriched at genes associated with breast cancer.

In contrast, our results (Table 1) showed very robust and highly significant 

overrepresentation of genes implicated by MDD GWASs and the top 1000 sites from 

MWASs of neurons, glia, bulk brain, T cells, monocytes, and whole blood. Results for 

neuron and bulk brain MWASs were further over-represented for genes associated with 
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bipolar disorder. Genes associated with anxiety disorders were overrepresented among 

top MWAS results from monocytes and whole blood. Finally, neuron and glia results 

significantly overlapped genes associated with neurodegenerative disease.

Pathway and Cross-Tissue Analyses

To investigate the possible biological mechanisms and processes underlying our findings, we 

performed pathway analyses for the top 1000 sites from our MWASs.

For neurons, top findings were enriched for 22 pathways (Table S23 in Supplement 2) that 

clustered into 6 groups. The first major cluster (Figure 2; red) was populated for terms 

related to “Signaling by Rho GTPases” and neurotrophin-mediated cell death like “p75 NTR 

Receptor-mediated Signaling” and “Death Receptor Signaling.” Other clusters centered on 

G protein–coupled receptor signaling (Figure 2; orange) and transforming growth factor β 
signaling (Figure 2, green).

Results in glia drove enrichment of 41 pathways (Table S24 in Supplement 2) that 

segregated into 9 clusters. The first cluster (Figure 3; red) involved transforming growth 

factor β signaling and cell cycle processes. The second and predominant cluster (Figure 

3; yellow) contained many overlapping pathways related to innate immune response via 

toll-like receptors (TLRs) and inflammatory cytokine signaling.

Bulk brain findings showed enrichment of only 6 unrelated pathways that involved 

“Reproduction,” cell cycle processes, posttranslational protein modification, ribosomal RNA 

expression, and hormone metabolism (Table S25 in Supplement 2).

Findings for monocytes drove enrichment of 14 pathways that grouped into 5 clusters (Table 

S26 in Supplement 2). The first major cluster (Figure 4; red) involved “Signaling by Rho 

GTPases,” and a second cluster (Figure 4; orange) centered around cell cycle processes.

T cell results contributed to the enrichment of only 4 pathways for “Keratinization” (driven 

by blood-expressed keratins KRT72, KRT73, KRT86), cellular respiration, and integrin 

signaling (Table S27 in Supplement 2).

Lastly, top results from whole blood led to enrichment of 16 pathways that gathered into 

6 smaller clusters (Table S28 in Supplement 2). The third cluster for pathways whole 

blood (Figure 5; green) implicated “p75 NTR Receptor-mediated Signaling” and “Death 

Receptor Signaling,” which were also key pathways in neurons. Other notable pathways 

included “Neuronal System,” and a sixth cluster (Figure 5; orange) again involving cell 

cycle processes.

Based on the apparent overlap of implicated pathways between our results in brain and 

blood, we investigated whether top results were enriched across tissues and cell types. 

We did not observe evidence of overlap between the top 1000 findings across tissues on 

a CpG-to-CpG level. However, when we examined results on a gene level, we observed 

significant overlap between genes associated with the top 1000 sites from T cells and bulk 

brain MWASs (33 genes, p value = 2.99 × 10−2). Notably, the overlap included both ASTN2 
and RBFOX1. While these results do not suggest that top cell type–specific methylation 
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signals are typically shared across tissues, they do imply that methylation may impact 

disease-related processes in multiple tissues and cell types via a related networks of genes.

DISCUSSION

In one of the most comprehensive methylation studies of MDD to date, we characterized 

methylome-wide associations with MDD in large collections of brain and blood samples at 

a bulk tissue and a cell type–specific level. Using epigenomic deconvolution, we identified 

novel findings in neurons and glia in a meta-analysis of 3 brain collections and replicated 

our findings in a fourth sample of sorted nuclei. A cell type–specific MWAS in blood 

also uncovered associations in CD14 monocytes and CD3 T cells that were not detected 

in whole blood. Whereas we did not observe much cross-tissue overlap in our findings on 

a CpG-to-CpG level, we did find evidence that similar genes from our own results and 

those from Story Jovanova et al. (56) were consistently implicated in multiple tissues/cell 

types. Strong overlap with GWASs of MDD and some related disorders further supported 

the robustness of our findings and highlighted the shared liabilities among neuropsychiatric 

disorders.

Our results implicated NGF receptor (p75NTR) signaling in MDD that aligned with previous 

methylation investigations of depressive symptoms (56) and chronic MDD (63). A fine 

balance of signaling through the generally prosurvival Trk receptors and apoptotic p75NTR 

is needed for normal neuro-development and neuron survival (64). Notably, our results 

suggested differences in both neurons and whole blood of MDD cases and controls, 

suggesting that systemic perturbations of NGF or p75NTR signaling are present in MDD. 

This seems plausible considering that psychosocial stress, a major risk factor for MDD, 

alters both circulating and brain concentrations of NGF (65–69).

Our glial MWAS yielded results that also strongly implicated TLR activation in MDD. 

TLRs are key components of the innate immune system (70), which itself has long been 

suspected to play a role in the pathogenesis of MDD (71). Importantly, both acute and 

chronic stress affect the innate immune system via TLRs in both blood and brain (6,72–74). 

Therefore, our findings also suggest that methylation changes in glia could be indicative 

of the effects of stress in the brains of patients with MDD, especially when we consider 

that both astrocytes and microglia mediate the innate immune system in the brain through 

TLRs (75). Further, innate immune activation and neuroinflammation can induce microglia 

to increase production of NGF (76,77) and can interact with transforming growth factor 

β signaling (78), which was also implicated by our neural and glial MWASs. Finally, 

we did not find substantial evidence of human leukocyte antigen involvement in any of 

our analyses. Altogether, our findings suggest that MDD is characterized by stress-linked 

activation of the innate immune system leading to systemic inflammatory responses that 

affect cells in both brain and blood.

As antidepressant treatment, smoking status, alcohol use, and body mass index information 

was available for the NESDA blood samples, we checked for or controlled for the influences 

of these confounders in our case-control analyses in blood. This information was not 

available for the 3 postmortem brain sample collections. However, top MDD associations 
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for neurons, glia, and bulk brain contained none of the sites that were associated with 

antidepressant use (Supplement 1), smoking status, alcohol use, or body mass index detected 

in the NESDA sample, nor methylation sites in the AHRR gene previously associated with 

smoking (79). Therefore, these variables were unlikely to be major confounders in our 

analyses.

Patients with MDD are at increased risk for suicide. Although suicide has been 

associated with changes in methylation in the brain (80,81), it is unclear whether suicide 

was a confounder in our analyses, as these changes may have preexisted death. The 

nonexperimental nature of research with human subjects makes disentangling these effects 

difficult. However, observing overlap with GWASs of MDD improves causal inferences 

since genotype antecedes disease, as does observing some overlap with results from blood of 

living patients. Ultimately, follow-up experiments using in vitro epigenetic editing (82,83) in 

appropriate cellular or animal models to study causality and translational potential (84) are a 

necessary future goal.

In conclusion, our cell type–specific MWASs revealed associations otherwise obscured in 

bulk brain and whole blood, and they provided mechanistic insights into underlying disease 

processes. Collectively, results pointed toward stress-related neuroinflammation, potentially 

via p75NTR/NGF and innate immune TLR signaling, as key components of MDD. Critically, 

these results appear to corroborate and provide links between the neurotrophic (85) and 

neuroimmune hypotheses of depression (86). Whereas peripheral-neuroimmune interactions 

are known to influence behavior in animal models, our findings involved actual associations 

in human patients that implicated a synergistic set of biological pathways plausibly linked to 

MDD pathology. As both these methylation sites and the biological processes they affect are 

modifiable, our findings represent promising novel targets for improving MDD treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS AND DISCLOSURES

This project was supported by the National Institute of Mental Health (Grant No. R01MH099110 [to EJCGvdO]). 
Postmortem brain tissues were received from the Victorian Brain Bank, which is supported by the Florey Institute 
of Neuroscience and Mental Health and the Alfred and Victorian Forensic Institute of Medicine and funded by 
Australia’s National Health and Medical Research Council and Parkinson’s Victoria; the Stanley Medical Research 
Institute; the Netherlands Brain Bank, Netherlands Institute of Neuroscience, Amsterdam; the Harvard Brain Tissue 
Resource Center; and the Douglas-Bell Canada Brain Bank, Douglas Institute Research Center, Canada. The 
infrastructure for the NESDA study is funded through the Geestkracht program of the Netherlands Organisation 
for Health Research and Development (ZonMw) (Grant No. 10-000-1002) and via financial contributions from 
participating universities and mental health care organizations (VU University Medical Center, GGZ inGeest, 
Leiden University Medical Center, Leiden University, GGZ Rivierduinen, University Medical Center Groningen, 
University of Groningen, Lentis, GGZ Friesland, GGZ Drenthe, and Rob Giel Onderzoekcentrum).

RFC, KAA, and EJCGvdO conceived the concept of the study and established the design. KAA and EJCGvdO 
executed supervision of the study. RFC, JG, MZ, LYX, and ZAK generated the methylation data. RFC, AAS, JG, 
ZAK, KAA, and EJCGvdO analyzed the data. GvG, GT, BD, and BWJHP provided expertise on biomaterial and 
phenotype information. RFC and EJCGvdO wrote the manuscript. All authors contributed important intellectual 
content to and critically reviewed the manuscript.

This article was published as a preprint on bioRxiv: doi: https://doi.org/10.1101/432088.

Chan et al. Page 11

Biol Psychiatry. Author manuscript; available in PMC 2023 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



BP has received research funding (nonrelated) from Jansen Research and Boehringer Ingelheim. All other authors 
report no biomedical financial interests or potential conflicts of interest.

Complete test statistics for each MWAS are available for download at http://www.people.vcu.edu/~ejvandenoord/. 
Raw data are available on request to ejvandenoord@vcu.edu.

REFERENCES

1. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, et al. (2003): The 
epidemiology of major depressive disorder: Results from the National Comorbidity Survey 
Replication (NCS-R). JAMA 289:3095–3105. [PubMed: 12813115] 

2. World Health Organization (2017): Depression and Other Common Mental Disorders: Global 
Health Estimates. Geneva, Switzerland: World Health Organization.

3. Kaffman A, Meaney MJ (2007): Neurodevelopmental sequelae of postnatal maternal care in rodents: 
Clinical and research implications of molecular insights. J Child Psychol Psychiatry 48:224–244. 
[PubMed: 17355397] 

4. Szyf M, Weaver IC, Champagne FA, Diorio J, Meaney MJ (2005): Maternal programming of steroid 
receptor expression and phenotype through DNA methylation in the rat. Front Neuroendocrinol 
26:139–162. [PubMed: 16303171] 

5. Abdolmaleky HM, Smith CL, Faraone SV, Shafa R, Stone W, Glatt SJ, et al. (2004): Methylomics 
in psychiatry: Modulation of gene-environment interactions may be through DNA methylation. Am 
J Med Genet B Neuropsychiatr Genet 127B:51–59. [PubMed: 15108180] 

6. Iwata M, Ota KT, Duman RS (2013): The inflammasome: Pathways linking psychological stress, 
depression, and systemic illnesses. Brain Behav Immun 31:105–114. [PubMed: 23261775] 

7. Sotelo JL, Nemeroff CB (2017): Depression as a systemic disease. Pers Med Psychiatry 1–2:11–25.

8. Shen-Orr SS, Gaujoux R (2013): Computational deconvolution: Extracting cell type-specific 
information from heterogeneous samples. Curr Opin Immunol 25:571–578. [PubMed: 24148234] 

9. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. (2012): 
DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 
13:86. [PubMed: 22568884] 

10. Rahmani E, Zaitlen N, Baran Y, Eng C, Hu D, Galanter J, et al. (2016): Sparse PCA corrects 
for cell type heterogeneity in epigenome-wide association studies. Nat Methods 13:443–445. 
[PubMed: 27018579] 

11. Onuchic V, Hartmaier RJ, Boone DN, Samuels ML, Patel RY, White WM, et al. (2016): 
Epigenomic deconvolution of breast tumors reveals metabolic coupling between constituent cell 
types. Cell Rep 17:2075–2086. [PubMed: 27851969] 

12. Shen-Orr SS, Tibshirani R, Khatri P, Bodian DL, Staedtler F, Perry NM, et al. (2010): Cell 
type-specific gene expression differences in complex tissues. Nat Methods 7:287–289. [PubMed: 
20208531] 

13. Aberg KA, Dean B, Shabalin AA, Chan RF, Han LKM, Zhao M, et al. (2018): Methylome-wide 
association findings for major depressive disorder overlap in blood and brain and replicate in 
independent brain samples [published online ahead of print Sep 21]. Mol Psychiatry.

14. Guintivano J, Aryee MJ, Kaminsky ZA (2013): A cell epigenotype specific model for the 
correction of brain cellular heterogeneity bias and its application to age, brain region and major 
depression. Epigenetics 8:290–302. [PubMed: 23426267] 

15. Penninx B, Beekman A, Smit J (2008): The Netherlands Study of Depression and Anxiety 
(NESDA): Rationales, Objectives and Methods. Int J Methods Psychiatr Res 17:121–140. 
[PubMed: 18763692] 

16. Venet D, Pecasse F, Maenhaut C, Bersini H (2001): Separation of samples into their constituents 
using gene expression data. Bioinformatics 17(suppl 1):S279–S287. [PubMed: 11473019] 

17. Zheng SC, Breeze CE, Beck S, Teschendorff AE (2018): Identification of differentially methylated 
cell types in epigenome-wide association studies. Nat Methods 15:1059–1066. [PubMed: 
30504870] 

Chan et al. Page 12

Biol Psychiatry. Author manuscript; available in PMC 2023 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.people.vcu.edu/~ejvandenoord/


18. Montano CM, Irizarry RA, Kaufmann WE, Talbot K, Gur RE, Feinberg AP, et al. (2013): 
Measuring cell-type specific differential methylation in human brain tissue. Genome Biol 14:R94. 
[PubMed: 24000956] 

19. Koestler DC, Christensen B, Karagas MR, Marsit CJ, Langevin SM, Kelsey KT, et al. (2013): 
Blood-based profiles of DNA methylation predict the underlying distribution of cell types: A 
validation analysis. Epigenetics 8:816–826. [PubMed: 23903776] 

20. van den Oord EJCG (2008): Controlling false discoveries in genetic studies. Am J Med Genet B 
Neuropsychiatr Genet 147B:637–644. [PubMed: 18092307] 

21. van den Oord EJ, Sullivan PF (2003): False discoveries and models for gene discovery. Trends 
Genet 19:537–542. [PubMed: 14550627] 

22. Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, et al. (2013): 
Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219–1227. [PubMed: 
23746839] 

23. Hattab MW, Shabalin AA, Clark SL, Zhao M, Kumar G, Chan RF, et al. .(2017): Correcting for 
cell-type effects in DNA methylation studies: Reference-based method outperforms latent variable 
approaches in empirical studies. Genome Biol 18:24. [PubMed: 28137292] 

24. Chan RF, Shabalin AA, Xie LY, Adkins DE, Zhao M, Turecki G, et al. (2017): Enrichment 
methods provide a feasible approach to comprehensive and adequately powered investigations of 
the brain methylome. Nucleic Acids Res 45:e97. [PubMed: 28334972] 

25. Aberg KA, Xie L, Chan RF, Zhao M, Pandey AK, Kumar G, et al. (2015): Evaluation of methyl-
binding domain based enrichment approaches revisited. PLoS One 10:e0132205.

26. Aberg KA, Chan RF, Shabalin AA, Zhao M, Turecki G, Staunstrup NH, et al. (2017): A MBD-seq 
protocol for large-scale methylome-wide studies with (very) low amounts of DNA. Epigenetics 
12:743–750. [PubMed: 28703682] 

27. Lehne B, Drong AW, Loh M, Zhang W, Scott WR, Tan S-T, et al. (2015): A coherent approach for 
analysis of the Illumina Human-Methylation450 BeadChip improves data quality and performance 
in epigenome-wide association studies. Genome Biol 16:37. [PubMed: 25853392] 

28. Stouffer S, DeVinney L, Suchmen E (1949): The American soldier: Adjustment during army life. 
Princeton, New Jersey: Princeton University Press.

29. Cabrera CP, Navarro P, Huffman JE, Wright AF, Hayward C, Campbell H, et al. (2012): 
Uncovering networks from genome-wide association studies via circular genomic permutation. 
G3 (Bethesda) 2:1067–1075. [PubMed: 22973544] 

30. Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, et al. (2016): The 
Reactome Pathway Knowledgebase. Nucleic Acids Res 44:D481–D487. [PubMed: 26656494] 

31. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. 
(2015): Integrative analysis of 111 reference human epigenomes. Nature 518:317–330. [PubMed: 
25693563] 

32. Hannon E, Spiers H, Viana J, Pidsley R, Burrage J, Murphy TM, et al. (2015): Methylation QTLs 
in the developing brain and their enrichment in schizophrenia risk loci. Nat Neurosci 19:48–54. 
[PubMed: 26619357] 

33. Hannon E, Gorrie-Stone TJ, Smart MC, Burrage J, Hughes A, Bao Y, et al. (2018): Leveraging 
DNA-methylation quantitative-trait loci to characterize the relationship between methylomic 
variation, gene expression, and complex traits. Am J Hum Genet 103:654–665. [PubMed: 
30401456] 

34. von Bartheld CS, Bahney J, Herculano-Houzel S (2016): The search for true numbers of neurons 
and glial cells in the human brain: A review of 150 years of cell counting. J Comp Neurol 
524:3865–3895. [PubMed: 27187682] 

35. Jacko M, Weyn-Vanhentenryck SM, Smerdon JW, Yan R, Feng H, Williams DJ, et al. (2018): 
Rbfox splicing factors promote neuronal maturation and axon initial segment assembly. Neuron 
97:853–868.e856.

36. Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, et al. (2018): 
Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of 
major depression. Nat Genet 50:668–681. [PubMed: 29700475] 

Chan et al. Page 13

Biol Psychiatry. Author manuscript; available in PMC 2023 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



37. Crawford B, Craig Z, Mansell G, White I, Smith A, Spaull S, et al. (2018): DNA methylation and 
inflammation marker profiles associated with a history of depression. Hum Mol Genet 27:2840–
2850. [PubMed: 29790996] 

38. Morice-Picard F, Benard G, Rezvani HR, Lasseaux E, Simon D, Moutton S, et al. (2016): 
Complete loss of function of the ubiquitin ligase HERC2 causes a severe neurodevelopmental 
phenotype. Eur J Hum Genet 25:52–58. [PubMed: 27759030] 

39. Bekker-Jensen S, Danielsen JR, Fugger K, Gromova I, Nerstedt A, Lukas C, et al. (2009): HERC2 
coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. Nat 
Cell Biol 12:80–86. [PubMed: 20023648] 

40. Poulsen SL, Hansen RK, Wagner SA, van Cuijk L, van Belle GJ, Streicher W, et al. (2013): 
RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response. J 
Cell Biol 201:797–807. [PubMed: 23751493] 

41. Nagano Y, Mavrakis KJ, Lee KL, Fujii T, Koinuma D, Sase H, et al. (2007): Arkadia induces 
degradation of SnoN and c-Ski to enhance transforming growth factor-β signaling. J Biol Chem 
282:20492– 20501.

42. Schreiber J, Végh MJ, Dawitz J, Kroon T, Loos M, Labonté D, et al. (2015): Ubiquitin ligase 
TRIM3 controls hippocampal plasticity and learning by regulating synaptic γ-actin levels. J Cell 
Biol 211:569–586. [PubMed: 26527743] 

43. Hung AY, Sung CC, Brito IL, Sheng M (2010): Degradation of post-synaptic scaffold GKAP 
and regulation of dendritic spine morphology by the TRIM3 ubiquitin ligase in rat hippocampal 
neurons. PLoS One 5: e9842.

44. Hu W-H, Pendergast JS, Mo X-M, Brambilla R, Bracchi-Ricard V, Li F, et al. (2005): NIBP, a 
novel NIK and IKKβ-binding protein that enhances NF-κB activation. J Biol Chem 280:29233–
29241.

45. Mochida GH, Mahajnah M, Hill AD, Basel-Vanagaite L, Gleason D, Hill RS, et al. (2009): A 
truncating mutation of trappc9 is associated with autosomal-recessive intellectual disability and 
postnatal microcephaly. Am J Hum Genet 85:897–902. [PubMed: 20004763] 

46. Marangi G, Leuzzi V, Manti F, Lattante S, Orteschi D, Pecile V, et al. .(2013): TRAPPC9-related 
autosomal recessive intellectual disability: Report of a new mutation and clinical phenotype. Eur J 
Hum Genet 21:229–232. [PubMed: 22549410] 

47. Adkins DE, Åberg K, McClay JL, Hettema JM, Kornstein SG, Bukszár J, et al. (2010): 
A genomewide association study of citalopram response in major depressive disorder—A 
psychometric approach. Biol Psychiatry 68:e25–e27. [PubMed: 20619826] 

48. Miao R, Huang S, Zhou Z, Quinn T, Van Treeck B, Nayyar T, et al. .(2013): Targeted disruption of 
MCPIP1/Zc3h12a results in fatal inflammatory disease. Immunol Cell Biol 91:368–376. [PubMed: 
23567898] 

49. Schiffer HH, Heinemann SF (2007): Association of the human kainite receptor GluR7 gene 
(GRIK3) with recurrent major depressive disorder. Am J Med Genet B Neuropsychiatr Genet 
144B:20–26. [PubMed: 16958029] 

50. Garcia-Rizo C, Fernandez-Egea E, Miller BJ, Oliveira C, Justicia A, Griffith JK, et al. 
(2013): Abnormal glucose tolerance, white blood cell count, and telomere length in newly 
diagnosed, antidepressant-naïve patients with depression. Brain Behav Immun 28:49–53. 
[PubMed: 23207109] 

51. Verhoeven JE, Révész D, Epel ES, Lin J, Wolkowitz OM, Penninx BWJH (2014): Major 
depressive disorder and accelerated cellular aging: Results from a large psychiatric cohort study. 
Mol Psychiatry 19:895–901. [PubMed: 24217256] 

52. Mamdani F, Rollins B, Morgan L, Myers RM, Barchas JD, Schatzberg AF, et al. (2015): Variable 
telomere length across postmortem human brain regions and specific reduction in the hippocampus 
of major depressive disorder. Transl Psychiatry 5:e636. [PubMed: 26371764] 

53. Han LKM, Aghajani M, Clark SL, Chan RF, Hattab MW, Shabalin AA, et al. (2018): Epigenetic 
aging in major depressive disorder. Am J Psychiatry 175:774–782. [PubMed: 29656664] 

54. Demir S, Atli A, Bulut M, İbiloğlu AO, Güneş M, Kaya MC, et al. (2015): Neutrophil–
lymphocyte ratio in patients with major depressive disorder undergoing no pharmacological 
therapy. Neuropsychiatr Dis Treat 11:2253–2258. [PubMed: 26347335] 

Chan et al. Page 14

Biol Psychiatry. Author manuscript; available in PMC 2023 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



55. Weber MD, Godbout JP, Sheridan JF (2017): Repeated social defeat, neuroinflammation, and 
behavior: Monocytes carry the signal. Neuropsychopharmacology 42:46–61. [PubMed: 27319971] 

56. Story Jovanova O, Nedeljkovic I, Spieler D, Walker RM, Liu C, Luciano M, et al. (2018): DNA 
methylation signatures of depressive symptoms in middle-aged and elderly persons: Meta-analysis 
of multiethnic epigenome-wide studies. JAMA Psychiatry 75:949–959. [PubMed: 29998287] 

57. Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. (2019): Discovery of 
the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet 
51:63–75. [PubMed: 30478444] 

58. Otowa T, Hek K, Lee M, Byrne EM, Mirza SS, Nivard MG, et al. (2016): Meta-analysis of 
genome-wide association studies of anxiety disorders. Mol Psychiatry 21:1391–1399. [PubMed: 
26754954] 

59. Grove J, Ripke S, Als TD, Mattheisen M, Walters R, Won H, et al. (2019): Identification of 
common genetic risk variants in autism spectrum disorder. Nat Genet 51:431–444. [PubMed: 
30804558] 

60. Ruderfer DM, Ripke S, McQuillin A, Boocock J, Stahl EA, Pavlides JMW, et al. (2018): Genomic 
dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell 173:1705–
1715, e1716.

61. MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. (2017): The new NHGRI-
EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res 
45:D896–D901. [PubMed: 27899670] 

62. Michailidou K, Lindström S, Dennis J, Beesley J, Hui S, Kar S, et al. (2017): Association analysis 
identifies 65 new breast cancer risk loci. Nature 551:92–95. [PubMed: 29059683] 

63. Clark SL, Hattab MW, Chan RF, Shabalin AA, Han LKM, Zhao M, et al. (2019): A methylation 
study of long-term depression risk [published online ahead of print Sep 9]. Mol Psychiatry.

64. Hempstead BL (2002): The many faces of p75NTR. Curr Opin Neurobiol 12:260–267. [PubMed: 
12049931] 

65. Aloe L, Bracci-Laudiero L, Alleva E, Lambiase A, Micera A, Tirassa P (1994): Emotional stress 
induced by parachute jumping enhances blood nerve growth factor levels and the distribution of 
nerve growth factor receptors in lymphocytes. Proc Natl Acad Sci U S A 91:10440–10444.

66. Kamezaki Y, Katsuura S, Kuwano Y, Tanahashi T, Rokutan K (2012): Circulating cytokine 
signatures in healthy medical students exposed to academic examination stress. Psychophysiology 
49:991–997. [PubMed: 22468981] 

67. Hadjiconstantinou M, McGuire L, Duchemin A-M, Laskowski B, Kiecolt-Glaser J, Glaser R 
(2001): Changes in plasma nerve growth factor levels in older adults associated with chronic 
stress. J Neuroimmunol 116:102–106. [PubMed: 11311335] 

68. Filho CB, Jesse CR, Donato F, Giacomeli R, Del Fabbro L, da Silva Antunes M, et al. (2015): 
Chronic unpredictable mild stress decreases BDNF and NGF levels and Na+,K+-ATPase activity 
in the hippocampus and prefrontal cortex of mice: Antidepressant effect of chrysin. Neuroscience 
289:367–380. [PubMed: 25592430] 

69. Kucharczyk M, Kurek A, Detka J, Slusarczyk J, Papp M, Tota K, et al. (2016): Chronic mild 
stress influences nerve growth factor through a matrix metalloproteinase-dependent mechanism. 
Psychoneuroendocrinology 66:11–21. [PubMed: 26771945] 

70. Medzhitov R (2001): Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145. 
[PubMed: 11905821] 

71. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008): From inflammation to 
sickness and depression: When the immune system subjugates the brain. Nat Rev Neurosci 9:46. 
[PubMed: 18073775] 

72. Zhang Y, Woodruff M, Zhang Y, Miao J, Hanley G, Stuart C, et al. (2008): Toll-like receptor 
4 mediates chronic restraint stress-induced immune suppression. J Neuroimmunol 194:115–122. 
[PubMed: 18192029] 

73. Gárate I, Garcia-Bueno B, Madrigal JLM, Caso JR, Alou L, Gomez-Lus ML, et al. (2013): Stress-
induced neuroinflammation: Role of the toll-like receptor 4 pathway. Biol Psychiatry 73:32–43. 
[PubMed: 22906518] 

Chan et al. Page 15

Biol Psychiatry. Author manuscript; available in PMC 2023 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



74. Breen MS, Beliakova-Bethell N, Mujica-Parodi LR, Carlson JM, Ensign WY, Woelk CH, et al. 
(2016): Acute psychological stress induces short-term variable immune response. Brain Behav 
Immun 53:172–182. [PubMed: 26476140] 

75. Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, et al. (2005): TLR signaling 
tailors innate immune responses in human microglia and astrocytes. J Immunol 175:4320–4330. 
[PubMed: 16177072] 

76. Kannan Y, Bienenstock J, Ohta M, Stanisz AM, Stead RH (1996): Nerve growth factor and 
cytokines mediate lymphoid tissue-induced neurite outgrowth from mouse superior cervical 
ganglia in vitro. J Immunol 157:313–320. [PubMed: 8683132] 

77. Heese K, Hock C, Otten U (1998): Inflammatory signals induce neuro-trophin expression in 
human microglial cells. J Neurochem 70:699–707. [PubMed: 9453564] 

78. De Simone R, Ambrosini E, Carnevale D, Ajmone-Cat MA, Minghetti L (2007): NGF promotes 
microglial migration through the activation of its high affinity receptor: Modulation by TGF-β. J 
Neuroimmunol 190:53–60. [PubMed: 17868907] 

79. Gao X, Jia M, Zhang Y, Breitling LP, Brenner H (2015): DNA methylation changes of whole blood 
cells in response to active smoking exposure in adults: A systematic review of DNA methylation 
studies. Clin Epigenetics 7:113. [PubMed: 26478754] 

80. Murphy TM, Crawford B, Dempster EL, Hannon E, Burrage J, Turecki G, et al. (2017): 
Methylomic profiling of cortex samples from completed suicide cases implicates a role for 
PSORS1C3 in major depression and suicide. Transl Psychiatry 7:e989. [PubMed: 28045465] 

81. Nagy C, Suderman M, Yang J, Szyf M, Mechawar N, Ernst C, et al. (2015): Astrocytic 
abnormalities and global DNA methylation patterns in depression and suicide. Mol Psychiatry 
20:320–328. [PubMed: 24662927] 

82. Vojta A, Dobrinić P, Tadić V, Bočkor L, Korać P, Julg B, et al. (2016): Repurposing the 
CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 44:5615–5628. [PubMed: 
26969735] 

83. Morita S, Noguchi H, Horii T, Nakabayashi K, Kimura M, Okamura K, et al. (2016): Targeted 
DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. 
Nat Biotechnol 34:1060–1065. [PubMed: 27571369] 

84. Jeffries MA (2018): Epigenetic editing: How cutting-edge targeted epigenetic modification might 
provide novel avenues for autoimmune disease therapy. Clin Immunol 196:49–58. [PubMed: 
29421443] 

85. Duman RS, Li N (2012): A neurotrophic hypothesis of depression: Role of synaptogenesis in 
the actions of NMDA receptor antagonists. Philos Trans R Soc Lond B Biol Sci 367:2475–2484. 
[PubMed: 22826346] 

86. Hodes GE, Kana V, Menard C, Merad M, Russo SJ (2015): Neuroimmune mechanisms of 
depression. Nat Neurosci 18:1386–1393. [PubMed: 26404713] 

Chan et al. Page 16

Biol Psychiatry. Author manuscript; available in PMC 2023 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Epigenomic deconvolution for testing case-control differences in subpopulations of cells. 

(A) In step 1 of the deconvolution method, reference methylomes from purified samples 

of sorted cells are used to estimate cell type proportions. For one subject at a time, bulk 

methylation data are regressed on the most informative sites in the reference methylomes 

to obtain predicted proportions of each cell type. (B) After cell type proportions have 

been predicted for each subject in the study, step 2 uses these proportions to estimate 

case-control differences at each CpG site. (C) To illustrate how cell type–specific differences 

are predicted, we present a simple example. Since bulk methylation and proportions of 

neurons/glia will differ between subjects, we can regress bulk methylation levels (y-axis) 

on the proportion of neuronal cells (x-axis). Thus, extrapolating the regression line to the 

point where the proportion of neurons is 0 (i.e., there are only glia cells) estimates the group 

mean methylation in glia, and extrapolation to the point where the proportion of neurons 

is 1 estimates the group mean methylation in neurons. By allowing the regression lines to 

differ between controls (black dots) and cases (red crosses), we obtain different predicted 

cell type–specific group means that can be tested for significance using standard statistical 

tests. See Methods and Materials and Supplement 1 for discussion of the statistical models.
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Figure 2. 
Significantly enriched pathways for neurons. As pathways often share genes, the raster plot 

visualizes the clustering of pathways (y-axis) determined on the basis of their overlapping 

genes (x-axis). The solid rectangles indicate genes that both were among the top methylome-

wide association study results and were members of the listed pathway. Note that only genes 

that were among the top methylome-wide association study results, rather than all possible 

pathway members, are plotted. Only pathways containing a minimum of 3 overlapping 

genes and those passing nominal significance (α <.05) were retained. Complete pathway 
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names, gene names, odds ratios, and p values are presented in Table S5 in Supplement 

2 for deconvoluted neurons and Table S9 in Supplement 2 for sorted neurons. ECM, 

extracellular matrix protein; G1/S, G1 phase/S phase; G2/M, G2 phase/mitosis; GPCR, G 

protein–coupled receptor; GTPase, guanosine triphosphate hydrolase enzyme; JNK, c-Jun 

N-terminal kinase; NADE, p75NTR-associated cell death executor; NRAGE, neurotrophin 

receptor–interacting MAGE homolog; NRIF, neurotrophin receptor interacting factor; p75 

NTR, neurotrophin receptor p75; TGF, transforming growth factor.
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Figure 3. 
Significantly enriched pathways for glia. See Figure 2 for an explanation of the plot. 

Complete pathway names, gene names, odds ratios, and p values are presented in Table 

S6 in Supplement 2 for deconvoluted glia and Table S10 in Supplement 2 for sorted glia. 

COPII, coat protein complex II; ECM, extracellular matrix protein; FCERI, Fc epsilon 

receptor; G1/S, G1 phase/S phase; MAPK, mitogen-activated protein kinase; NFκB, nuclear 

factor-κB; PTK6, protein-tyrosine kinase 1; TGF, transforming growth factor; TRAFC, 

tumor necrosis factor receptor-associated factor family protein.
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Figure 4. 
Significantly enriched pathways for monocytes (CD14). See Figure 2 for an explanation of 

the plot. Complete pathway names, gene names, odds ratios, and p values are presented in 

Table S14 in Supplement 2 for monocytes. EPH, ephrin receptor; G2/M, G2 phase/mitosis; 

PKN, protein kinase N.
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Figure 5. 
Significantly enriched pathways for whole blood. See Figure 2 for an explanation of the 

plot. Complete pathway names, gene names, odds ratios, and p values are presented in 

Table S14 in Supplement 2 for monocytes. COPI, tethering coat protein complex I; DDX58/

IFIH1, DExD/H-box helicase 58/interferon induced with helicase C domain 1; FCERI, 

Fc epsilon receptor; G2/M, G2 phase/mitosis; p75 NTR, neurotrophin receptor p75; RNP, 

ribonucleoprotein particle.
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