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ABSTRACT
With the worldwide digitalisation of medical records, 
electronic health records (EHRs) have become an 
increasingly important source of real-world data (RWD). 
RWD can complement traditional study designs because 
it captures almost the complete variety of patients, 
leading to more generalisable results. For rheumatology, 
these data are particularly interesting as our diseases 
are uncommon and often take years to develop. In 
this review, we discuss the following concepts related 
to the use of EHR for research and considerations for 
translation into clinical care: EHR data contain a broad 
collection of healthcare data covering the multitude of 
real-life patients and the healthcare processes related 
to their care. Machine learning (ML) is a powerful 
method that allows us to leverage a large amount of 
heterogeneous clinical data for clinical algorithms, but 
requires extensive training, testing, and validation. 
Patterns discovered in EHR data using ML are applicable 
to real life settings, however, are also prone to capturing 
the local EHR structure and limiting generalisability 
outside the EHR(s) from which they were developed. 
Population studies on EHR necessitates knowledge on 
the factors influencing the data available in the EHR to 
circumvent biases, for example, access to medical care, 
insurance status. In summary, EHR data represent a 
rapidly growing and key resource for real-world studies. 
However, transforming RWD EHR data for research and 
for real-world evidence using ML requires knowledge 
of the EHR system and their differences from existing 
observational data to ensure that studies incorporate 
rigorous methods that acknowledge or address factors 
such as access to care, noise in the data, missingness 
and indication bias.

BACKGROUND
Real-world data (RWD) is defined as ‘data relating 
to patient health status and/or the delivery of health-
care routinely collected from a variety of sources’.1 
While there are several types of RWD, such as 
claims data and patient registries, the use of elec-
tronic health record (EHR) data for clinical studies 
is perhaps the fastest growing segment. This growth 
can be attributed to several factors, including the 
increasing adoption of EHRs2 and digital technol-
ogies that register healthcare processes stored in 
EHRs. In large EHRs, millions of data points are 
available in millions of patients, reflecting myriad 
patient paths through the medical system. However, 
extracting generalisable knowledge from RWD is 
challenging due to issues that arise from any dataset 
not designed for research such as confounding, 
missingness and heterogeneity in how the data are 
documented, for example, clinical notes. Fortu-
nately, growing in parallel to the increased ability 

to measure and capture health related data, were 
advances in computing to store and process, and 
methods to analyse these data, notably artificial 
intelligence (AI). Thus, the combination of rich 
clinical data available in EHRs, paired with the 
ability to analyse these data with AI have expanded 
the opportunities to better understand the diseases 
and people whom we treat.

Rheumatology research particularly benefits 
from studies using EHR data. Rheumatic condi-
tions are generally uncommon. To enrol sufficient 
numbers of patients for population-based studies 
requires years to decades. The majority of rheu-
matic diseases are also chronic, and benefit from 
datasets where patients are followed longitudinally. 
EHRs with their existing large populations enable 
the potential to study the majority of subjects with 
a rheumatic condition followed in the healthcare 
system without requiring in-person recruitment. In 
addition, the patients’ digital health records capture 
multiple health domains, for example, clinical 
notes, vital sign data, laboratory measurement, drug 
prescriptions, over time providing the opportunity 
to examine and generate new insights into disease 
progression, risk factors and management

AI and particularly machine learning (ML) 
methods, a subset of AI, have been particularly 
useful in their ability to handle the volume and 
heterogeneity of RWD. As RWD and AI become 
increasingly incorporated into studies and clinical 
care, knowledge of the strengths and limitations 
will become increasingly important for all medical 
specialists. This review will focus on the opportu-
nities and challenges of using RWD focused mainly 
on EHR data, to advance clinical research in rheu-
matology, and where we may translate the methods 
and findings into clinical practice.

RWD-EHR expands the clinical data available to 
address clinical research questions
There are two broad types of clinical data for 
research: observational data, which includes 
prospective cohort studies and RWD/EHR, and 
clinical trials (table 1). In the hierarchy of clinical 
evidence, randomised controlled trials (RCTs) sit at 
the top largely because they are less prone to bias 
compared with other available datasets. However, 
the RCT study design restricts the types of ques-
tions one can answer. Clinical trials are designed 
to test the effect of a particular intervention, 
for example, drug, surgery, on an outcome, for 
example, mortality, myocardial infarction. Clinical 
trials have strict inclusion criteria excluding patients 
with comorbidities and particular age groups. 
Homogenising the patient population facilitates 
clear comparison of the effect of the intervention 
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but reduce generalisability of the findings to the true patient 
population. One example is with the paucity of women in pre-
clinical studies of cardiovascular drugs. Studies mainly included 
men due to concern that the hormonal changes in women could 
influence the effectiveness of the drug. However, since women 
were excluded or less preferentially recruited, results from these 
studies lack generalisability to the 40%–60% of the true patient 
population.3 Moreover, RCTs are often powered to answer one 
question on the main treatment effect, and are underpowered 
to determine if subgroups of patients may benefit from one 
treatment versus another. Importantly, the RCT study design 
is suboptimal to study other important aspects of diseases, 
including disease development and pathogenesis. For studies 
related to patient subgroups or disease development, larger 
cohorts are needed, where variation in the patient population is 
a strength, rather than a weakness.

Observational data include the majority of clinical data for 
research and include longitudinal prospective cohort studies, 
registries and RWD/EHR. Longitudinal prospective cohort 
studies were designed to study risk factors for and development 
of diseases. A well-known example is the Framingham Heart 
Study. Their data provided the basis for many of the cardiovas-
cular risk estimators used in clinical care today.4 Observational 
cohort studies are designed to follow patients with particular 
diseases, symptoms and/or exposures to observe how they evolve 
over time.5 Observational cohorts take many years before all 
relevant information is collected, making it a fairly time and 
resource intensive process. To measure the disease progression 
or incidence of events, most cohorts have fixed visits, and a fixed 
set of clinical factors or outcomes for which patients are assessed, 
providing structure to the data. The cohorts have wider inclu-
sion criteria and patients are generally more willing to partici-
pate as there is no trial intervention. While fixed visits with near 
complete data capture is an advantage, one pitfall of fixed visits 
is that they fail to capture the disease events in between the visits 
and retrospective questionnaires suffer from recall bias.6 Finally, 
the type of the measurements taken, both in clinical trials and 
observational cohorts, are driven by researchers’ hypothesis and 
decided on a priori, whereby not considered important initially 
can be missed.

RWD offers alternatives for the above-mentioned shortcom-
ings in traditional study designs: it is generally more inclusive 
than observational cohort studies and RCTs, extensive, available 
and big. For these reasons, many studies, including RCTs, now 

leverage RWD to extend their data collection.7 In this review, we 
focus on the use of a major type of RWD, EHR data.

Opportunities for RWD-EHR to catalyze science and 
healthcare within rheumatology
EHRs contain data as part of routine care, including unsched-
uled visits during a flare or hospitalizations, and can fill in data 
gaps not available from RCT and observational cohort studies. 
A key question in rheumatic conditions is evolution of the clin-
ical history before and after onset of the condition.8 A challenge 
for prospective patient collections is to capture patients at the 
right moment, particularly early in the disease. The low prev-
alence of autoimmune conditions and uncertainty about the 
initial symptoms is a barrier for creating cohorts that capture the 
true beginning of the loss of self-tolerance. RWD-EHR allows 
us to look back at previously collected data. RWD-EHR have 
led to findings such as the association between EBV exposure 
and multiple sclerosis development in the US military data, auto-
antibodies preceding SLE, as well as lifestyle and SLE develop-
ment.8–11 RWD-EHR can also capture data surrounding the time 
disease development compared with studies with fixed visits 
of trials and cohorts. In addition, the number of dimensions 
or types of data measured in the real world tends to be higher 
than RCT or observational cohort studies; EHR data contains 
all data collected as part of clinical care on all patients who 
visited a clinic or healthcare system. Thus, RWD-EHR gener-
ally contains a broader range of demographics, for example, 
age, sex or socioeconomic status compared with existing clinical 
datasets. Routine clinical care recorded in most EHR included 
detailed diagnoses codes, symptom description, disease develop-
ment, treatment and comorbidities. This creates a dataset where 
associations between diseases and comorbidities can be iden-
tified which might have not been captured in the predesigned 
data collections. For instance, studying the association between 
checkpoint inhibitors and the diverse manifestations for immune 
related adverse events would have been difficult to design a 
priori.12 Particularly for complex autoimmune diseases, where 
both the risk factors and the disease classifications are uncertain, 
the high dimensional EHR data allows for wide data exploration 
to detect unknown patterns.

RWD/EHR is complementary to traditional clinical datasets, 
as it provides information that is difficult to obtain otherwise. 
Inevitably, RWD has its own shortcomings: the data collections 
are less well structured, sparse and noisy and the missingness 

Table 1  Types of clinical data available for research studies

Characteristics

Observational data

Clinical trialRWD-EHR Prospective longitudinal cohort study or registry

Definition Data from EHR relating to patient health status and/or the delivery 
of healthcare routinely collected from a variety of sources

Non-interventional clinical study, prospectively collecting data on a 
group of patients with a particular disease or symptom

Patients assigned to one or more interventions to 
evaluate its impact on healthcare outcomes, for 
example, randomised controlled trial

Patient population Broad, encompassing medical system or population area Restricted by study participation Restricted eligibility criteria, often excluding elderly and 
people with comorbidities

Data types High dimensional High no, limited by research design and variables for collection 
decided a priori

Variables/outcomes for collection decided a priori

Data collected as part of patient care from both patients and 
physicians

Structured data collection and questionnaires

Data presence Sparce, noisy Structured, same data collected on all participants Highly structured and often with detailed clinical data

Missingness not at random Fairly complete Low missingness

Scale Large, thousands to millions Modest, hundreds to thousands Small, tens to thousands

Generalisability Strong local structure can restrict generalisability
Incorporating real-life noise into the analyses improves applicability 
to real life settings

Easily replicable in similar designed cohorts
Generalisability restricted by patient selection and data not always 
directly implementable to real life settings.

The more restrained the patient selection the less 
generalisable

EHR, electronic health record; RWD, real-world data.
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is not at random, but informed by clinical decision-making. 
Handling EHR requires special attention to data selection and 
data analytics. With standing biobanks, the limitation is no longer 
recruiting and collecting samples for typing. The main limitation 
is now accurate phenotyping and subsequently to extract reliable 
novel knowledge. We will address these challenges and solutions 
in the upcoming paragraphs.

Transforming RWD-EHR data to research ready data, starting 
with phenotypes
Phenotypes are the foundation for clinical research. A major 
contribution of RWD-EHR data to rheumatic disease research is 
the ability to efficiently create large cohorts of uncommon condi-
tions for studies. There are two main types of EHR data—struc-
tured, for example, diagnosis codes, electronic prescriptions and 
unstructured data, for example, narrative text notes, imaging 
data. Classifying rheumatic and autoimmune diseases can be 
challenging as the accuracy of diagnosis billing codes alone can 
be low, for example, RA with positive predictive value (PPV) 
~20%.13 14 In addition, for some, specific diagnosis codes did 
not exist, that is, acute CPP disease or pseudogout.15 Since the 
majority of rheumatic conditions rely on clinical diagnoses, many 
of the key features important for diagnosis are often buried in 
the unstructured text notes, for example, synovitis, radiographic 
evidence of sacroiliitis. To mine the large and diverse data from 
EHR, AI has offered valuable solutions. ML, a subfield of AI, 
are computer systems that are able to independently learn and, 
ideally, generalise observed patterns from data. They are widely 
used for prediction and classification models. Since they can be 
developed using a high number of variables in large populations, 
they are very suited for building models that can be applied to 
the EHR to classify patients for inclusion into an EHR-based 
cohort. The same principles used to develop phenotype algo-
rithms for research will also be used when developing algo-
rithms for clinical care. Thus, we believe it is important for all 
healthcare providers to become familiar with the framework for 
how these algorithms are developed. Below, we review some of 
the key steps for consideration when building and evaluating a 
model for clinical phenotyping.

Model building for phenotyping
Perhaps the most important application of ML using EHR data 
is phenotyping: classifying patients with a disease and character-
ising patients.16 17 Where clinical trials and prospective cohorts 
screen patients before inclusion, in RWD patients are selected 
retrospectively using the available data. The magnitude of EHR 
data makes chart review to classify all patients with a particular 
phenotype almost infeasible. Studies have found that relying on 
diagnostic or financial codes solely to create roust cohorts, is 
often not sufficiently precise17 18 and classification models and 
ML techniques using a broader set of data from have served to 
fill that gap.7

Set gold standard
When setting the gold standard, the investigator is defining 
the phenotype that the algorithm will define, for example, 200 
patients identified with psoriatic arthritis identified via chart 
review. However, in rheumatology the gold standard may not 
be as straightforward as defining for example diabetes or coro-
nary arterie disease (CAD). First, there is still much discussion 
about what is true RA or SLE, with SLE-like and pre-RA disease 
types and several updates of the disease classification criteria. 
Second, since our diagnoses are based on the pattern recognition 

of multiple symptoms or abnormalities, a consensus defined set 
of diagnostic features may not be available. Clinicians are selec-
tive in what they record in the notes and thus checking for classi-
fication criteria, mainly designed for research studies, can result 
in an under-sampling of cases. Incorporating the final diagnosis 
of a rheumatologist as written might be more accurate as this 
captures the summary of the complete clinical reasoning and 
also factors that the rheumatologist did not record. Depending 
on the research question, the wider spectrum of phenotypes 
captured by the rheumatologist’s diagnosis can be a particular 
reason to use RWD, instead of using the more narrow defined 
inclusion criteria of clinical studies.19

Feature selection
To build a phenotyping algorithm model, one can select vari-
ables or features based on clinical knowledge and hypotheses, 
or using a hypothesis-free approach using all available data. 
ML can learn patterns from a set of high dimensional training 
examples. It allows for a fast data processing of EHR combining 
both codified structured data, for example, lab results or treat-
ment prescriptions in a fixed format, and unstructured data, free 
written text in clinical notes. To use the latter, natural language 
processing (NLP) can identify and synthesise structure in the 
(digital) clinical notes (for hand written one would first need to 
transform them to digital notes before applying NLP).20 In rheu-
matology, NLP expands the previously difficult to access features 
for integration in the analysis, for example, bone erosions, sero-
positivity status, or the concept of a flare. The resulting features 
can be considered in the ML model. Most ML algorithms will 
provide probabilities of having a disease to each patient. When 
well calibrated, different thresholds can be used to create a more 
precise or more sensitive patient selection.

Phenotyping across EHR systems
Several phenotyping pipelines available online, some of which 
created in large consortia such as eMERGE and i2b213 20–23 
have built highly accurate algorithms for phenotype selection, 
which are implemented in multiple centres. However, even these 
‘universal’ algorithms require validation in each centre. When 
healthcare systems, EHR software and languages differ, such as 
in Europe, aiming for an universal algorithm is extremely chal-
lenging. For this, solutions are available to enable centres to build 
algorithms on their own data following an NLP ML pipeline.20 21

Supervised versus unsupervised learning for phenotyping
Most models for clinical studies rely on supervised learning. In 
supervised learning, the model is developed using gold standards 
defined by a clinical expert, for example, chart review containing 
200 patients with and without psoriatic arthritis (PsA), with the goal 
to identify the pattern that exists between patients with PsA vs those 
without. Unsupervised ML models can also be used for this purpose 
when there is a need to phenotype multiple conditions.24–26 These 
models are generally not as accurate as supervised models, but enable 
high-throughput phenotyping over a handful to thousands of pheno-
types with improved accuracy over diagnoses codes alone. More-
over, unsupervised models have been used to build clinical models to 
predict disease courses, optimise diagnostics and target treatment.27 
Unsupervised pattern recognition analyses identify subgroups of 
patient-patient similarity in a high dimensional or graph-based space. 
In rheumatology, they are most commonly employed for biological 
studies for instance to differentiate cell types in high-dimensional 
typing of blood and synovial biopsies, and are increasingly applied 
to clinical data from observational studies and post-hoc analyses of 
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clinical trials.28–30 The identification of homogeneous disease subsets 
and trajectories within these large datasets can support research to 
disease aetiology and optimise treatment, particularly in the setting 
of complex heterogeneous diseases. Whether a model is trained in 
a supervised or unsupervised manner, accurate and generalisable 
results are important. For this, there are analytical steps important 
in ML.

Measuring performance of supervised models
Since ML aims to classify and predict, the key performance 
features are AUC-ROC (tradeoff between sensitivity and speci-
ficity), area under the precision recall curve (AUC-PRC) (trade-off 
between sensitivity and PPV) and F1-score (harmonic mean of 
sensitivity and PPV),31–33 in addition to assessing the calibration 
(whether the magnitude of the probabilities (low, intermediate 
or high) are consistently accurate. When a probability threshold 
is set, the accuracy of predictions can be expressed by sensitivity, 
specificity, PPV and negative predictive value. Finally, the impact 
of a model’s measurements can be calculated with net benefit 
and numbers needed to threat.

Developing balanced and reliable algorithms
To prevent overfitting a commonly applied technique for model 
optimisation and validation, is to divide the original data into a 
training-out and a hold-out test set, ideally in an iterative way such 
as in k-fold cross validation or leave-one-out cross-validation. The 
performance of the final model is then summarised by taking the 
average performance across all iterations for a robust assessment. 
Once the model is set, the final test round should ideally be done 
in data that was not used in any of the previous stages. The model’s 
performance in the final round is considered the true performance, 
that is, internal validation. When assessing the validity and usefulness 
of an algorithm, it is imperative to check the performance in an inde-
pendent dataset which is representative for the aimed application, 
that is, external validation. This is similar to assessing any type of test 
before using it in clinical practice.

From research clinical phenotyping and modeling to clinical 
applications
Beyond the scientific aim of making reliable datasets out of EHR 
for clinical research, AI is increasingly used for applications in 
clinical care. For instance, to predict development of disease or 
side effects, treatment response or to facilitate surgery and image 
interpretation.34 As with any test or prediction, clinical applica-
tion necessitates an even more rigorous model assessment.

Generalisability and implementation
The challenge of making even rigorously tested models that 
work well in clinical practice is exemplified by the epic sepsis 
model.35 36 One of the most widely used clinical warning 
systems, the EPIC sepsis model was built on EHR data from 405 
000 patient encounters across 3 health systems and was designed 
for use with real life EHR data. However, in a large external 
validation study, the Epic Sepsis Model failed to identify 67% 
(n=1709) of patients with sepsis.37 Its failure in this independent 
testing is considered a result of lack of good external valida-
tion and a possible need for pragmatic clinical trials assessing 
the true impact.38 Another reason might be that for implemen-
tation of EHR models, harmonisation of new EHR data, such as 
performed when combining dataset for science with the original 
datasets is not a standard procedure.

The EPIC sepsis model addresses the challenge of testing 
on one set of EHR data and applying it to a second. There are 

several reasons why a model can work across multiple institu-
tions but not another: the data and population used to develop 
the model differs from the population where it is currently being 
applied. The EHR software itself can result in different codes for 
different conditions or laboratory studies. Differences in clinical 
practices between health institutions result in different types of 
noise, missingness and biases between EHR systems. The nois-
iness and missingness of data in EHR is not solely the result of 
different encounters with the hospital system due to different 
disease activity. Doctors’ and patients’ habits on frequency of 
visit request and additional examinations, insurance coverage, 
and the extent of information in medical notes result in strong 
batch effects between centres, doctors and perhaps patient 
groups. Accessibility of care and living distance to the clinic will 
influence the density of data in the EHR that could be correlated 
with patients’ life circumstances and disease characteristics. 
These factors influence the performance of methods that were 
trained and tested on different EHR data. Traditional methods 
such as outlier detection to identify such problems are less suited 
for models that were built on high dimensional data. In addi-
tion, to test a model in a new system before implementation, 
it is advisable to monitor data shifts periodically and monitor 
impact in real time.39 40 There are several guidelines for building 
and assessing AI both for algorithms building and assessment. 
Examples include Transparent Reporting of a multivariable 
prediction model for Individual Prognosis or Diagnosis-AI, 
Standards for Reporting Diagnostic Accuracy (STARD)-AI and 
DECIDE-AI.41–44 In addition, methods are being developed that 
allow a more automated approach for determining the equiva-
lent codes across EHR systems to use in a model.45

In rheumatology, clinical research models exist for image 
interpretation, for example, erosion detection on X-rays, MRI 
interpretation, prediction of treatment failures and disease flares, 
picture-based synovitis detection but have not reached clinical 
implementation. Treatment response is particularly challenging, 
since both the documentation of disease activity, which is needed 
to define treatment response needs to be gleaned mainly from 
unstructured clinical notes, with a wide variation in how these 
concepts are documented.

Population health studies on EHR data
As outlined above, a big advantage of EHR data is that it could 
provide insights into disease aetiology and development. EHR 
data are often used for case series, nested case control studies 
and prospective and retrospective cohorts. Casey et al wrote 
an comprehensive overview of EHR studies that generated new 
insights into diseases, such as the association between chicken 
pox and stroke, neighbourhood deprivation and cardiovascular 
risk, and unconventional natural gas development and preterm 
birth.46 In addition, biobanks linked with EHR data and samples 
for immuno and genotyping have further extended the reach and 
potential for translational research with RWD.47 48

Using EHR for population health studies does require special 
attention and caution to ensure high quality results. Differences 
in registration habits, disease severity, access to care and local 
healthcare standards influences the amount of noise, missingness 
and indication bias in the EHR. EHR data are in principle open 
cohorts, where people enter and leave at different moments 
during their disease course resulting in different density and 
lengths of trajectories. There are several reasons why EHR 
system can lack data on patients: patients have missed visits for 
personal or practical reasons, have been well or did not search 
for care, died, entered the system before digital registration was 
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available (leading to lack of baseline information (left-censoring)) 
or moved to a different the system (leading to right-censoring 
(lack of outcome information)). A valuable checklist to assess 
bias in population studies is the PROBAST tool.49

The length of the patients’ trajectories influences the chance 
of being captured in case-control studies. When cases are 
randomly identified, for example, by using a certain drug at 
any time, the resulting dataset will be enriched with people who 
were doing well on those drugs and thus is biased towards good 
outcomes. To overcome this, a new user design or incident user 
design can be used, as is routinely performed in other types of 
RWD observational data, claims based research.50 Here, patients 
are retrospectively selected at the time of drug prescription and 
all subsequent time points are part of the study. This temporal 
ordering protects studies against reversed causation.

Also the type of information that is registered for each patient is 
constrained by missingness. Clinicians’ registrations are enriched 
with information that is useful for treatment and focuses on the 
interventions of the clinicians. Hereby, information including 
fundamental causes of diseases (social, environment, life-style) 
is less well registered.51 These causes of missingness are systemic 
instead of at random, which can introduce bias if it is not taken 
into account. Simultaneously, the missingness or sparsity can be 
informative as well, for example, telling us a doctor was (not) 
suspecting a particular disease or a patient is (not) doing well. 
One study found that increased frequency of blood measure-
ments, particularly during the late night early morning hours, 
had a strong correlation with mortality.52 EHR is enriched for 
such associations, which can result in a reduction of analytical 
quality when ignored but could be an enrichment when used 
cleverly.53 It does, however, require good domain knowledge 
and knowledge about the local healthcare system. This under-
lines the importance of involving clinicians into EHR studies.

Ethics
While the combination of ethics and legislation of EHR data 
usage is a subject on its own, we would like to address this topic 
in brief, as it is imperative before collecting and analysing any 
data. There are two main aspects that we would like to address, 
as they are directly pertinent to algorithms for phenotyping. As 
outlined, validation of any algorithm in the local EHR before 
broad clinical implementation is relevant to test the validity of 
the algorithms and the impact of possible error. For this, it is 
important to make the EHR data accessible for such analysis. 
Second, selection bias reduces generalisability of study results 
and the inclusiveness of EHR data offers a solution for biases in 
traditional designs. However, while EHRs often contain infor-
mation on a broader population compared with recruitment-led 
studies, the evidence derived from EHRs will remain limited to 
the EHR population This on its own can be biased. This bias can 
relate to the way we obtain access to RWD. This necessitates 
a discussion on how to obtain data access in a manner where 
patients’ rights are not violated and simultaneously we do not 
create additional research bias.

Legislation around data usage has reduced data accessibility. 
The current ideal (though not reality yet) is that the patient 
is the data owner and should provide access to their data.54 
Currently, General Data Protection Regulation (GDPR) requires 
a clear affirmative action in order to fulfil the consent criteria. 
This makes an automatic opt-in not possible (though it is not 
completely ruled out as an option). However, in addition to 
obtaining consent, there are several other situations where one is 
allowed to process personal data. These contain situations where 

one needs to fulfil a contract, there is a legal obligation, there is a 
vital interest, a public interest, in the exercise of official authority 
or when there is a legitimate (eg, commercial) interest provided 
it does not harm to the freedom and rights of the individual. 
Now it is allowed to subside the consent criteria for instance 
when it is not reasonably possible to obtain it (eg, when people 
died or the group of people is too large too reasonably be able 
to obtain the consent).

The problem with obtaining informed consent can be that it 
creates bias in patients who agree to consent (eg, by making the 
paperwork too difficult for certain groups).55 Simultaneously if 
informed consent is required in any circumstance, we create a 
bias by excluding those who passed away. The questions whether 
this is ethical becomes even more pertinent when we are using 
RWD for developing algorithm for clinical practice.

Now it are not only clinicians or tech companies who realise 
the value of RWD. Also regulatory bodies are diving into the 
resource. RWD is increasingly as potentially powerful data to 
guide regulatory decision-making.56 To do so requires the trans-
formation of the noisy RWD to real world evidence (RWE). In 
recognition of the importance in developing the use of RWD 
to accelerate science, governments are helping to push the field 
forward by providing grants (EU, Horizon) aiming to accel-
erate science incorporating the use of RWD by setting out 
specific programmes and legislation.1 57 58 The effectiveness of 
interventions can be studied in the complete variety of the true 
patient populations using EHR. This is one of the key reasons 
why FDA and the EU are focusing on exploring the validity 
of RWD: decision-making on the development, authorisation 
and supervision of medicines.57 This generates an incentive for 
health authority to find solutions for the data access and consent 
problem. resulting into initiatives as the European Health 
Data space.59 The opinions differ on whether this is an ideal 
and workable solution, which will also depend on the execu-
tion of the plan. At the least having an European wide solution 
and clarity on the interpretation of the law, would take away 
important current hurdles in the science with RWD.

CONCLUSION
In summary, EHRs provide a rich resource of RWD to advance 
our understanding of rheumatic conditions and when trans-
formed to RWE can inform clinical care. EHR data complement 
traditional study designs because it captures almost the complete 
variety of patients, leading to more generalisable results. In addi-
tion, it is large, available and extensive in the type of data it 
captures. Using EHR data for science necessitates data cleaning 
and patient selection which requires different techniques than 
in observational cohorts or clinical trials, starting first by accu-
rately classifying patients with the phenotype of interest. ML 
techniques provide high-throughput solutions for both patient 
phenotyping and to build prediction models. To ensure general-
isability and prevent overfitting, validation in separate datasets 
and in each dataset over time is needed. As we move towards 
RWD-EHR data to guide clinical and regulatory decisions, 
academic–government–private partnerships are needed to deter-
mine the standards the data must meet, the ethics behind use of 
these data, and how the medical community will ensure that the 
algorithms remain relevant and continue to improve the health 
of the population they were developed to serve.
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