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ABSTRACT: In drug design, the design and manufacture of safe and effective
compounds is a long-term, complex, and complicated process. Therefore,
developing a new rapid and generalizable drug design method is of great value.
This study aimed to propose a general model based on reinforcement learning
combined with drug−target interaction, which could be used to design new
molecules according to different protein targets. The method adopted recurrent
neural network molecular modeling and took the drug−target affinity model as
the reward function of optimal molecular generation. It did not need to know
the three-dimensional structure and active sites of protein targets but only
required the information of a one-dimensional amino acid sequence. This
approach was demonstrated to produce drugs highly similar to marketed drugs
and design molecules with a better binding energy.

1. INTRODUCTION
Drug discovery is a long and complicated process. According to
current data estimates, the average cost of discovering new drugs
by the traditional methods is $2.6 billion, and the complete
workflow may take more than 12 years.1 Reducing costs and
speeding up the development of new drugs are the major
concerns for pharmaceutical companies. However, the purpose
of drug discovery is to identify new compounds with ideal
properties that can become approved drugs and can be
considered to fit the chemical space of potential drug-like
molecules in the range of 1030 to 1060.2 Deep learning (DL) can
solve this problem and be used to design diverse compounds
with ideal drug properties.3 In recent years, DL has played a vital
role in the field of artificial intelligence, especially in natural
language processing and image recognition. DL has been
gradually applied to other fields.4

The silico prediction of drug-target interaction based on DL
has an important biological significance in drug discovery. The
advantage of using DL is that it can discover hidden interactions
between drugs and targets.5 In studies of DL-based drug−target
affinity (DTA), SMILES or graph neural network (GNN) was
generally used as the input of drugs, and the amino acid
sequence or protein structure information6 that can be extracted
was used as the input of the target, and the affinity value is output
as a result through the neural network method.7 Also, the
current DTA models developed based on DL, such as
DeepDTA, GraphDTA, and DeepPurpose,8−10 can predict
any protein target and drug molecule.
Besides DTA prediction applications, DL is also used to build

molecular generativemodels. The SMILES string representation
is commonly used for training the neural network models to

learn molecular feature representations.11,12 Gupta et al.
proposed a neural network based on long short-term memory,
learned the grammar of using SMILES to represent molecules,
and generated new SMILES representing new drugs.13

Olivecrona et al.12 combined the recurrent neural network
(RNN) and reinforcement learning (RL) to generate SMILES
with specific ideal chemical and biological characteristics
(named REINVENT). The use of SMILES to represent a
molecule requires the neural network to output a series of
characters, and hence, each character output can be regarded as
an action. For example, if a valid SMILES strings molecule is
successfully output and has certain characteristics, the reward
function of RL gives a certain reward. The DrugEx14 method
creates a machine learning model as a predictor to predict
whether the molecules are active. Based on this predictor as a
reward function, the generator is trained by RL. Gao et al.15

develop a generative network complex to generate new drug-like
molecules based on the multiproperty optimization in the latent
space of an autoencoder. Krishnan et al. used transfer learning to
learn the characteristics of the target-specific data set and used
prediction models to predict the docking scores of molecules.
The two models combined RL to design new drug molecules.16

The aforementioned methods all required specific data of small
molecules or target proteins to construct predictors for drug
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design. It is impossible to design drugs for target proteins
without specific data.
We developed a universal approach for drug design for any

target protein. Previous studies need protein-specific data. This
work can free itself from the requirement of “specific data,” and
drugmolecules can be designed only by the amino acid sequence
without protein and drug data. Using RL, the DTA model was
integrated into RL as an exploratory strategy, which was
developed based on a molecular generation model and
implemented with RNNs and a policy gradient REINVENT
algorithm.17 We proved that our model only needed the primary
structure of the target protein, that is, the amino acid sequence
to design molecules with ideal drug properties. We then
screened drugs against the candidate drugs generated by the
molecular generation model to find drugs that could target this
protein. This method had good universality and application
prospect. In the following sections, we discussed the concept,
application, and validation of the algorithm, divided into the
following components: (1) molecular generation training
model; (2) DTA model; (3) RL for property-optimized
molecule generation; (4) building of the overall workflow; and
(5) validation of the proposed pipeline.

2. METHOD
2.1. Molecular Generation Training Model. The first

step was to train the generation model so that it learned the
syntax of the SMILES format for expressing molecules and
designed novel and efficient small molecules. The drug data set
of the molecular generation model was collected from the
CHEMBL database.18 This data set contained 1.44 million
SMILES strings. The RNN model built for SMILES strings
generation contains five layers: one input layer, three loop layers,
and one output layer. The loop layer used 128 GRUs17 as cells,
the optimizer is Adam, the learning rate is 0.001, and finally, the
model outputs the probability of each string through the softmax
function. This model could learn not only the grammar of
SMILES but also the distribution of molecular structure

information. More detailed information can be found in
previous studies.12

2.2. DTA Model. The DTAmodels are designed to establish
relationships between proteins and drugs by machine learning
methods and accurately predict the affinity between drugs and
targets. Most of the popular DTA models use DL methods.
These methods can reduce the loss of feature information in
predicting DTA models, thus overcoming certain limitations.
Different DTAmodels have differences in drug embeddings and
protein target embeddings. Common drug embeddings include
the convolutional neural network (CNN),19 GNN,9 message
passing neural network (MPNN),20 and Morgan21 and
Daylight10 protein target embeddings including CNN, AAC,19

and so forth. We compared different DTA models developed at
present and retrained the existingDTAmodels using the KIBA22

and the BindingDB23 data sets (version: 2021-01-01) to
compare the performance of each DTA model. We selected
the DTA model with the best performance as a scoring function
integrated into RL.
The input molecule was represented by the SMILES strings.

The input protein is represented by the amino acid sequence.
Drug−target interaction data were obtained for the BindingDB
and KIBA data sets. BindingDB contains 70,750 protein target
interactions, 13,392 drugs, and 1507 proteins. The KIBA data
set contains 118,254 protein target interactions, 2068 drugs, and
229 proteins. We used BindingDB and KIBA data sets to
compare different existing DTAmodels. To select the best DTA
model, we selected the currently popular models, KronRLS,24

SimBoost,25 DeepDTA, GraphDTA, DeepAffinity,26 and Deep-
Purpose, for comparison.

2.3. Reinforcement Learning. RL is used to describe and
solve the problem; agents use learning strategies to maximize
returns or achieve specific goals in the process of interaction with
the environment. The RL framework was implemented using
the REINVENT algorithm, and the aim was to teach the
generator to generate a chemical space for molecules with
specific properties.

Figure 1. Workflow utilizing REINVENT algorithms and DTA models as reward functions.
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Policy-based RL was used to fine-tune RNN-based proxies to
generate molecules with a given desired property. The
architecture consisted of two major parts that had the same
RNN-based architecture: the prior network and the agent
network. In strategy gradient training, the weights of prior
models were kept unchanged. The weights of the agent model
were normalized along with the learning syntax of small
molecules, ensuring that the generated SMILES strings
complied with chemical rules.
For RL, both the prior molecular generation model and the

agent molecular generation model used molecular generation
neural networks; the priormodel was used as a reference point to
sample the possibility of given SMILES. For each batch of
SMILES generated by the agent, the prior model calculated the
negative log-likelihood value, recorded as log P(A)prior.

= = | = =
=

P A P X T X T X xlog ( ) ln ( ... )
i

n

i i i iprior
1

1 1 1 1

The likelihood of sampling a given SMILES string was given
by the product of the action probabilities. Let R(A) be the
reward function based on the affinity prediction model. The
agent calculated the prior probability by enhancing the
likelihood function; the formula is as follows

= +P A P A R Alog ( ) log ( ) ( )U prior

log P(A)U represents the likelihood function of the prior model
and δ represents the weight of the reward function. It uses the
prior strategy and the agent’s strategy to find a balanced strategy,
and the long-term return is written as

= [ ]r S P A P A( ) log ( ) log ( )T U A
2

where log P(A)A represents the likelihood function of the agent.
The rewards were maximized by minimizing the objective
function.

=J r S( ) ( )T

Policies are the basis of RL. The gradient of policy parameters
was updated using the following formula.

= ++ J( )t t t1

2.4. Workflow. The framework was divided into two parts
(Figure 1): the molecular generation model and the DTA
model, which were trained to learn the affinity data between the
molecule and the protein target. In the first stage, the twomodels
were trained by the supervised learning algorithm. In the second
stage, the two models were trained by the RL method. In this
system, the molecular generation model was used to produce
novel chemically viable molecules via the policy gradient
algorithm of REINVENT. The DTA models predicted the
affinity of novel compounds to amino acid sequences. The
workflow started by selecting an amino acid sequence as input.
The number of iterations is 1000, and each iteration is set to
generate 128 molecules. First, samples of new compounds were
taken from the generation model, and a batch of SMILES was
generated. The generated molecules and amino acid sequences
could predict affinity through the DTA model, that is, they were
rewarded. The better the prediction made according to the DTA
model, the greater the reward would be. Therefore, the
molecules generated by the molecular generation model had a
better affinity with the DTA model. Through repeated iteration,
the generated molecules finally had a great affinity with the
target amino acid sequence.

2.5. Validation of the Proposed Pipeline. Designing and
manufacturing effective and safe compounds and maintaining
the biological activity of molecules are important for de novo
molecular generation. Therefore, it was necessary to strictly
evaluate the molecules designed from scratch, that is, their
physicochemical properties, synthetic accessibility, drug sim-
ilarity, uniqueness, and diversity, to accurately verify that the
molecules generated in our study were reliable. We defined a
metric to evaluate whether the generated molecule could
interact with the protein target. We use the docking score and
root mean standard deviation (rmsd) for a more quantitative
evaluation. When the generated molecule complied with the five
rules of synthetic properties and docking according to the
specific cavity of the protein, the compound was considered
ideal, that is, when the docking score was <−10.0 kcal mol−1 and
rmsd < 2.0 Å. In Vina, rmsd is used to indicate the difference
between various docking positions. Taking the first ligand
position as a reference, the rmsd values of the second docking
position and the first position being within the 2.0 Å range was
considered to be effective for molecular protein docking.
The protein was first selected as the input to validate the

proposed pipeline. The following four proteins were selected:
human Bruton’s tyrosine kinase (BTK), poly ADP-ribose
polymerase (PARP), v-Raf murine sarcoma viral oncogene
homologue B (BRAF), and epidermal growth factor receptor
(EGFR). BTK is a member of the Tec family of nonreceptor
tyrosine kinases and a key proteinmolecule in the B-cell receptor
signaling pathway.27 It is involved in the proliferation, transport,
chemotaxis, and adhesion of B cells. The types of hematological
malignancies are widely expressed. The inhibition of its activity
can produce obvious antitumor effects.28 A PARP inhibitor is a
medical agent that can affect the self-replication mode of cancer
cells. PARP inhibitors can make breast cancer drugs work
effectively.29 BRAF is a serine/threonine kinase that is
commonly activated by a somatic point mutation in cancer to
provide new therapeutic opportunities in malignant melano-
ma.30 EGFR is a transmembrane glycoprotein that regulates
cellular regulatory pathways that regulate cell proliferation,
differentiation, and apoptosis. EGFR overexpression is closely
related to tumor formation.31 First, the amino acid sequences of
BTK (PDB ID: 5P9J), PARP (PDB ID: 5D5K), BRAF (PDB
ID: 4MNF), and EGFR (PDB ID: 5ZWJ) proteins were input
into the pipeline as inputs to obtain the small-molecule libraries.
Molecular docking is a method of drug design based on the

characteristics of receptors and the interaction between
receptors and drug molecules. Most frequently, a receptor
(protein) molecule and a ligand, other small-molecule proteins,
or nucleic acids are used for this procedure. Bound simulated
structures of molecules are used with the ultimate goal of
producing binding affinity and bound conformation. AutoDock
Vina was used for molecular docking to study the interaction and
binding energy between molecules and proteins. BTK protein
(PDB ID: 5P9J) was taken as an example to verify the candidate
drugs generated by the molecular generation model.

3. RESULTS AND DISCUSSION
3.1. Comparison of the DTA Model Performance. Most

methods currently determine the optimal architecture by
changing different protein coding methods and drug molecular
descriptors to better predict the affinity between drugs and
targets. We compared common DTA models, evaluated by
calculating the concordance index (CI) and mean square error
(MSE), to find the best DTA model. The calculation formulas
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and methods of the CI and MSE are detailed in Supporting
Information 1.
Comparing the two data sets (KIBA and BindingDB), the

results shown in Tables 1 and 2 were obtained. Table 1 shows

not much difference between the CI and MSE of GraphDTA,
DeepDTA, and DeepPurpose. DeepPurpose (CNN for proteins
and CNN for drugs) showed a good performance. As shown in
Table 2, DeepPurpose (CNN for proteins and CNN for drugs)
had the highest CI and the lowest MSE. Considering that the
number of molecules in the BindingDB data set was larger than
that in the KIBA data set, the model could better learn the
coding rules of the SMILES format. Finally, we decided to
choose DeepPurpose (CNN for proteins and CNN for drugs)
taking BindingDB as the data set. The schematic diagram of the
model is shown in Figure 2. It was used in the subsequent

experiments. This model used two inputs, protein sequence and
SMILES sequence, to learn the representation vector of each.
The convolution and pooling layers were used to capture the
potential patterns of proteins and drugs in the input. Then, they
were connected through the fully connected layer and finally
through training affinity regression.

3.2. Validation of the Proposed Pipeline. For the current
case studies, all the existing BTK, PARP, BRAF, and EGFR
inhibitors were collected but used only for validating the
pipeline. Before the amino acid sequences of the above four
proteins were input into our model, to prevent the DTA model
from directly obtaining the information of relevant proteins and
drugs, the test results of the universality and effectiveness of the
model would be affected. When the above proteins were used as
inputs, the amino acid sequence, corresponding inhibitor, and
affinity values of this protein (including related proteins with
similar structures) were deleted from the BindingDB data set,
and the DTAmodel was retrained to be used in the whole model
framework. The DTA model predicts the affinity of the four
proteins to the inhibitor, as shown in the Supporting
Information.
The amino acid sequences of BTK, PARP, BRAF, and EGFR

were input into the pipeline to generate four small-molecule
compound libraries. The similarity between the molecules was
quantified using the Tanimoto coefficient32 (TC) based on
RDKit-based molecular fingerprints compared with inhibitors
and generated molecules. The TC cutoff value of 0.8 was used to
identify the resultingmolecule with high similarity to the existing
inhibitors of the target protein. For BTK, two molecules highly
similar to zanubrutinib (Figure 3a) can be found in the
candidate drugs, with TC reaching 0.91 and 0.87, respectively.
Among the candidate molecules for PARP generation, olaparib
(Figure 3b), the PARP inhibitor, replaces only a three-
membered ring with a six-membered ring and a trifluorinated
carbon, compared with two molecules of a similar degree.
Among the candidate molecules generated for BRAF, the TCs
with vemurafenib (Figure 3c) were 0.96 and 0.92, respectively.

Table 1. CI and MSE Scores of the Test Set Trained on Six
Different Models for the KIBA Data Set

models proteins drugs CI MSE

KronRLS S−W Pubchem Sim 0.782 0.411
SimBoost S−W Pubchem Sim 0.836 0.222
DeepDTA CNN CNN 0.864 0.196
GraphDTA CNN GNN 0.862 0.196
DeepAffinity HRNN GCN 0.842 0.201
DeepPurpose CNN CNN 0.856 0.196

Table 2. CI and MSE Scores of the Test Set Trained on Five
Different Models for the BindingDB Data Set

models proteins drugs CI MSE

DeepPurpose CNN CNN 0.857 0.600
DeepPurpose CNN MPNN 0.841 0.635
DeepPurpose CNN Morgan 0.846 0.631
DeepPurpose AAC Morgan 0.848 0.629
DeepPurpose AAC Daylight 0.841 0.649

Figure 2. DTA model of DeepPurpose (CNN for proteins and CNN for drugs).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c06653
ACS Omega 2023, 8, 5464−5474

5467

https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c06653/suppl_file/ao2c06653_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c06653/suppl_file/ao2c06653_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c06653/suppl_file/ao2c06653_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c06653/suppl_file/ao2c06653_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06653?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06653?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06653?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06653?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c06653?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


For EGFR, the generated candidate molecule found a drug with
a TC of 0.82 compared with erlotinib (Figure 3d). By comparing
the TC, all four protein targets can findmolecules that are highly
similar to existing inhibitors, indicating that the generated
candidate molecules have a great potential for finding better
molecules for protein targets than existing inhibitors.
According to generate batch order of molecules, we calculated

the proteinmolecule and the four kinds of similarity of inhibitors
are already on the market, as shown in Figure S1, for each
protein, to generate about 120,000 molecules, and the molecule

with higher similarity is generated in about 20,000 to 80,000,
after might generate better than known inhibitor molecules.

3.3. Distribution of Generated Molecular Properties.
Molecular weight (MW), octanol−water partition coefficient
(log P), topological polar surface area (TPSA), and quantitative
estimate of drug-likeness (QED) of small molecules in
pharmaceutical chemistry. We studied the distribution of several
keymolecular descriptors about theMW, log P, TPSA, andQED
for the generatedmolecules for these four proteins (BTK, PARP,
BRAF, and EGFR). In Figure 4a, the MW of candidate
molecules is controlled within 1000, and the distribution range is

Figure 3. Subset of the generated small molecules with a high similarity to the existing (a) BTK inhibitor (zanubrutinib), (b) PARP inhibitor
(olaparib), (c) BRAF inhibitor (vemurafenib), and (d) EGFR inhibitor (erlotinib).
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close to that of two data sets. In Figure 4b,c, the log P and TPSA
distributions of BindingDB and CHEMBL data sets are highly
similar, while the candidate molecules generated for BTK are
basically consistent with the log P and TPSA distributions of
BindingDB and CHEMBL data sets, and the parameter
distributions are highly similar. In Figure 4d, the peaks of
QED distribution in the BindingDB data set are to the right and
those in the CHEMBL data set are to the left, and the QED
distribution of candidate drugs is to the left and right, indicating
that the generated molecules reproduce the physical and
chemical characteristics of BindingDB and CHEMBL data

sets. Figures 5−7 show the distribution of four properties of
candidate molecules for PARP, BRAF, and EGFR, respectively.
The results show that the four physicochemical properties were
similar to that in Figure 4. It was concluded that nomatter which
protein was targeted for drug design based on this method, the
generated candidate molecules could well reproduce the
physicochemical properties of the data sets.
We further explore the generated and ChEMBL training

concentrated random molecules and the affinity of distribution,
the four proteins from random ChEMBL data set, and generate
the same number of molecules for each protein, affinity,

Figure 4. Distribution of molecular properties of generated molecules for BTK, CHEMBL, and BindingDB. (a) MW, (b) log P, (c) TPSA, and (d)
QED. Generated molecules are shown in blue, CHEMBL molecules are shown in red, and BindingDB molecules are shown in yellow.

Figure 5. Distribution of molecular properties of generated molecules for PARP, CHEMBL, and BindingDB. (a) MW, (b) log P, (c) TPSA, and (d)
QED. Generated molecules are shown in blue, CHEMBL molecules are shown in red, and BindingDB molecules are shown in yellow.
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calculated through DTA model compared with the affinity of
generated molecular distribution, get the results as shown in
Figure 8, The peak of the affinity distribution of the molecules
generated for these four proteins is to the right of the peak of the
affinity distribution of the randomly selected molecules,
indicating that our pipeline prediction of molecules is highly
likely to be successful.

3.4. t-Distributed Stochastic Neighbor Embedding
Visualization of the Generated Molecules and Training
Data Set.We used t-distributed stochastic neighbor embedding
(t-SNE)33 to visualize the CHEMBL randommolecules and the

candidate drugs generated by the molecular generation model of
the four proteins in two dimensions to further explore whether
the physical and chemical properties of the molecules generated
by the pipeline matched the CHEMBL training data. As shown
in Figure 9, extended connectivity fingerprint (EGFC4)21 was
used as the molecular descriptor, 10,000 molecules were
randomly sampled from the CHEMBL data set, and the top
10,000 molecules with affinity ranking were selected. The
generated candidate drugs all cover molecules randomly
extracted from the CHEMBL data set and are more widely
distributed. To ensure the reliability of comparison, molecules

Figure 6. Distribution of molecular properties of generated molecules for BRAF, CHEMBL, and BindingDB. (a) MW, (b) log P, (c) TPSA, and (d)
QED. Generated molecules are shown in blue, CHEMBL molecules are shown in red, and BindingDB molecules are shown in yellow.

Figure 7. Distribution of molecular properties of generated molecules for EGFR, CHEMBL, and BindingDB. (a) MW, (b) log P, (c) TPSA, and (d)
QED. Generated molecules are shown in blue, CHEMBL molecules are shown in red, and BindingDB molecules are shown in yellow.
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randomly extracted from the CHEMBL data set are different
each time. Therefore, candidate molecules generated based on
this method can well reproduce the characteristics of molecules
in the training data set. The resulting molecules can represent
larger chemical spaces.

3.5. Analysis of Performance Metrics for the Gen-
erated Molecules. We extracted the top 10,000 molecules of

the four protein targets used for pipeline generation with affinity
and evaluated them for validity, novelty, filters, and internal
diversity. Our model was compared with the five molecular
generation models (VAE, AAE, CharRNN, latent GAN, and
JTN-VAE) in the MOSES method. The specific evaluation
method, reference test set data, and various metrics for
evaluating the performance of the generated model were

Figure 8. Distribution of affinity of generated molecules and a random set of ChEMBL molecules.

Figure 9. t-SNE projection of EGFC4 descriptors of random molecules from CHEMBL (blue) and molecules generated (orange).
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according to MOSES.34 The evaluation results are summarized
in Table 3. According to the RDKit library,35 the molecules
generated by the pipeline conformed to the chemical structure
and had high novelty, but the value and internal diversity
through the customized drug chemical filter were low. The drug
screening needed to be carried out according to the drug
property rules to screen higher-quality lead compounds from
these compoundmolecular libraries to improve the accuracy and
efficiency of drug design.

3.6. Subset of Generated Molecules for Molecular
Docking. We continue to use BTK as a target protein to verify
the reliability of the pipeline to make our pipeline work well.
1.2+ hundred thousand molecules were generated from the
pipeline, as shown in Figure 10. The top 10,000 molecules were
selected according to the DTA affinity ranking. For these 10,000
molecules, 319 molecules were selected according to the five
rules. A high-quality subset was subsequently obtained from the
generated molecules. In the next step, molecular docking was
carried out. Docking studies attempted to explore the binding
mode of the suggested protease inhibitors onto the 3D model of
protease of BTK using Autodock Vina.36 Nine molecules were
selected according to the docking score <−10.0 kcal mol−1 and
rmsd < 2.0 Å. The structural formulae of the nine molecules are
provided in the Supporting Information (Figure S2).
However, this study had several limitations. First, when

artificial intelligence generates drugs, it is difficult to determine
the binding sites of drugs and proteins, which requires the
development of accurate machine learning models in the future
that can both determine the binding sites of ligands and targets
and predict affinity. Second, our research results were based on

BTK, and it was difficult to determine how the AI-generated
molecules and proteins are bound. Therefore, the therapeutic
potential of the ligand we selected for laboratory synthesis,
preclinical trials, and other aspects needs to be further examined.

4. CONCLUSIONS AND FUTURE WORK
We proposed a new artificial intelligence drug design method,
which will continue to improve with the continuous improve-
ment of the accuracy of the DTA model in the future. In the
absence of a target-specific small-molecule data set, small
molecules are generated for the target of interest. This method
had good versatility. It did not need to know the three-
dimensional structure and active site of the protein target and
only needed a one-dimensional amino acid sequence. Our aim
was primarily the application of drug−target interaction
combined with RL in downstream technology. This approach
showed several promising traits and could find drug molecules
that had a strong affinity for the target.
After creating this framework using RL and the DTA model,

the next step was to optimize the DTAmodel to further improve
its accuracy of the DTA model. Simultaneous optimization of
multiple attributes, combining RL with multi-objective opti-
mization, enabled the method to meet the strict standards
required for drug candidate development. Regarding the
accuracy of the model, not only did it rely on an endless stream
of algorithms but it also required the support of good data. We
called on pharmaceutical companies to contribute more and
better DTA data to further improve the accuracy of the DTA
model and contribute to human health.

Table 3. Evaluation of the Generated Molecules

our model MOSES reference models

BTK PARP BRAF EGFR VAE AAE CharRNN latent GAN JTN-VAE

valid 1.0 0.999 0.999 1.0 0.977 ± 0.001 0.937 ± 0.034 0.975 ± 0.026 0.897 ± 0.002 1.0
novelty 0.999 0.992 0.989 0.979 0.695 ± 0.007 0.793 ± 0.028 0.842 ± 0.051 0.949 ± 0.001 0.914 ± 0.006
filters 0.308 0.398 0.413 0.793 0.997 ± 0.001 0.996 ± 0.001 0.994 ± 0.003 0.973 ± 0.001 0.976 ± 0.002
internal diversity 0.674 0.979 0.666 0.702 0.856 ± 0.0 0.856 ± 0.003 0.856 ± 0.0 0.857 ± 0.0 0.855 ± 0.003

Figure 10. Flowchart of BTK protein design molecules by the pipeline.
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