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ABSTRACT

Objective: Combining text mining (TM) and clinical decision support (CDS) could improve diagnostic and

therapeutic processes in clinical practice. This review summarizes current knowledge of the TM-CDS combina-

tion in clinical practice, including their intended purpose, implementation in clinical practice, and barriers to

such implementation.

Materials and Methods: A search was conducted in PubMed, EMBASE, and Cochrane Library databases to

identify full-text English language studies published before January 2022 with TM-CDS combination in clinical

practice.

Results: Of 714 identified and screened unique publications, 39 were included. The majority of the included

studies are related to diagnosis (n¼26) or prognosis (n¼11) and used a method that was developed for a spe-

cific clinical domain, document type, or application. Most of the studies selected text containing parts of the

electronic health record (EHR), such as reports (41%, n¼16) and free-text narratives (36%, n¼14), and 23 stud-

ies utilized a tool that had software “developed for the study”. In 15 studies, the software source was openly

available. In 79% of studies, the tool was not implemented in clinical practice. Barriers to implement these tools

included the complexity of natural language, EHR incompleteness, validation and performance of the tool, lack

of input from an expert team, and the adoption rate among professionals.

Discussion/Conclusions: The available evidence indicates that the TM-CDS combination may improve diagnos-

tic and therapeutic processes, contributing to increased patient safety. However, further research is needed to

identify barriers to implementation and the impact of such tools in clinical practice.
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INTRODUCTION

Medical errors remain common and each year patients are unnecessa-

rily harmed due to such errors, despite efforts over the last 2 decades to

improve the situation. To prevent medical errors, healthcare professio-

nals must have the right information at the right time for the right

patient without disruptions to their workflow.1–4 In addition to

addressing human factors and culture, information technology could

significantly contribute to a reduction in the incidence of medical

errors.3,5–7 The rapid development of medical and information technol-

ogy has led to an environment in which clinical data are digitally stored

in patients’ electronic health records (EHRs). Analysis of these data

could contribute to a better, safer, and more efficient patient care.8

One technology to obtain these goals is clinical decision support

(CDS).9,10 These intend to improve healthcare delivery by enhancing

medical decisions with targeted clinical knowledge, patient informa-

tion, and other health information.9 CDS systems can be divided

into basic and new CDS systems.4,10 Basic CDS systems provide

reminders to assist health care providers and implement evidence-

based clinical guidelines at the point of care, but it cannot deal with

different problems simultaneously: it assesses the clinical risk of a

drug-drug interaction and that of renal insufficiency separately from

each other.11,12 The report by James described a new generation of

CDS systems that “make it easy to do it right”.4 Beyond the use of

reminders or digital checklists to increase compliance, these systems

combine clinical data to help medical professionals manage an

increasingly complex practice environment.4,9,13–19 This sounds

very promising, but these new generation CDS systems are not yet

widely used in clinical practice, mainly due to 2 factors. First, clini-

cian acceptance of CDS systems is low because most systems are

complex and not well integrated into the clinical workflow. Second,

CDS systems draw on a broad array of clinical information from

many different information subsystems,4 including structured and

unstructured (free-text) data. An example of unstructured data that

are still a crucial part of EHRs and the healthcare culture are free-

text narratives (ie, descriptions of clinical observations, findings,

and evaluations). Thus, the healthcare culture presents a barrier to

implementing potentially useful computer applications. Even more,

this unstructured data are not always accessible by CDS systems.20

Text mining (TM) could be a useful tool to extract information

from unstructured data in EHRs.8,21 TM is a variation of data min-

ing that involves the detection of knowledge from textual data.21–23

It is utilized worldwide in many settings. In healthcare, TM has been

used to identify adverse drug events, help physicians make diagno-

ses, and informed treatment decisions.24–28

Combining TM with CDS systems could support professionals

access the right information at the right time for the right patient

without interruptions to the workflow. This, because TM can extract

information from free-texts and CDS systems, can use this informa-

tion to assist professionals in decision-making processes. The aim of

this scoping review is to summarize the current knowledge on using

TM combined with CDS systems in clinical practice. Specifically, the

review addresses the questions: For what purposes are TM and CDS

systems utilized? Are these tools implemented in clinical practice? If

not, what are the barriers to such implementation?

MATERIALS AND METHODS

Registration and protocol
This scoping review was performed in accordance with the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) guidelines.29 The protocol was registered in PROSPERO

(https://www.crd.york.ac.uk/prospero/, ID: CRD42022303470).

Data sources and searches
Medline, EMBASE, and Cochrane Library were searched utilizing

the search criteria described in the Supplementary Material S1.

Search criteria were broadly defined to capture all information that

has been characterized as a TM-CDS combination. The review

focused on studies published before January 1, 2022.

Medical subject headings terminology was utilized where possi-

ble (in PubMed and Cochrane), and keywords were utilized in

EMBASE, a database that does not employ medical subject headings

terminology. The search terms utilized were: text mining and Clini-

cal Decision Support Systems (CDSS), text mining and CDSS, Natu-

ral Language Processing (NLP) and CDSS or NLP, and Clinical

Decision Support Systems.

Study selection process
The electronic search results from the databases were merged using

Mendeley (Mendeley Ltd., Version 1803), and duplicates removed.

Next, the records were imported into the web-based tool Rayyan

(https://rayyan.qcri.org/, Ouzzani 201630) and independently

reviewed for eligibility by 2 authors (BBT and EKN). The studies

were screened by examining their titles, abstracts, and methods;

after the screening, the full texts of the remaining publications were

read. Disagreements on whether to include a study were resolved

through discussion with a third team member (BDD).

Inclusion and exclusion criteria were determined a priori. The

following inclusion criteria were applied: (1) Studies combined TM

with CDS in a clinical practice. For our study, TM (also known as

NLP) was defined as a process of deriving high-quality information

from free-text or unstructured data drawn from a patient’s medical

record or parts thereof and converted into structured data. CDS was

defined as a system that has the intention to improve healthcare

delivery by enhancing medical decisions with targeted clinical

knowledge, patient information, and other health information,

including the earlier described basic and new generation CDS sys-

tems. Therefore, the combination of TM and CDS contains these 2

definitions with the goal to combine unstructured and structured

data. See Figure 1 for an overview of the described inclusion criteria.

(2) Studies had an accessible abstract and full-text version in Eng-

lish. Relevant narrative reviews were evaluated for background

information but excluded from the review. The reference lists of the

included studies were cross-checked for additional studies.

Data extraction
The following information was extracted from the full text of the

included articles: geographical location of the study, year of publica-

tion, application field (ie, etiology, diagnosis, prognosis, or therapy),

clinical domain (eg, oncology), type of patient care (eg, inpatient),

sample size validation, type of free-text used for TM (eg, radiology

reports), TM-CDS tool (tool name and whether it already existed or

was developed for the study), availability of the software source

(yes, no), nature of comparison used in the study (eg, gold standard,

tool), TM technique used (eg, annotation), CDS technique used (eg,

Bayesian network), CDS way of advice (passive, active; as described

in Kubben et al 2019),10 quantitative outcome measures (eg, sensi-

tivity) and reported estimates thereof, qualitative or additional find-

ings, and barriers to implementation in clinical practice mentioned

by the authors.
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Data analysis
Quantitative outcome estimates were derived from the articles as

reported or calculated by the current study team when the data were

reported. Accuracy (ie, how closely the tool adheres to the gold

standard) was defined as the sum of true positives and true negatives

divided by the total number of cases. Sensitivity (ie, the tool’s ability

to identify true positive cases) was defined as the number of true

positives divided by the sum of true positives and false negatives.

Specificity (ie, the tool’s ability to exclude false positive cases) was

defined as the number of true negatives divided by the sum of true

negatives and false positives. Positive predictive value (PPV) (ie, the

likelihood that the tool corresponds to a true positive case) was

defined as the number of true positives divided by the total number

of positive cases identified by the tool. Negative predictive value

(NPV) (ie, the likelihood that a record not coded for the condition is

a true negative case) was defined as the number of true negatives

divided by the total number of negative cases. The F-score (a meas-

ure of the test’s accuracy) was calculated as PPV times sensitivity

times 2 divided by the sum of sensitivity and PPV. The highest possi-

ble F-score value is 1.0 and the lowest possible value is 0. Cohen’s

kappa was used to measure inter-rater reliability (ie, concordance

between recommendations). A Cohen’s kappa of 1 is considered to

indicate perfect agreement.

RESULTS

Electronic database searches yielded 850 studies, of which 714 were

unique (see Figure 2). After screening, 115 studies were selected for

full-text review, and 39 studies were included in the final analysis.

Of the 76 excluded studies, 47 were excluded because they did not

include CDS systems or TM, but data mining or another kind of

mining. The remaining 29 studies were excluded because they were

abstract-only (n¼10), reviews (n¼5), or did not combine TM with

CDSS (n¼14). The majority of the included studies were used for

diagnosis (67%; n¼26), used reports for TM/CDS (41%; n¼16),

included data concerning inpatients (59%; n¼22), evaluated a tool

that was developed for the study (59%; n¼23), were performed in

an English-speaking country (United States and Australia; 90%;

n¼35), and were conducted after 2011 (72%; n¼28), see Table 1.

Table 2 provides the data extracted from the included studies.

The majority of the studies (n¼33) contained quantitative data, 6

studies included only qualitative information.

Application field
The majority of the studies were related to either the diagnostic

process (67%; n¼26) or prognosis (28%; n¼11). No studies were

related to etiology. One study, Nguyen et al,31 was included in both

the diagnosis and therapy categories. Most articles related to the

diagnostic process concerned pulmonary diseases (n¼7) or cardio-

vascular diseases (n¼6). Each study focused on one disease to sup-

port diagnostic decision making. However, one study by Yang et al

evaluated the misdiagnosis rate for several common diseases, for

example hypertension and diabetes.32

The studies related to prognosis had 2 primary aims. The first

was to assist clinicians by increasing patient follow-up and adher-

ence to guidelines.33–35 The second was to improve patient safety by

extracting medical problems from electronic clinical documents to

maintain a problem list that was as complete as possible.36,37 The

remaining studies in this category contributed to patient safety but

had no common aim. Their purposes included reducing errors in eli-

gibility criteria,38 building a probabilistic topic model to predict

clinical order patterns,39 testing previously defined triggers,40

enhancing protocol assignment,41 and evaluating the impact of

appropriate use criteria.42

Three of the 39 studies were in the therapy category. Two of

these studies developed tools to support physicians in prescribing

the correct antibiotic or dosage, the third aimed to reduce sedation

order errors.31,43,44

Figure 1. An overview of the inclusion criteria.
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Free-text used for TM and tools
The majority of the studies utilized reports (41%; n¼16), subdi-

vided into radiology (n¼7), pathology (n¼6) and other (n¼1), or

free-text narratives (36%; n¼14), and 23 studies (59%) utilized a

tool that were the software was “developed for the study”. Fifteen

studies (38%) had a software source that was available for use by

others. Two of the utilized tools, the REgenstrief eXtraction tool

(REX) and Medical Language Extraction and Encoding System

(MedLEE) were used to combine CDS and TM in 4 studies.45–48

The REX tool uses pattern matching and a rule-based NLP system

to extract patient information from admission notes, radiology

reports, and pathology reports,45,46 whereas MedLEE extracts,

structures, and encodes clinical information drawn from textual

patient reports.49

Quantitative and qualitative outcomes
The overall quantitative outcomes of the studies (n¼33) varied.

Specifically, PPV ranged from 7.5% to 100.0%, sensitivity ranged

from 47% to 100%, specificity ranged from 63% to 100%, NPV

ranged from 95.6% to 100.0%, F-score ranged from 25.00% to

99.89%, Cohen’s kappa ranged from 58.3% to 90.0%, and

accuracy ranged from 84.00% to 98.67%. No difference in the var-

iation of quantitative outcomes was observed based on the applica-

tion field. Nearly every study used the outcomes of PPV, sensitivity,

and specificity. However, outcome accuracy was only used in diag-

nostic studies, Cohen’s kappa was most commonly used in prognos-

tic studies (66.67%; n¼2), and neither accuracy nor Cohen’s kappa

were used in therapy studies. Notably, all quantitative outcomes

from the “open-source available software” were higher than the out-

comes from tools that did not have open-source available software.

In addition, studies that used the REX tool had the highest quantita-

tive outcome values.

All 6 studies that included qualitative findings reported out-

comes that contributed to the study goal. The goals of these studies

included adhering to clinical pathways with 100% compliance,

decreasing the use of computed tomography scans, identifying

trauma patients or children with suspected injuries, defining the sta-

tus of epilepsy, and interpreting Papanicolaou test reports.

Use in clinical practice and barriers to implement
In 9 studies (23%), the tool was used in clinical practice, whereof 8

implemented a combination of TM-CDS in a hospital setting in the

Figure 2. PRISMA flow diagram of the included studies. CDSS: clinical decision support systems; NLP: Natural Language Processing. *Creating CDSS with NLP,

not combining; these studies used NLP to create a rule-based system, but did not use NLP to extract free-text or unstructured data and therefore could not com-

bine unstructured data with structured data.
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United States. Four of these 8 studies implemented the tool in a hos-

pital emergency department, a setting in which rapid diagnosis is

preferable.42,47,50–54 Only 8% of studies (n¼3) implemented a real-

time tool.34,52,55 One of these, Cruz et al, implemented the first

real-time TM-CDS combination tool outside the United States, in

Spain.34

The primary reason that TM-CDS combination tools were not

yet implemented in clinical practice was the complexity of natural

language and low specificity and sensitivity. Natural language often

includes text mistakes, abbreviations, and misspellings.31,45,48,56–58

Friedlin et al (2008) and Matheny et al (2012) have described addi-

tional problems in tools understanding natural language. Word-

sense disambiguation and negation detection were the main causes

of NLP-related errors in these 2 studies, and these barriers made it

difficult or impossible for CDS-TM tools to interpret free-text.45,59

Another obstacle to implement these tools was EHR incomplete-

ness. Occasionally, clinical information was not documented in a

patient’s charts, which can result in an insufficient amount of infor-

mation for meaningful processing and measurement.31,32,34,60

Another potential source of error in electronic notes is introduced

through the “cut-and-paste” feature. For example, relative referen-

ces such as “five years ago” could be propagated over multiple years

of notes and therefore lead to misdiagnosis of a patient.61 An addi-

tional concern regarding the interpretability of the results and gener-

alizability of the findings is that data from only one hospital were

included in most of the studies, which may erase differences in

workflows, domain-specific NLP methods, and EHRs between hos-

pitals.38,40,41,43,51,57,60,62

Other barriers for implementation include the validation of the

tool and the unfamiliar interface.63–66 Mendonça et al found that

even if the output of a natural language processor accurately

extracts and structures the information in patient reports, it does not

guarantee that the tool will be useful in a clinical practice. Many

steps, like a testing phase, are required before such tools can be

used.48

Furthermore, Matheny et al and Sung et al38 found that the per-

formance of a tool was directly related to the number of iterations

(or sample size) performed on rule building in the training set. They

did not measure the time spent on processing patient clinical notes.

However, Sung et al38 observed that long processing time is a weak-

ness of MetaMap that renders the tool insufficient for real-time

annotation of a large amount of clinical notes. They recommended

building an information technology infrastructure that would be

capable of processing a large volume of notes prior to implementa-

tion and usage of the tool.38

Lack of input from an expert team is another major barrier to

usage of TM-CDS tools in clinical practice. Friedlin and McDonald

(2008)67 reported that the developer of the software also acted as a

gold standard and evaluator of the data extraction process. Simi-

larly, Jain et al and Wagholikar et al (2012 and 2013)47,65,66 sug-

gested that their results may be biased because the manual coding of

one physician was being used as a gold standard. Based on this

observation, Wagholikar et al concluded that it was necessary to

consult other expert physicians to validate the tool.66

DISCUSSION

This review covers the field of TM-CDS combinations in clinical

practice. Many studies mentioned a TM-CDS combination; how-

ever, only 39 studies were identified that combined TM with CDS

and reported the results of this combination. The majority of the

included studies are related to diagnosis and most of the studies used

a method that was developed for a specific clinical domain, docu-

ment type, or application. Most of the evaluated TM-CDS

tools have not been implemented in clinical practice. The overall

Table 1. Characteristics of the included studies

Characteristics Studies (n) %

Geographical location of study

United States 34 87

Europe (Spain, Finland) 2 5

Asian (Taiwan, China) 2 5

Australia 1 3

Year of publication

Before 2001 3 8

2005–2010 8 21

2011–2015 11 28

2016–2021 17 44

Application fielda

Etiology 0 0

Diagnosis 26 67

Prognosis 11 28

Therapy 3 8

Clinical domain

Oncology 4 10

Cardiovascular 6 15

Infectious diseases 4 10

Pulmonary diseases 7 18

Radiology 3 8

Adherence to clinical guidelineb 4 10

Maintenance of a problem list 2 5

Other (eg, epilepsy, depression, hospital admission) 9 23

Type of patient care

Inpatient 23 59

Outpatient 7 18

Both 6 15

Unknown 3 8

Sample size validationc

<500 20 51

500–10 000 13 33

>10 000 5 13

Free-text used for text mining

Reports (eg, radiology reports, pathology reports) 16 41

Orders (eg, clinical orders) 2 5

Discharge summaries 2 5

Clinical notes/free-text narratives (eg, free-text

documents)

14 36

Other (eg, messages, scheduling data) 5 13

TM-CDS tool

Software already developedd 16 41

Developed for the studye 23 59

Source available softwaref 15 38

CDS: clinical decision dupport; USMSTF: United States Multi-Society Task

Force; TM: text mining.
aOne study was included in 2 categories being, diagnosis and therapy.
bThis includes studies that tried to improve adherence to clinical guide-

lines.
cThis includes patients and free-text, Supplementary Appendix S2 shows

which are patients and which are free-text.
dThis includes tools that were developed before the study, meaning already

existing tools that were used in this study.
eThis includes tools that were developed in the study by the authors.
fTools whereof the source was available for others, containing tools that were

developed for the study or tools whereof the software was already developed.
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Table 2. Outcomes and additional findings of the studies combining CDS and TM

Study Applica-

tion field

Comparison Quantitative out-

come measure

Outcomes estimates (%) Additional findings

A Sens Spec PPV NPV F Co K

Aronsky et al

200168

Diagnosis Comparing a clinically valid gold

standard (3-step diagnostic evalua-

tion process and 8 independent

physicians) versus the model, of

ED patients whose CXR report

was available during the encounter

to extract pneumonia diagnosis

from unstructured data, detect and

prompt initiation of antibiotic

treatment to reduce disease

severity and mortality

Sensitivity, specif-

icity, PPV, NPV

n/a 96 63 14.2 99.5 25a n/a The area under the receiver operating char-

acteristic curve was 0.881 (95% CI,

0.822–0.925) for the Bayesian network

alone and 0.916 (95% CI, 0.869–0.949)

combined (P¼ .01)

Bozkurt et al

201657

Diagnosis Comparing reference standard deci-

sion support system with the NLP

decision support systems of

patients with mammography

reports, to provide decision sup-

port as part of the workflow of

producing the radiology report.

Accuracy 97,58 n/a n/a n/a n/a n/a n/a The system performed extraction of imag-

ing observations with their modifiers

from text reports with pre-

cision¼ 94.9%, recall¼ 90.9%, and F-

measure¼ 92%. They also compared the

BI-RADS categories, accuracy rate of the

Bayesian network outputs for each set-

ting were calculated as 98.14% (history

nodes included) and 98.15% (history

nodes not included). The NLP-DSS and

RS-DSS had closely matched probabil-

ities, with a mean paired difference of

0.004 6 0.025. The concordance correla-

tion of these paired measures was 0.95.

Byrd et al

201258

Diagnosis Comparing the performance of the

machine-learning and rule-based

labelers of patients diagnosed with

HF in primary care to identify

heart failure with the Framingham

diagnostic criteria to detect heart

failure early.

Precision, recall,

F-score

n/a 89.6 n/a 92.5 n/a 93.2 n/a Detection with the Framingham criteria

had an F-score of 0.910. Encounter

labeling achieves an F-score of 0.932.

Chen et al

201739

Prognosis Comparing clinical order suggestions

against the “correct” set of orders

that actually occurred within a fol-

low-up verification time for the

patient with an encounter from

their initial presentation until hos-

pital discharge to build a probabil-

istic topic model representations

of hospital admissions processes

Sensitivity and

PPV

n/a 47 n/a 24 n/a 32a n/a Existing order sets predict clinical orders

used within 24 h with area under the

receiver operating characteristic curve

0.81, precision 16%, and recall 35%.

This can be improved to 0.90, 24%, and

47% by using probabilistic topic models

to summarize clinical data into up to 32

topics.
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Table 2. continued

Study Applica-

tion field

Comparison Quantitative out-

come measure

Outcomes estimates (%) Additional findings

A Sens Spec PPV NPV F Co K

Cruz et al

201934b,c

Prognosis Comparing the same patients in the

primary care area of SESCAM

with recommendations before and

after implementation of the CDSS

to improve Adherence to Clinical

Pathways and reducing clinical

variability

Qualitative n/a n/a n/a n/a n/a n/a n/a Adherence rates to clinical pathways

improved in 8 out of 18 recommenda-

tions when the real-time CDSS was

employed, achieving 100% compliance

in some cases. The improvement was

statistically significant in 3 cases

(P< .05). Considering that this was a

preliminary study, these results are

promising.

Day et al

200754b

Diagnosis Reading documentation to determine

whether registry inclusion criteria

were met and printing admission

lists versus the tool of trauma

patients or patients who died to

automate the process of identify-

ing trauma patients

Qualitative n/a n/a n/a n/a n/a n/a n/a This program has made the job of identify-

ing trauma patients much less compli-

cated and time consuming. It improved

the efficiency and reduced the amount of

time wasted using multiple for-mats to

ensure that all patients who qualify for

inclusion are found. The program also

stores relevant patient information to a

permanent electronic database

Denny et al

201061

Prognosis Comparing the gold standard (expert

physicians’ manual review of

EMR notes) versus the tool of

patients whose colonoscopy sta-

tuses were unknown to detect col-

orectal cancer screening status

Recall and preci-

sion

n/a TR: 91

CS : 82

CC : 93

n/a TR : 95

CS : 95

CC : 95

n/a TR : 93a

CS : 88a

CC : 94a

n/a –

Evans et al

201653b

Diagnosis Comparing patients with HF treated

using the new tool compared with

HF patients who had received

standard care at the same hospital

before the tool was implemented

to help identify high risk heart fail-

ure patients

Sensitivity, specif-

icity, PPV

n/a 82.6–95.3 82.7–97.5 97.45 n/a 89–96a n/a –

Fiszman et al

200069

Diagnosis Comparing SymText against 4 physi-

cians, 2 different keyword

searches, and 3 lay persons of

patients with a primary ICD-9

hospital discharge diagnosis of

bacterial pneumonia to find cases

of CAP to support diagnosis and

treatment.

Recall, precision

and specificity

n/a 95 85 78 n/a 86a n/a –

Friedlin and

McDonald

200646

Diagnosis Comparing REX to the gold stand-

ard (specially trained human

coders as well as an experienced

physician) of patients who have

had a chest x-ray with dictation

reports to identify congestive heart

failure

Sensitivity, specif-

icity, PPV, NPV

n/a 100 100 95.4 100 98a n/a –
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Table 2. continued

Study Applica-

tion field

Comparison Quantitative out-

come measure

Outcomes estimates (%) Additional findings

A Sens Spec PPV NPV F Co K

Friedlin et al

200845

Diagnosis Comparing REX to the gold stand-

ard (human review) of patients

with MRSA keywords to improve

reporting notifiable diseases with

automated electronic laboratory

MRSA reporting.

Sensitivity, specif-

icity, PPV, F-

measure

n/a 99.96 99.71 99.81 99.93 99.89 n/a REX identified over 2 times as many

MRSA positive reports as the electronic

lab system without NLP.

Garvin et al

201860

Diagnosis Comparing CHIEF versus reference

standard and of External Peer

Review Program cases involving

HF patients discharged from 8 VA

medical centers to accurately auto-

mate the quality measure for inpa-

tients with HF.

Sensitivity and

PPV

n/a RS: 98.9

EPRP:

98.5

n/a 98.7 n/a RS:

99a

EPRP : 99a

n/a Reference standard (RS) External Peer

Review Program (EPRP). Of the 1083

patients available for the NLP system,

the CHIEF evaluated and classified

100% of cases.

Hazlehurst

et al

200556

Diagnosis Comparing MediClass versus the

gold standard of patients who are

smokers to detect clinical events in

the medical record

Specificity and

sensitivity

n/a 82 93 n/a n/a n/a n/a –

Imler et al

201363

Diagnosis Comparing annotation by gastroenter-

ologists (reference standard) versus

the NLP system of veterans who

had an index colonoscopy to extract

meaningful information from free-

text gastroenterology reports for

secondary use, to connect the patho-

logic record that is generally discon-

nected from the reports

Recall, precision,

accuracy, and f-

measure

L: 97

S: 96

N: 84

L> 82

S> 92

N> 66

n/a L> 95

S> 95

N> 64

n/a L : 96

S : 96

N: 62

n/a

Imler et al

201464

Diagnosis Comparing NLP-based CDS surveil-

lance intervals with those deter-

mined by paired, blinded, manual

review of patients with an index

colonoscopy for any indication

except surveillance of a previous

colorectal neoplasia to improve

adherence to evidence-based prac-

tices and guidelines in endoscopy.

Kappa statistic n/a n/a n/a n/a n/a n/a 74 Fifty-five reports differed between manual

review and CDS recommendations. Of

these, NLP error accounted for 54.5%,

incomplete resection of adenomatous tis-

sue accounted for 25.5%, and masses

observed without biopsy findings of can-

cer accounted for 7.2%. NLP based CDS

surveillance intervals had higher levels of

agreement with the standard than the

level agreement between experts.

Jain et al

199647b

Diagnosis Comparing manual coding (gold

standard) versus MedLee of

patients with culture positive

tuberculosis to find cases of tuber-

culosis in radiographic reports to

identify eligible patients from the

data.

Sensitivity n/a With L:

78.9

w/o L:

85.4

n/a n/a n/a n/a n/a MedLEE agreed on the classification of 152/

171 (88.9%) reports 129/142 (90.8%)

suspicious for TB and 23/29 (79.3%) not

suspicious for TB; and 1072/1197

(89.6%) terms indicative of TB. Analysis

showed that most of the discrepancies

were caused by MedLEE not finding the

location of the infiltrate. By ignoring the

location (L) of the infiltrate, the agree-

ment became 157/171 (91.8%) reports

and 946/1026 (92.2%) terms.

(continued)
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Table 2. continued

Study Applica-

tion field

Comparison Quantitative out-

come measure

Outcomes estimates (%) Additional findings

A Sens Spec PPV NPV F Co K

Jones et al

201252b

Diagnosis Screening tool sensitivity and specif-

icity as well as for ICD-9 plus

radiographic confirmation were

compared to physician review of

ED patients with a chest x-ray of

CT scan to identify patients with

pneumonia

Sensitivity, PPV,

specificity, NPV

n/a 61 96 52 97 56a n/a Among 41 true positive cases, ED physi-

cians recognized and agreed with the

tool in 39%. In only 6 cases did physi-

cians proceed to complete the accompa-

nying pneumonia decision support tool.

Of the 39 false positive cases, the NLP

incorrectly identified pneumonia in

74%. Of the 8 false negative cases, one

was due to failure of the NLP to identify

pneumonia

Kalra et al

202041

Prognosis Comparing manually review versus

the models (kNN, RF, DNN) of

older men and include both pri-

mary and tertiary care indications

to enhance multispecialty CT and

MRI protocol assignment quality

and efficiency

Precision and

recall

n/a kNN:

83.4

RF: 92.2

DNN:

91.5

n/a kNN: 77.5

RF: 81.7

DNN: 83.6

n/a kNN : 80a

RF : 86a

DNN : 87a

n/a Baseline protocol assignment performance

achieved weighted precision of 0.757–

0.824. Simulating real-world deploy-

ment using combined thresholding tech-

niques, the optimized deep neural

network model assigned 69% of proto-

cols in automation mode with recall

95% =(weighted accuracy). In the

remaining 31% of cases, the model

achieved 92% accuracy in CDS mode.

Karwa et al

202033

Prognosis Comparison of Colonoscopy Follow-

up Recommendations between

CDS algorithm and endoscopists

of patients with a colonoscopy to

assist clinicians to generate colo-

noscopy follow-up intervals based

on the USMSTF guidelines

Cohen’s Kappa n/a n/a n/a 69% n/a n/a 58.3 Discrepant recommendations by endoscop-

ists were earlier than guidelines in 91%

of cases.

Kim et al

201570

Diagnosis A 5-fold cross validation with the

tool to measure the contribution

of each of the 4 subset (lexial, con-

cept position, related concept, sec-

tion) of patients with LVEF or

LVSF to classify the contextual use

of both quantitative and qualita-

tive LVEF assessments in clinical

narrative documents.

Recall, precision

and F-measure

n/a QT: 95.6

QL: 94.2

n/a QT: 95.6

QL: 94.2

n/a QT: 95.6

QL: 94.2

n/a The experimental results showed that the

classifiers achieved good performance,

reaching 95.6% F1-measure for quanti-

tative (QT) assessments and 94.2% F1-

measure for qualitative (QL) assessments

in a 5-fold cross validation evaluation.

Kivek€as et al

201640c

Prognosis Comparing the review team versus

SAS of adult epilepsy patients to

test the functionality and validity

of the previously defined triggers

to describe the status of epilepsy

patient’s well-being.

Qualitative n/a n/a n/a n/a n/a n/a n/a In both medical and nursing data, the trig-

gers described patients’ well-being com-

prehensively. The narratives showed that

there was overlapping in triggers.

Diagnosis Comparing manual reference versus

algorithm of patients with at least

n/a ASD: 84

SDA:

n/a ASD:

91

n/a ASD:

87

n/a Among those instances in which the auto-

mated system matched the reference set

(continued)
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Table 2. continued

Study Applica-

tion field

Comparison Quantitative out-

come measure

Outcomes estimates (%) Additional findings

A Sens Spec PPV NPV F Co K

Matheny

et al

201259

one surgical admission to identify

infectious symptoms

F measure, Fleiss’

Kappa, preci-

sion, recall,

62 SDA:

67

SDA:

64

determination for symptom, the system

correctly detected 84.7% of positive

assertions, 75.1% of negative assertions,

and 0.7% of uncertain assertions.

Mendonça

et al

200548

Diagnosis Comparing Clinicians’ judgments

versus the tool of infants admitted

at the NICU to identify pneumo-

nia in newborns, to reduce manual

monitoring

Sensitivity, specif-

icity and PPV

n/a 71 99 7.5 n/a n/a n/a –

Meystre and

Haug

200537

Prognosis Comparing NLP tools versus refer-

ence standard which was created

with a chart review of patients

admitted in a cardiovascular unit,

stay of at least 48h, and with a dis-

charge diagnosis in the list of the

80 selected diagnosis to extract

medical problems from electronic

clinical document to maintain,

complete and up-to-date a prob-

lem list

Precision and

recall

Cohen’s Kappa

n/a 74 n/a 75.6 n/a 75a 90 A custom data subset for MMTx was cre-

ated, making it faster and significantly

improving the recall to 0.896 with a

non-significant reduction in precision.

Meystre and

Haug

200836

Prognosis Comparing the control group (the

standard electronic problem list)

versus the intervention group (the

Automated Problem List system) of

inpatients of the 2 inpatients wards

for at least 48h, > 18 years and

not already enrolled in a previous

phase of this study to improve the

completeness and timeliness of an

electronic problem list

Sensitivity, specif-

icity, PPV and

NPV

n/a 81.5 95.7 78.4 95.6 80a n/a –

Nguyen et al

201931c

Diagnosis

Ther-

apy

Comparing the resultant number of

test results identified by the system

for clinical review to the full set of

test results that would have been

manually reviewed of patients

with ED encounters, to ensure

important diagnoses are recog-

nized and correct antibiotics are

prescribed.

PPV, sensitivity

and F-measure

n/a 94,3 n/a 85,8 n/a 89,8 n/a –

Raja et al

201250b

Diagnosis Pulmonary angiography were com-

pared before and after CDS imple-

mentation of ED patients who

underwent CT pulmonary angiog-

raphy to decrease the use and

increase in yield of CT for acute

pulmonary embolism

Accuracy, sensi-

tivity, PPV,

NPV and spe-

cificity

97.8 91.3 98.7 91.3 98.7 91.3 n/a Quarterly CT pulmonary angiography use

increased 82.1% before CDSS implemen-

tation, from 14.5 to 26.4 examinations

per 1000 patients (P<.0001). After CDSS

implementation, quarterly use decreased

20.1%, from 26.4 to 21.1 examinations

per 1000 patients (P¼.0379).

(continued)
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Table 2. continued

Study Applica-

tion field

Comparison Quantitative out-

come measure

Outcomes estimates (%) Additional findings

A Sens Spec PPV NPV F Co K

Raja et al

201942b

Prognosis Comparing research assistant Golden

standard (3 physicians) versus the

tool of patients < 50 years with a

history of uncomplicated nephroli-

thiasis presenting to the ED to

evaluate the impact of an appro-

priate use criterion for renal colic

based on local best practice,

implemented on the ED use of CT.

Qualitative n/a n/a n/a n/a n/a n/a n/a The final sample included 467 patients

(194 study site) before and 306 (88 study

site) after AUC implementation. The

study site’s CT of ureter rate decreased

from 23.7% (46/194) to 14.8% (13/88)

(P¼ .03) after implementation of the

AUC. The rate at the control site

remained unchanged, 49.8% (136/273)

versus 48.2% (105/218) (P¼ .3).

Rosenthal

et al

201951b

Diagnosis Comparing UPMC Children’s Hospi-

tal of Pittsburgh earlier study

results versus UPMC Hamot and

Mercy of children < 2 years who

triggered the EHR-based alert sys-

tem to increase the number of

young children identified as having

injuries suspicious for physical

abuse

Qualitative n/a n/a n/a n/a n/a n/a n/a A total of 242 children triggered the sys-

tem, 86 during the pre-intervention and

156 during the intervention. The number

of children identified with suspicious

injuries increased 4-fold during the inter-

vention (P<.001). Compliance was 70%

(7 of 10) in the pre-intervention period

versus 50% (22 of 44) in the interven-

tion, a change that was not statistically

different (P¼.55).

Shen et al

202043

Therapy Comparing Pre-existing workflow

versus pilot workflow of patients

undergoing outpatient endoscopy

to decrease sedation-type order

errors

Precision, PPV,

NPV, Sensitiv-

ity and Specific-

ity.

n/a 89.1 99.2 28.5 99.9 43a n/a –

Smith et al

202155b

Diagnosis Comparing the algorithm to manual

review, to expected performance

of the model and to prior work in

adults using CXR and other clini-

cal data to recognize patients with

pneumonia < 18 years.

Sensitivity, specif-

icity, PPV, F-

measure

n/a 89.9 94.9 78.1 n/a 83.5 n/a –

Stultz et al

201944

Therapy Comparing different meningitis dos-

ing alert triggers and dosing error

rates between antimicrobials with

and without meningitis order sen-

tences of patients admitted to an

inpatient pediatric service or the

pediatric ED, to provide a menin-

gitis specific dosing alert for

detecting meningitis management

Sensitivity, PPV n/a 67,5 n/a 80,9 n/a 74a n/a Antimicrobials with meningitis order sen-

tences had fewer dosing errors (19.8%

vs 43.2%, P< .01).

Sung et al

201838c

Prognosis Comparing Metamap to IVT eligibil-

ity criteria of adult ED patients

with AIS who presented within 3h

of onset but were not treated with

IVT to errors in determining eligi-

bility for IVT in stroke patients

Precision, recall

and F-score

n/a PL: 81.2

DL: 97.2

n/a PL:

99.8

DL:

100

n/a PL:

89.5

DL:

98.6

n/a Users using the task-specific interface

achieved a higher accuracy score than

those using the current interface (91% vs

80%) in assessing the IVT eligibility cri-

teria. The completion time between the

interfaces was statistically similar (2.46

min vs 1.70 min).

(continued)
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Table 2. continued

Study Applica-

tion field

Comparison Quantitative out-

come measure

Outcomes estimates (%) Additional findings

A Sens Spec PPV NPV F Co K

Wadia et al

201735

Prognosis Comparing the gold standard (dis-

cussion between pathologists and

oncologist) versus the tool of

patients undergoing colonoscopy

or surgery for colon lesions to

identifying cases that required

close clinical follow up

Recall, specificity,

precision and F-

score

n/a 100 98.5 95.2 n/a 97.5 n/a –

Wagholikar

et al

201265

Diagnosis Comparing the interpretation of free-

text Pap reports of Physician ver-

sus CDSS of patients with Pap

reports to develop a computerized

clinical decision support system

for cervical cancer screening that

can interpret free-text Pap reports.

Qualitative n/a n/a n/a n/a n/a n/a n/a Evaluation revealed that the CDSS outputs

the optimal screening recommendations

for 73 out of 74 test patients and it iden-

tified 2 cases for gynecology referral that

were missed by the physician. The CDSS

aided the physician to amend recommen-

dations in 6 cases.

Wagholikar

et al

201366

Diagnosis Comparing cervical cancer screening

of care providers versus the CDSS

of patients who had visited the

Mayo clinic Rochester in March

2012 to ensure deployment readi-

ness of the system.

Accuracy 87 n/a n/a n/a n/a n/a n/a When the deficiencies were rectified, the

system generated optimal recommenda-

tions for all failure cases, except one

with incomplete documentation.

Watson et al

201162

Diagnosis Comparing the model versus reading

and evaluating patient characteris-

tics in the EHR notes of patients

who are discharged with a princi-

pal diagnosis of HF to examine

psychosocial characteristics as a

predictor to heart failure to reduce

hospital readmissions

Sensitivity and

specificity

n/a >80 >80 n/a n/a n/a n/a Detection of 5 characteristics that were

associated with an increased risk for hos-

pital readmission

Yang et al

201832c

Diagnosis Comparing 4 machine learning algo-

rithms, as well as our proposed

model of patients with multiple

diseases to assist diagnosis

Accuracy, recall,

precision and F-

score

98.67 96.02 n/a 95.94 n/a 95.96 n/a –

Zhou et al

201571

Diagnosis Comparing the golden standard

(manual review) versus tool of

patients with an history of ische-

mic heart disease and hospitalized

to identify patients with depres-

sion

Sensitivity, specif-

icity and PPV

n/a HC: 92.4

IC: 77.4

n/a HC: 86.9

IC: 64.9

n/a HC: 89.6

IC:

70.6

n/a –

A: accuracy; AIS: acute ischemic stroke; ASD: automated symptom detection; AUC: Area Under the Curve; CAP: community acquired pneumonia; CC: completed colonoscopies; CDSS: clinical decision support system;

Co k: Cohen’s kappa; CS: colonoscopy status; CT: computed tomography; CXR: Chest X ray; DNN: deep neural network; DL: document level; ED: Emergency Department; EHR: Electronic Health Record; EMR: elec-

tronic medical record; ERPR: external peer review program; F: F-score; HC: high confidence; HF: heart failure; IC: intermediate confidence; ICD-9: International Statistical Classification of Diseases and Related Health

Problems; IVT: intravenous thrombolytic therapy; kNN: k-nearest neighbor; L: location; LVEF: left ventricular ejection fraction; LVSF: left ventricular systolic function; MMTx: MetaMap Transfer; MRI: magnetic reso-

nance imaging; MRSA: methicillin-resistant Staphylococcus aureus; N: number; NICU: Neonatal Intensive Care Unit; NLP: natural language processing; NPV: negative predictive value; Pap: Papanicolaou; PL: phrase level;

PPV: positive predictive value; Sens: sensitivity; QL: qualitative; QT: quantitative; RF: random forest; RS: reference standard; S: size; SDA: symptom detection with assertion; SESCAM: Servicio de Salud de Castilla—La

Mancha; Spec: specificity; TB: tuberculosis; TR: timing references; UPMC: University of Pittsburgh Medical Center; USMSTF: US Multisociety Task Force on Colorectal Cancer; VA: veterans affairs.
aThese F-scores were calculated according to the formula: 2*(sensitivity * PPV)/(sensitivity þ PPV).
bThese studies were implemented in clinical practice.
cThese studies were not performed in an English speaking country.
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quantitative outcomes of the studies varied substantially. Overall,

the studies indicate that TM-CDS combinations can increase patient

safety, decrease time to diagnosis, and suggest the best therapy for a

patient.

The lack of focus on medication errors (n¼0) and cancer diag-

nosis (n¼4) in TM-CDS studies is surprising due to the focus on

these issues in TM literature and the fact that both are leading

causes of death that are particularly complex and costly in many

countries.1,21 Similarly, a recent review by Jiang et al found that the

primary disease concentration area for artificial intelligence (includ-

ing NLP and other computational techniques) in health care was

cancer, neurology, and cardiology. An opportunity exists to study

the contribution of the TM-CDS combination in making a diagnosis

in these fields.72

Only 53% of the studies included in diagnosis utilized reports.

This was not in line with our expectations, because the usage of

reports is logical due to the semi-structured data they consist of and

their primary diagnostic purpose. This is substantiated with the

number of publications in TM and the fact that radiologists are pro-

gressive in utilizing technological solutions (eg, automated dicta-

tion). Even more, the growing importance of structured data is

reflected in radiologists’ increasing embrace of structured reporting,

standardized coding systems, ontologies, and common data ele-

ments.73

Barriers to implementation
A striking finding of this review is that, despite the benefits and local

successes of the TM-CDS combination, research has not led to wide

implementation and integration in clinical practice. A primary limi-

tation of TM-CDS combinations mentioned is the complexity of

natural language. The performance of any NLP system is con-

strained by the quality of the human-composed text.70 Basic infor-

mation is often inconsistently entered by humans. As clinical text

repositories grow, these repositories will increasingly include con-

flicting data, which poses a challenge to any NLP system.70,71

The presence of a functioning system does not ensure it will be

adopted by users. For example, Wagholikar et al (2013) concluded

that use of an unfamiliar interface led to participants’ mistakes,

which in turn can lead to a low adoption rate despite the positive

effects of technological advances, such as EHRs.52,74 A 2016 review

by Kruse et al found that physicians face a range of barriers to EHR

implementation, including complexity of the system, which can lead

to mistakes.75

A formal standard for TM techniques has not yet been estab-

lished, leading to the utilization of diverse techniques at different

levels and different performance outcomes, which makes these tech-

niques hard to compare. For example, Stultz et al44 uses keyword

extraction, whereas Meystre and Haug37 uses multiple preprocess-

ing steps and extraction. In addition to different TM techniques,

there are different CDS systems. These systems should be developed

by the “5 rights”, meaning to give the right information, to the right

person, in the right format, through the right channel, at the right

time in workflow.76,77 However, it is technically difficult to actively

provide the right data at the right time to the right person. Unlike

most of the studies in this review, Rosenthal et al gave active advice

using a pop-up alert and lightbulb icon to alert the professional.

This increased the number of cases identified, but the compliance of

the guidelines did not change.51 One reason is that the system’s

advice often comes too late for professionals (eg, after the

appointment with the patient), which has contributed to negative

associations, compliance issues, and lack of acceptance of the TM-

CDS combination.78

Fourteen studies in this review utilized free-text narrative docu-

ments. These documents contain all patient information that is of

interest to professionals, but are complex because they contain med-

ical terms, abbreviations, acronyms, local dialect, and lack of proper

punctuation. This makes it difficult to extract data and interpret the

free-text using the available TM-CDS tools. In addition, most of the

studies used only one free-text document type. Utilizing the com-

plete EHR or multiple types of free-text documents from the EHR

leads to a more complex algorithm (eg, requiring multiple prepro-

cessing steps). Future studies should include multiple types of free-

text documents from the EHR or the complete EHR to represent all

known information and develop algorithms that can process this

information.

The specific language used by a tool presents another obstacle

because the complexity of natural language differs between lan-

guages. Some languages present more difficulties in their semantic

and morphological components than others. English is the dominant

language of TM, but studies have also been conducted in Spanish,

Dutch, and German. Therefore it is necessary to propose approaches

to TM-CDS tools for clinical texts for languages other than English,

as proposed by Reyes-Ortiz et al.79

Study strengths and limitations
This review was conducted in accordance with the PRISMA state-

ment to ensure the use of appropriate methods. Several of the recur-

rent strengths and weaknesses of specific articles have already been

discussed. Additional strengths include the evaluation of TM algo-

rithms and CDS performance. Potential areas for bias in this review

include the search process, development of exclusion criteria, assem-

bling of the review, and publication. All efforts to minimize bias

were made whenever possible. It proved challenging to assess the

quality of the studies within this review because relevant formal

standards and comparable outcomes have not been established for

TM algorithms. Additional limitations include small samples of

patients or texts, multiple synonyms of TM, and lack of a true com-

parative evaluation of the TM algorithm or CDS used in each study

to other methods.

Directions for future research
The TM-CDS combination offers potential as an effective system

that gives the right information to healthcare specialists at the right

time. Therefore, a relevant formal standard of TM-CDS combina-

tions that provides active advice should be created and TM should

be integrated into CDS systems.

If a formal standard for TM-CDS combination that provide

active advice were to be developed, it would still be difficult to

implement such systems due to the low adoption rate. Boonstra and

Broekhuis suggested that the implementation of any technology

should be treated as a change project and led by implementers or

change managers in medical practices to reduce barriers.74 Another

step to improve the adoption rate would be to adopt a white-box

approach, which provides feedback to decision makers and shows

them how the tools works.21,80

The impact of knowledge discovery on professionals’ workload

and time is unclear because 77% of the studies included in this

review did not use the TM-CDS combination in clinical practice.81

Future studies should consider integrating the TM-CDS in one

system and exploring its effect on work environments. In addition,
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future research should combine TM with expert opinions from spe-

cific domains (ie, oncologists for a cancer study). Most of the articles

in this review did not utilize expert opinion in any form, which

increases the risk of bias.

In addition, there are limitations to the generalizability of TM-

CDS combination. Open sharing of EHR free-text may be impossi-

ble due to privacy laws that restrict the sharing of patient health

information; however, researchers can continue to develop and use

generalized, open-source EHR-related TM systems such as the REX

tool and make these TM algorithms available on platforms such as

GitHub or they can utilize other frequently used free-text records,

like Google or Twitter.82,83 Making these algorithms available

would support the transparency and replicability of study findings

and minimize duplicate efforts. This approach is described in a

recent systematic review by Koleck et al (2019).84 Future research

should address the issue of replicability, the suitability of technolo-

gies, and the usability of these technologies in medical documenta-

tion.40

Identifying medication errors or adverse drug reactions are

important issues in the medical field85,86; however, none of the tools

in this review were used to identify them. Some studies have used

TM to identify adverse drug reactions, but not in combination with

a CDS system that could provide active advice to the physician.

Future studies should consider combining TM and CDS systems to

identify medication errors or adverse drug reactions.86,87

CONCLUSION

This review presents a comprehensive collection of representative

works from the field of the TM-CDS combinations. All selected pub-

lications indicate that the combination may be used to improve diag-

nostic and therapeutic processes in clinical practice, thus potentially

contribute to more efficient, better, and safer healthcare. However,

the combination has limitations similar to the respective individual

limitations of TM and CDS. Additionally, the adoption rate of these

tools among professionals and their use in clinical practice remain

low. Furthermore, this review discusses barriers to implement the

TM-CDS combination in the medical field. Further research, imple-

mentation, and integration of TM into CDS are necessary to under-

stand its impact in daily usage and to ensure that such tools provide

relevant information to professionals at the right time.
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