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ABSTRACT

Objective: A previous study, PheMAP, combined independent, online resources to enable high-throughput

phenotyping (HTP) using electronic health records (EHRs). However, online resources offer distinct quality

descriptions of diseases which may affect phenotyping performance. We aimed to evaluate the phenotyping

performance of single resource-based PheMAPs and investigate an optimized strategy for HTP.

Materials and Methods: We compared how each resource produced top-ranked concept unique identifiers

(CUIs) by term frequency—inverse document frequency with Jaccard matrices comparing single resources and

the original PheMAP. We correlated top-ranked concepts from each resource to features used in established

Phenotype KnowledgeBase (PheKB) algorithms for hypothyroidism, type II diabetes mellitus (T2DM), and

dementias. Using resources separately, we calculated multiple phenotype risk scores for individuals from Van-

derbilt University Medical Center’s BioVU DNA Biobank and compared phenotyping performance against rule-

based eMERGE algorithms. Lastly, we implemented an ensemble strategy which classified patient case/control

status based upon PheMAP resource agreement.

Results: Jaccard similarity matrices indicate that the similarity of CUIs comprising single resource-based

PheMAPs varies. Single resource-based PheMAPs generated from MedlinePlus and MedicineNet outperformed

others but only encompass 81.6% of overall disease phenotypes. We propose the PheMAP-Ensemble which

provides higher average accuracy and precision than the combined average accuracy and precision of single

resource-based PheMAPs. While offering complete phenotype coverage, PheMAP-Ensemble significantly

increases phenotyping recall compared to the original iteration.

Conclusions: Resources comprising the PheMAP produce different phenotyping performance when imple-

mented individually. The ensemble method significantly improves the quality of PheMAP by fully utilizing

dissimilar resources to capture accurate phenotyping data from EHRs.
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INTRODUCTION

Electronic health records (EHRs) hold an abundance of real-world

clinical data; however, their use in medical research has proven to

be a challenge as EHRs are primarily designed for clinical care

rather than research.1,2 A major barrier to the successful use of EHR

data for biomedical research is quality phenotyping—that is, to effi-

ciently and accurately identify phenotypic information from large,

fragmented datasets.3,4 Current phenotyping algorithms often

require clinical informaticians and domain experts to create and

take considerable resources to develop,5 which is time consuming.
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With the rapid accumulation of clinical and omics data in biobanks,

high-throughput phenotyping (HTP) approaches are becoming

increasingly necessary to conduct large-scale analysis efficiently and

effectively.6 Researchers have proposed using phecodes, a grouped

relevant International Classification of Diseases (ICD) codes to rep-

resent clinically meaningful phenotypes for identifying phenotypes.7

Phecodes have been widely used in phenome-wide association stud-

ies (PheWAS) using EHRs.8 PheCAP (common semi-supervised

approach) is another tool that utilizes machine learning to model

phenotyping representations from EHR data and calculate a

patient’s probability of exhibiting certain phenotypes.6

Unlike the diagnosis-code-based and EHR-derived approaches,

free online content, which includes descriptions of phenotypes or

human diseases curated from trusted and reliable sources, provides

valuable phenotypic information to enable HTP.9,10 Recently, we

developed PheMAP—a HTP tool that learned the representation of

a phenotype through six independent online resources (ie, Mayo

Clinic, MedlinePlus, MedicineNet, Medscape, Wikipedia, and Wiki-

Doc).11 Utilizing a VUMC natural language processing (NLP) pipe-

line, PheMAP parsed phenotype descriptions from extracted

documents and quantified the relationships between phenotypes and

relevant clinical concepts represented by standard medical terminol-

ogy. PheMap is composed of medical concepts with quantified rela-

tionships to 841 disease phenotypes. It enables an automatic search

of EHRs for each phenotype’s quantified concepts and uses them to

calculate an individual’s probability of having this phenotype. Then,

Gaussian mixture models were fitted to phenotype scores, and a pos-

terior probability was calculated to determine if each individual was

a case or control. PheMAP demonstrated comparable or better per-

formance in identifying phenotypes compared to multiple estab-

lished algorithms created by domain experts.12–14

The original PheMAP combines documents from the six online

resources as a single corpus. Given that each resource has distinctive

styles of descriptions, for example, MedlinePlus documents are typi-

cally concise while Wikipedia often contains longer documentation

and more sections such as history of disease, the following questions

arise: (1) Whether PheMAP constructed using each resource yields

different phenotyping results. (2) What are the best ways to combine

documents from diverse sources precisely? In this study, we quanti-

fied the phenotype-concept relationship by each resource and

applied these relationships to EHRs to calculate the phenotype risk

scores (PheRS). We evaluated the difference of PheMAPs derived

from each single resource intrinsically and extrinsically. We com-

pared the similarity of top-ranked concepts for certain phenotypes

and compared it with conventional Phenotype KnowledgeBase

(PheKB) algorithms.15 We also compared the phenotyping accuracy

by applying our algorithms to EHR data.16 In addition, we devel-

oped an ensemble method that leverages the six corpora and com-

pared it with our original implementation of PheMAP as well as

PheMAPs learned from each individual resource.

MATERIALS AND METHODS

Retrieving phenotype information from publicly

available resources
We gathered document describing diagnoses, symptoms, and treat-

ments relating to diseases of interests (phenotypes) from six publicly

available resources that offer consumer health information, includ-

ing Mayo Clinic Patient Care and Health Information website, Med-

linePlus, MedicineNet, Medscape, WikiDoc, and Wikipedia.11 We

parsed the articles and mapped them to phenotypes by matching

article titles to concept unique identifiers (CUIs) in the Unified Med-

ical Language System (UMLS). We utilized an NLP pipeline—the

KnowledgeMap Concept Indexer to identify CUIs found in each

document.17 We then linked CUIs to ICD codes, Current Procedural

Terminology (CPT) codes, Logical Observation Identifiers, Names,

and Codes (LOINC), Systematized Nomenclature of Medicine Clini-

cal Terms (SNOMED CT), and RxNorm Normalized Names and

Codes (RxNORM).8,18–20 We utilized bar graphs and Venn dia-

grams to visualize the phenotype and CUI coverage among the six

online resources.21

Constructing single resource-based PheMAP
In the previous PheMAP article, we concatenated all articles from

different resources describing one phenotype. We then calculated

term frequency—inverse document frequency (TF-IDF) to quantify

the importance of the relationship between a concept and a pheno-

type.11 In the original version of PheMAP, we limited the implemen-

tation to the top 100 CUIs. In this study, we calculated the TF-IDF

separately by each resource, and thus we constructed six different

PheMAPs (ie, PheMAP-Mayo, PheMAP-MedlinePlus, PheMAP-

Mednet, PheMAP-Medscape, PheMAP-WikiDoc, and PheMAP-

Wikipedia) that were learned from each resource.

Source of data
This study used the data from VUMC Synthetic Derivative, which

contains over 2.2 million unique individuals’ rich and dense EHR

data.22

Evaluation tasks and metrics
We evaluated different PheMAP implementations by measuring sim-

ilarity among resource CUIs, comparing to established phenotype

algorithms (eg, PheKB), and calculating phenotyping prediction

agreement within EHR data. In this study, we selected three algo-

rithms from PheKB (ie, T2DM, hypothyroidism, and dementia) to

evaluate PheMAP implementations. We chose these three algorithms

because they (1) are disease phenotypes, (2) are rule-based, (3) have

been validated across institutes, (4) have been demonstrated with

highly consistent overall performance, and (5) have been recently

updated. The eMERGE case–control definition standards for type II

diabetes mellitus required information on diagnoses, lab results,

medication orders, and physician encounter dates; ICD-9, LOINC,

and RxNorm codes were utilized for implementation. For hypothyr-

oidism, the eMERGE algorithm utilized ICD-9 codes, lab results,

medications, and CPT codes to identify patients with hypothyroid-

ism without a secondary cause of surgical removal or radiological

ablation; the search was designed to remove subclinical hypothyr-

oidism as part of the case definition. Lastly, the dementias eMERGE

algorithm utilized ICD-9 codes, medications, and visit history to

classify cases and controls.

Similarity measurement

The similarity between each PheMAP is measured by calculating

Jaccard similarity coefficients between their learned top N-ranked

CUIs (N¼10, 30, 50, 70, 90) according to the TF-IDF score for

each phenotype. The Jaccard similarity coefficient is a statistic met-

ric used for gauging the similarity or diversity between sample sets.

The metric is defined as the size of the intersection of two sets div-

ided by the size of the union of two sets:
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J A; Bð Þ ¼ jA \ Bj
jA [ Bj (1)

where A and B are two sets. The value of the index ranges between

0 and 1. A Jaccard index of 1 indicates complete equivalence while

an index of 0 indicates complete diversity. The Jaccard similarity

coefficients between individual resources and/or the original imple-

mentation of the PheMAP were calculated for all phenotypes via

phecodes by utilizing the top N CUIs ranked by TF-IDF (N¼10, 30,

50, 70, 90). The mean Jaccard similarity coefficient between two

given resources was calculated by averaging Jaccard coefficients

determined from the phenotypes covered by both resources. For any

given resource comparison, if one or both resources lacked a given

phenotype to be incorporated into the mean Jaccard score, then the

given resource comparison was ignored as one or both sets of CUIs

to be compared do not exist.

Comparison to established phenotyping algorithms

For each resource, the number of top features found in both well-

known phenotyping algorithms and the top CUIs ranked by TF-IDF

(N¼50) was identified for selected phenotypes which include hypo-

thyroidism, type II diabetes, and dementia.13,23,24 We did not com-

pare overlap at different thresholds of N CUIs as little to no overlap

occurred at lower values of N. The number of matches on the con-

cept level was recorded for each resource, and the amount of overlap

among resources was visualized using UpSet plots.25

Phenotyping prediction

We applied each PheMAP to EHR data to compare the phenotyping

predictions of each single resource and the PheMAP-Original. We

utilized the kappa statistic—a statistical measure of inter-rater reli-

ability for categorical variables—to quantify the relationships

between each resource and the original PheMAP implementation.26

The kappa statistic can be measured with the following equation:

K ¼ ðpo � peÞ
1� peð Þ (2)

where po is the relative observed agreement among raters and pe is

the hypothetical probability of chance agreement. The number of

CUIs (N¼20, 50, 100) utilized from each resource when creating

predictions was varied to determine how phenotyping performance

changed and compared with other single resource implementations.

Ensemble approach to PheMAP implementation
We utilized an ensemble approach which leveraged the outcomes of

each individual resource PheMAP to determine if patients were a

case or control for a selected phenotypes—hypothyroidism, type II

diabetes, and dementias. If the majority of resources, that is, more

than half the resources, identified a patient as a case, the patient was

labeled as a case; otherwise, the patient was labeled as a control. If a

phenotype was not covered by a given resource, the resource would

not contribute to the ensemble approach. Both the PheMAP-

Ensemble and the PheMAP-Original utilize all resources available,

that is, if a phenotype was not covered by a given resource, the

resource would not contribute. The PheMAP-Original calculates

phe-scores for patients by combining phenotype documents from all

available resources and then calculating TF-IDF and ranking CUIs

from one corpus. In contrast, the PheMAP-Ensemble calculates phe-

scores for patients by calculating TF-IDF and ranking CUIs from

each individual resource’s corresponding phenotype documents. For

example, if five of the six resources cover a phenotype; the

PheMAP-Ensemble should utilize five separate phe-scores from the

five corresponding resources to diagnose patients based on majority

agreement.

Phenotyping performance
For each phenotype, we applied the PheMAP to calculate the PheRS

using EHR data. Gaussian mixture models were fitted to the pheno-

type score under the assumption that the phenotype scores follow a

roughly bimodal distribution for cases and controls; the Gaussian

mixture models allowed us to ascertain the posterior probability

that a patient is a case or control for a phenotype of interest.11 We

used clinician-validated Electronic Health Records and Genomics

(eMERGE) algorithms as a reference standard for cases and con-

trols. The eMERGE algorithms were designed for a high positive

predictive value and leave many patients unclassified while PheMap

assigns a continuous score to all patients. Each PheMAP implemen-

tation (single resource and ensemble methods) were compared to

each other using eMERGE case–control definitions as reference

standards. The following metrics were recorded: accuracy—the

number of correctly predicted data points out of all data points; pre-

cision—total number of true positives divided by number of positive

predictions; recall—the percentage of a given class that is correctly

identified; F1—a measure of binary classification accuracy;

AUROC—area under receiver operating characteristics curve. One-

tailed t tests were performed between the PheMAP-Original and all

other implementations to determine if any of the implementation

types improved metrics by a statistically significant margin.

RESULTS

Characteristics of resources comprising the PheMAP
The six online resources covered 1400 phenotypes in total. The

number of phenotypes covered by each resource can be visualized

with a bar graph (Figure 1). Overlap visualized with Venn diagrams

(Supplementary Material S1) indicated 384 phenotypes of 1400

total phenotypes were covered by each of the resources. A total of

1303 phenotypes were covered by two or more resources. All pheno-

types found in WikiDoc are also found in at least one other resource.

In contrast, Wikipedia contains 33 phenotypes that were not found

in any other resource. In a similar manner, the number of CUIs iden-

tified in phenotype documents from different resources was visual-

ized in Figure 1. A total of 9936 of 127 271 total CUIs can be found

in each resource. Wikipedia had the greatest number of CUIs that

are unique to its own set (26 377 CUIs) while Medline only had

1299 unique CUIs.

Wikipedia captured the most phenotypes with 1275 total. In

contrast, Mednet covered only 719 phenotypes—the lowest among

any resource (Table 1). MedlinePlus had the lowest average number

of CUIs per phenotype document (ie, shortest articles averagely)

while Wikipedia contains the largest average number of CUIs per

document (ie, longest articles averagely). The large standard devia-

tions associated with each CUI average indicate that the distribution

of the number of CUIs per document was skewed. Each document

from a given resource significantly varied in CUI count, for example,

documents from the Medscape resource range in a CUI count from

59 CUIs to 21 707 CUIs.
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Jaccard similarity coefficient
Based on TF-IDF ranked CUIs, each resource is most like the original

PheMAP implementation which leveraged and combined every

resource, that is, each resource shares a higher Jaccard similarity coef-

ficient based upon CUIs with the PheMAP-Original than with any

other resource regardless of the number of CUIs being compared.

With more CUIs being compared, the Jaccard similarity coefficient

decreased, so the resources became more dissimilar (Figure 2).

Figure 1. Process of single resource PheMAP constructions and phenotype/CUI coverage by resource. (A) Flow diagram of single resource PheMAP implementa-

tions; six unique sets of phenotype probabilities for relevant EHR patients are calculated. (B) Phenotype coverage by online resource. Overall, 1400 phenotypes

are encompassed. (C) CUI coverage by online resource. Medscape and Wikipedia exhibit the greatest number of CUIs while MedlinePlus and WikiDoc exhibit the

lowest number. CUIs: concept unique identifiers; EHR: electronic health record.
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PheKB algorithm comparison
We compared the top 50 CUIs ranked by TF-IDF from each resource

to features from established phenotyping algorithms.13,23,24

Although the features or variables of interest in each unique PheKB

algorithm differs, among the selected phenotypes—hypothyroidism,

T2DM, and dementias—MedicineNet CUIs exhibited the greatest

overlap with PheKB algorithms. For example, 12 of the top 50 CUIs

ranked by TF-IDF in the MedicineNet resource were also features or

variables of interest in the PheKB algorithm for hypothyroidism

(Figure 3).

Comparing the agreement of phenotype prediction
The kappa heatmaps indicate how frequently the resources agree on

a specific outcome for a patient. A total of 129 016 patients were

utilized for evaluation; about 13 000 individuals appeared to be

cases or controls across all three disease types. As the threshold

(N¼20, 50, 100) of CUIs used in predicting a patient as a case or

control increases, inter-rater agreement increases between some

resources but remains low for others (Figure 4); for example, as the

threshold increases for type II diabetes mellitus (phecode¼250.2)

from N¼20 to N¼100, the kappa statistic increases between sev-

eral resources and a maximum kappa statistic of 0.97 is observed

between the PheMAP-WikiDoc and PheMAP-Medscape at N¼100.

In contrast, inter-rater agreement remains relatively low between

PheMAP-Medscape and other resources for hypothyroidism

(phecode¼244.4) as the threshold increases to N¼100; at

N¼100, the highest kappa value relating to Medscape is 0.024 and

is shared between PheMAP-Medscape, PheMAP-WikiDoc, and

PheMAP-Wikipedia while the lowest kappa value relating to Med-

scape of 0.0027 is shared between PheMAP-Medscape and Phe-

MAP-Mayo.

Evaluation of phenotyping performance within EHR
We compared the PheMAPs implemented by using individual

resources and using the ensemble approach (PheMAP-Ensemble) to

the original implementation (PheMAP-Original) (Figure 5). Overall,

33 106, 27 830, and 80 677 patients linked to eMERGE data were

utilized for each implementation evaluation for type II diabetes mel-

litus, hypothyroidism, and dementias, respectively. A single patient

could act as a control for all three phenotypes, but inclusion in each

evaluation subset was not guaranteed. The individual resource Phe-

MAPs, PheMAP-Ensemble, and PheMAP-Original showed high lev-

els of accuracy in diagnosing a patient. The PheMAP-Ensemble,

however, achieved significantly higher recall as well as accuracy, F1,

and AUROC compared to the PheMAP-Original (Figure 5). While

not statistically significant in all cases, the PheMAP-Original offered

better mean precision in diagnosing the three selected phenotypes—

hypothyroidism, type II diabetes mellitus, and dementias compared

to all other implementation types.

As the number of CUIs utilized for PheMAP implementation

(top N CUIs) increases, PheMAP-Ensemble accuracy remains rela-

tively high, precision increases, recall decreases, F1 nominally

increases, and AUROC remains relatively high. For the same

increase in top N CUIs, PheMAP-Original accuracy remains rela-

tively high, precision increases, recall decreases, F1 remains rela-

tively constant, and AUROC decreases. Overall, the PheMAP-

Ensemble nominally outperforms the original implementation’s

accuracy, recall, F1, and AUROC.

Table 1. Description of resource composition based on disease phenotypes and CUI counts in phenotype documents

Number of phenotypes Mean number of CUIs per document (minimum CUI count–maximum CUI count)

Mayo Clinic 879 991.6 6 908.4 (79–11 115)

MedlinePlus 998 374.4 6 374.6 (14–5512)

Mednet 719 1269.6 6 1152.6 (108–13 441)

Medscape 1090 1810.9 6 1893.4 (59–21 707)

Wikipedia 1275 1881.0 6 1986.5 (13–21 072)

WikiDoc 873 479.6 6 501.4 (50–6452)

CUIs: concept unique identifiers.

Figure 2. Jaccard similarity matrices. Jaccard similarity coefficients or scores (indicated in matrix boxes) are shown as they change as the top N CUIs from each

resource and the original PheMAP relating to a given phenotype are compared. For each resource comparison, the Jaccard similarity score was calculated by

averaging the Jaccard similarity scores obtained from resources sharing the same phenotype articles and phecodes, that is, if two resources did not share a phe-

code, then the corresponding phenotype was ignored when calculating the average Jaccard score for the two resources. CUIs: concept unique identifiers.
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DISCUSSION

In this study, we calculated the weights of CUIs for phenotypes from

each resource, respectively. We compared the weighted CUIs corre-

sponding to all single-resource phenotype documents and measured

the similarity among each resource to visualize how each single-

resource phenotype document’s weighted CUI composition varies

and contributes to the PheMAP-Original. The analysis showed that

Wikipedia, Mayo Clinic, and WikiDoc appear to contribute the

most to the PheMAP-Original CUI composition. We also found that

similarity among resources and the PheMAP-Original at the concept

level decreased as the N threshold (number of top-ranked CUIs

being compared) increased. This finding was expected as these cor-

pora are extracted from public, independent online resources with

unique formats and differing target audiences. For example, the six

independent resources may differ in emphasis on risk factors, symp-

toms, and detection—topics that are often accurately covered on

online health websites. Coverage of prognosis may also differ—a

topic that most websites do not cover.27

In addition, we compared the top-ranked CUIs from each resource

with features of well-known PheKB algorithms for T2DM, hypothyr-

oidism, and dementias. While the features of these algorithms differed

based on phenotype, each algorithm utilized a combination of medica-

tions, laboratory tests and procedures, or diagnosis codes. At least one

factor of overlap was found between the top-ranked CUIs correspond-

ing to each resource for each phenotype and the features of the PheKB

algorithms except in one instance: no overlap was found between the

top-ranked CUIs corresponding to Medscape for Dementias and the

features of the Dementias PheKB algorithm. While not statistically sig-

nificant, MedicineNet CUIs appeared to show the greatest amount of

overlap with PheKB algorithm features; the MedicineNet resource

may have a high degree of overlap with PheKB features because Medi-

cineNet captures and displays a high number of medications—a com-

mon phenotyping algorithm variable of interest that can increase

phenotyping performance.10,28

Through kappa statistical analysis, we visualized resource per-

formance in calculating a PheRS. Kappa heatmaps can be used to

indicate the ideal number of CUIs necessary to maintain accurate

performance and inter-rater agreement.26 In this study, we found

that inter-rater agreement among resources varied by resource com-

parison, phenotype, and the level of CUI filtering, that is, each

resource offers differing phenotyping predictions depending on the

phenotype identified. In addition, inter-rater agreement for one spe-

cific resource and other resources may be close to zero for all com-

parisons. This low kappa score, which results in a dark line pattern

within a heatmap as seen in Figure 4, is caused by data that may not

follow a roughly bimodal distribution as assumed so the applied

Gaussian mixture model for predicting cases and controls cannot

efficiently diagnose patients; this means that some resources, when

applied to certain diseases, cannot be used to accurately predict

cases and controls.

Figure 3. UpSet plots visualizing PheKB feature comparisons. The plots quantify the amount of overlap between the top 50 ranked CUIs from each PheMAP

resource and the features used in PheKB algorithms. The leftmost bars indicate the number of PheKB features found in the corresponding resource set of CUIs.

The bottom right plot of dots and lines indicate what set or sets of resources are being compared. The size of the intersection indicates the number of concepts

belonging to a particular intersection. Intersections can relate multiple resources or only one resource as denoted by the black dots below each intersection size

bar, for example, the first intersection size of 4 only corresponds to Mednet—this means that of the entire Mednet categorical values, 4 categorical values are

unique to Mednet. The lines connecting dots in the lower right-hand portion of the graph have no significance. CUIs: concept unique identifiers; PheKB: Pheno-

type KnowledgeBase.
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To leverage each dissimilar resource and cover as many phenotypes

as possible, we propose the PheMAP-Ensemble. The PheMAP-

Ensemble method proved to provide better or comparable accuracy,

recall, F1, and AUROC compared to the PheMAP-Original at all levels

of filtering. While PheMAP-Mednet and PheMAP-MedlinePlus imple-

mentations resulted in similar phenotyping efficacy as the PheMAP-

Ensemble across most levels of CUI filtering, these single-resource Phe-

MAP implementations cover a limited number of disease phenotypes,

that is, Mednet covers 719 phenotypes, MedlinePlus covers 998 pheno-

types, and both resources combined only cover 1142 phenotypes of

1400 current phenotypes. The proposed PheMAP-Ensemble offers bet-

ter coverage than the Mednet and MedlinePlus implementations by uti-

lizing all six disparate resources. In the end, the PheMAP-Ensemble

increases the already limited power of the PheMAP to capture rare dis-

eases compared to single-resource implementations.11

There are several limitations to this analysis of PheMAP compo-

sition and individual resource accuracy. The PheKB algorithm com-

parison looks at only three phenotypes and the features from each

algorithm are not standardized across each phenotype, that is, the

dementias PheKB algorithm may focus solely on medications while

the hypothyroidism PheKB algorithm may emphasize both medica-

tions and laboratory tests.13,23,24 Although the current PheKB hosts

80 distinct phenotyping algorithms, many algorithms are not dis-

eases, for example, MACE on statin, WBC, and BMI. Some PheKB

algorithms are machine learning or NLP based, which require extra

training data and servers to implement. In addition, their perform-

ances are less consistent across institutes than rule-based ones. Fur-

thermore, several algorithms have not been updated to current ICD-

10-CM codes and medication/procedure lists since they were pub-

lished. Therefore, we used the three most updated and well-defined

algorithms. Nevertheless, the conclusion that the original implemen-

tation underperformed compared to the ensemble approach regard-

ing accuracy metrics, held across each phenotype. A future study

would aim to include additional phenotype algorithms for assess-

Figure 4. Cohen’s kappa coefficient heatmaps. Phecodes 244.4, 250.2, and 290.1 represent hypothyroidism, type II diabetes mellitus, and dementias, respectively.

The heatmaps visualize how frequently the resources agree on a specific outcome for a patient. The heatmaps illustrate how inter-rater agreement can change as

the number (N¼20, 50, 100) of CUIs (ranked by TF-IDF) used in assessing phenotype risk increases. CUIs: concept unique identifiers; TF-IDF: term frequency—

inverse document frequency.
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Figure 5. Individual resource PheMAPs and PheMAP-Ensemble accuracy, precision, recall, F1, and area under ROC curve for selected phenotypes when utilizing

top N (N¼ 20, 50, 100) CUIs for implementation (A, B, C). The ensemble approach exhibits higher values than the original implementation for every metric except

for precision at N¼ 50 and N¼100. The PheMAP-MedlinePlus and PheMAP-Mednet have high metric values similar in magnitude with the ensemble approach

across all metrics at N¼50 and N¼100. At N¼20, PheMAP-Ensemble performance is comparable to PheMAP-Original performance. The number under each

implementation type represents the number of phenotypes covered by the corresponding implementation resource or method. One tailed t tests were performed

with each implementation’s metric means and the PheMAP-Original metric means; each star or asterisk associated with a given metric bar indicates that the met-

ric statistically outperformed the PheMAP-Original. Note that at N¼20, no metrics were significantly different from the PheMAP-Original. CUIs: concept unique

identifiers.
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ment. In addition, the kappa analysis is also limited in that it does

not compare inter-rater agreement among the resources for less

well-defined phenotypes or diseases; when less-well-defined pheno-

types are compared, it is likely that fewer resources will cover these

phenotypes so fewer comparisons of inter-rater agreement would be

made. Lastly, the ensemble method does not adjust for rarer pheno-

types that have fewer resources overviewing such phenotypes; in

future iterations of the ensemble method, the case/control selection

will need to account for decreasing resource count for rarer or less

well-known phenotypes.

In the future, phe-scores from individual implementations could

be summed into a cumulative score which could then be applied to a

Gaussian mixture model to determine if patients fall in case or con-

trol distributions. Moreover, as more phenotypes are encompassed

by the PheMAP knowledge base, comparison of implementation

methods will offer more direction in increasing phenotyping accu-

racy; the ensemble approach may be improved by automatically

removing resources that are not following a bimodal distribution.

The algorithms may be optimized by removing resources that have

an equivalent inter-rater agreement to other resources. If resources

strongly agree, then only one of the given resources is required for

classification. This reduction in the number of resources utilized for

the PheMAP would decrease algorithm runtime while maintaining

equivalent accuracy and precision. In addition, additional CUIs may

be leveraged when calculating phenotype probabilities (N¼150,

200, etc., for the number of top-ranked CUIs) to evaluate the effects

on accuracy, precision, recall, and AUROC. Lastly, the method of

leveraging individual resource implementations may be optimized to

produce case and control populations even when some resource

implementations may lack given phenotype coverage.

CONCLUSIONS

Each resource utilized by the PheMAP is unique and distinct from

one another. Through the proposed ensemble approach, we may lev-

erage each resource to outperform the original implementation of

the PheMAP in diagnosing a patient as a case or control.
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