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Abstract

Rates of COVID deaths, hospitalizations, and cases differ markedly across U.S. states, as do rates 

of vaccination. This study uses cross-state regressions to assess impacts of vaccinations on COVID 

outcomes. A number of familiar issues arise concerning cross-sectional regressions, including 

omitted variables, behavioral responses to vaccination, and reverse causation. The benefits from a 

field context and from the broad range of observed variations suggest the value from dealing with 

these issues. Results reveal sizable negative effects of vaccination on deaths, hospitalizations, and 

cases up to early December 2021, although vaccine efficacy seems to wane over time. The findings 

for deaths apply to all-cause excess mortality as well as COVID-related mortality. The estimates 

imply that one expected life saved requires 248 additional doses, with a marginal cost around 

$55000, far below typical estimates of the value of a statistical life. Results since December 

2021 suggest smaller effects of vaccinations on deaths and, especially, hospitalizations and cases, 

possibly because of diminished effectiveness of vaccines against new forms of the virus, notably 

the omicron variant. A further possibility is that confidence engendered by vaccinations motivated 

individuals and governments to lessen non-pharmaceutical interventions, such as masking and 

social distancing.
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Vaccination rates against COVID-19 differ markedly across U.S. states. For example, based 

on data reported in Chetty, et al. (2022) and as shown in Table 1, the rate of “full” 

vaccination1 over a recent period of roughly three months, 2/11/22–5/8/22, averaged 64% 

with a standard deviation of 9%. These rates varied from 51% in Alabama to 81% in Rhode 

Island. If vaccinations are effective at reducing infections and deaths, these differences 

should map into differences in COVID-related deaths, hospitalizations, and cases.

Table 1 shows that data on reported COVID-related deaths, hospitalizations, and cases also 

varied substantially across the states. For example, for 2/25/22–5/22/22 (14 days after the 

period used for vaccinations), the change in cumulative deaths per person—corresponding to 
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cumulations of new deaths over the period—averaged 0.0009 with a standard deviation of 

0.0004.2 The range was from 0.0002 for the District of Columbia to 0.0020 for Kentucky. 

Over the same period, the change in cumulative hospitalizations per person averaged 0.025 

with a standard deviation of 0.009 and a range from 0.010 for Wyoming to 0.051for 

Delaware. Cumulative cases per person averaged 0.056 with a standard deviation of 0.029 

and a range from 0.017 for Nebraska to 0.127 for Vermont.

Table 1 shows comparable statistics for earlier periods. For vaccinations, the data start at 

3/5/21, corresponding to the beginning of CDC information on full vaccinations.3 Each of 

the five periods considered covers roughly three months (86 days). Note that the mean of 

full vaccination rates rose from 0.24 in 3/5/21–5/30/21 to 0.45 in 5/30/21–8/23/21, 0.55 

in 8/23/21–11/17/21, 0.61 in 11/17/21–2/11/22, and 0.64 in 2/11/22–5/8/22. The table also 

shows national averages, which differ to a minor extent from the means of values across the 

states.

For the COVID-related outcomes, the periods in Table 1 are each 14 days subsequent to 

the periods for vaccinations. Note that the mean of COVID deaths per person was 0.0007 

in 3/19/21–6/13/21 and 0.0006 in 6/13/21–9/6/21, then rose to 0.0018 in 9/6/21–12/1/21 

and 0.0021 in 12/1/21–2/25/22, before falling to 0.0009 in 2/25/22–5/22/22 (all measured at 

annual rates). Similar patterns apply over time for hospitalizations and cases. Note, however, 

that reported cases are particularly subject to measurement error because they depend on the 

volume of testing, which has varied substantially over time and across states.4

The objective of this study is to use cross-sectional regressions for the U.S. states to attempt 

to assess the effects of vaccinations on COVID-related outcomes. The regression framework 

takes as dependent variables the outcomes over the five periods shown in Table 1. That 

is, each dependent variable is the number of deaths or hospitalizations or cases per person 

cumulated over periods of roughly three months. The corresponding explanatory variables 

related to levels of vaccinations are averages over periods lagged 14 days compared to 

the dependent variables.5 The idea is that, at any point in time, the probabilities of 

infection, hospitalization, and death depend, with some lag, on the fraction of the population 

vaccinated.

The use of cross-sectional regressions involves a tradeoff between familiar econometric 

issues versus the large amount of information contained in the cross sections. A common 

procedure effectively discards the cross-sectional information by employing cross-sectional 

fixed effects (in the present case, state fixed effects) in the regressions. In contrast, the 

perspective of the present study is that the econometric issues can be handled satisfactorily, 

2These and subsequent numbers are expressed at annual rates; that is, the changes over 86 days were multiplied by 365/86.
3The national fraction reported as fully vaccinated on 3/5/21 was already positive, 0.086.
4CDC data reported in Chetty, et al. (2022) show that national nucleic acid amplification tests per 100,000 persons rose from zero in 
March 2020 to around 600 in December 2020-January 2021, fell to less than 200 in July 2021, rose back to around 600 in September 
2021 and 900 in January 2022, fell to about 200 in April 2022, and jumped back to around 700 in mid-June 2022.
5The relevant lag may differ from 14 days and would differ for deaths, hospitalizations, and cases. However, in practice, the regression 
results are not sensitive to the use of different lags between 14 and 28 days. These lags are consistent with those discussed by 
Bjornskov (2021, p. 320)

Barro Page 2

Econ Hum Biol. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and the benefits from retaining the cross-sectional information make it advisable not to 

follow the common fixed-effects procedure.

The empirical framework can be viewed as a reduced form of SIR—susceptible-

infected-recovered (and died)—models constructed by epidemiologists and, more recently, 

economists to study the evolution of contagious disease. This work began with Kermack 

and McKendrick (1927) and has been pursued recently by, among others, Atkeson (2020); 

Eichenbaum, Rebelo, and Trabandt (2021); and Acemoglu, Chernozhukov, Werning, and 

Whinston (2021). In this type of model, vaccination makes an individual less likely to catch 

the disease through contact with an infected person. Vaccination also lowers the likelihood 

of a person’s disease becoming severe, thereby lowering the probability of hospitalization, 

conditional on infection. Finally, vaccination lowers an individual’s probability of death, 

conditional on severe disease. At the community level, by lowering the overall rate of 

infection, a higher vaccination rate reduces the chance that an individual will be infected in a 

random encounter. The full equilibrium encompasses the direct inverse effects of vaccination 

on adverse outcomes along with the effects that work through contagion at the community 

level. Overall, a higher vaccination rate in a community associates with a reduction in the 

rates of infection (cases), severe disease (proxied by hospitalizations), and mortality. In the 

empirical analysis, the relevant community is taken to be a U.S. state, so that the spread 

of disease across state borders is neglected. In a planned extension, a community will be 

associated with a county, so that cross-border transmission will be more important.

I. Issues with Cross-Sectional Regressions

As is well known, inferences from cross-sectional regressions may be difficult to draw. 

Because of these problems, detailed below, many researchers have moved increasingly away 

from these types of regressions, preferring instead to rely on randomized control trials 

(RCTs) or natural experiments. Although RCTs are important for assessing the efficacy of 

vaccines, including those recently developed for COVID-19, it is more difficult to evaluate 

impacts on cases, hospitalizations, and deaths in the “field.” As far as I know, there are 

no RCTs applicable to field results connecting COVID vaccinations to COVID outcomes.6 

In some cases, natural experiments—such as regression-discontinuity designs applied to 

state borders—have been used successfully in the context of COVID-19. For example, this 

approach has been applied to facemask mandates by Goolsbee and Syverson (2021), who 

consider economic impacts, and Hansen and Mano (2021a), who assess health outcomes.7

There are also important advantages of cross-sectional regressions. In particular, they 

apply to the field context and can exploit the large observed cross-sectional variations in 

the variables of interest, especially differences across U.S. states in vaccination uptake. 

Because of these major benefits, it seems worthwhile to pursue the cross-sectional regression 

approach in the context of COVID vaccinations and outcomes.

6Abaluck, et al. (2022) describe a large-sample randomized control trial for mask-wearing in rural Bangladesh.
7Herby, Jonung, and Hanke (2022) carry out a meta-analysis of 24 studies of the effects of facemask mandates on COVID-19 
mortality. Their overall conclusion is “lockdowns have had little to no effect on COVID-19 mortality.”Many of the studies considered 
seem to lack convincing causal evidence—the cross-border approach of Hansen and Mano (2021a) and the instrumental-variable 
regressions of Welsch (2020) seem superior in this regard. These two studies were not included in the Herby, Jonung, and Hanke 
(2022) analysis.
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One issue in interpreting results from cross-state regressions is that vaccination take-up may 

be correlated with other variables that influence COVID outcomes. If these other variables 

are omitted from the regressions, the estimated coefficient on the vaccination rate may proxy 

for the influences of these other variables. For example, if older people are more susceptible 

to COVID infection and, especially, death, they are likely to be vaccinated more frequently 

(and earlier). In this case, the observed associations between vaccine take-up and COVID 

deaths, hospitalizations, and cases may be positive. This issue is handled by including as 

explanatory variables a set of major socio-economic variables—specifically, the fraction 

of the state population aged 65 and over in 2020, state life expectancy at birth in 2018, 

the fraction of the state adult population with education of four years of high school or 

more in 2019, the fraction of the state population classified by the U.S. Census as black in 

2020, and the urbanization rate in 2010. To deal with possible seasonal effects, the analysis 

also includes differences in average temperature across states at different times of the year. 

Inclusion of some other variables—population share aged 75 and over in 2020, per capita 

personal income in 2020, population density in 2020, and college education in 2019—do not 

materially affect the results.8

Another issue is that persons vaccinated may alter their behavior in ways that impact 

probabilities of COVID infection, hospitalization, and death. For example, a vaccinated 

person may feel protected against infection and, especially, death conditional on infection 

and therefore react by engaging in more social interactions or other risky behaviors. A 

general discussion of this issue in the context of insurance is in Ehrlich and Becker (1972). 

Their ideas were applied to seatbelt use in Peltzman (1975), who argued that a person who 

used a seatbelt (perhaps because of a legal mandate) is likely to drive faster. These kinds of 

mitigating actions may not arise in clinical trials (particularly if persons do not know their 

vaccination status) but would apply in the field. Moreover, the nature and extent of these 

actions may vary over time as empirical evidence grows about the nature of the disease and 

the effects of vaccinations and non-pharmaceutical interventions. People may also change 

their behavior in response to cumulated “fatigue” from past isolation.9

In the regression analysis, the estimated effects of vaccinations on COVID outcomes 

comprise direct effects combined with any mitigation behavior. In some contexts, these 

combined effects are the objects of interest—e.g. overall effects of vaccinations on deaths 

(or of seatbelt use on automobile fatalities). In other contexts, there would be more interest 

in the effects of vaccinations, holding fixed the behavioral variables.10 In any event, the 

regression results apply to the combined effects in various periods.

8Data by U.S. state on the socio-economic variables come from the U.S. Census Bureau. The data on personal income are from the 
Bureau of Economic Analysis. The temperature data are from usclimatedata.com.
9Agrawal, Sood, and Whaley (2022) used survey information from the Understanding America Survey to gauge the effects of 
COVID-19 vaccination on protective behaviors—mask-wearing, washing hands, avoiding crowds, and avoiding restaurants. To isolate 
causal effects from vaccination, their main analysis used a regression-discontinuity design based on changing eligibility across states 
for vaccination during the rollout in early 2021. Specifically, they compared responses of persons aged just over 65—the typical 
break point for vaccine eligibility in early 2021—to those just below 65. They found (in their Figure 2) no statistically significant 
responses in the four protective behaviors contemporaneously with vaccination. However, they also found (Figure 7) that substantial 
reductions—decreases in frequencies by about 10 percentage points—appeared with lags of 9 or more weeks. The lags might reflect 
growing information about the usefulness of vaccines as well as adjustments of behavior away from that prevailing prior to the rollout 
of vaccination.
10This analysis would allow for welfare benefits derived from the mitigating actions; for example, people getting pleasure from 
greater social interactions or from driving faster while wearing seatbelts.
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The final issue concerns reverse causation. Higher vaccination rates likely reduce COVID 

deaths, hospitalizations, and cases, and these are the effects that we seek to isolate. 

However, in addition, higher probabilities of death, hospitalization, and infection likely 

encourage people to get vaccinated (and motivate governments to mandate or subsidize 

vaccinations and to support the creation and distribution of vaccines). The first channel, 

whereby vaccination reduces probabilities of adverse outcomes, tends to generate negative 

associations between vaccination rates and rates of death, hospitalization, and infection, 

whereas the second channel tends to generate positive associations. If the second channel 

is not held constant, the observed associations tend to underestimate the magnitude of the 

(negative) effects from vaccination.

A common way to deal with reverse causation is to use instrumental variables that explain 

a substantial part of the variation in the explanatory variable, in the present context the 

vaccination rate, but do not enter directly as determinants of COVID outcomes. That is, 

the instrument matters for outcomes only through the channel of affecting the frequency of 

vaccination. The present analysis uses as an instrument a variant of the variable proposed by 

Welsch (2020, Section 3.2)—the Trump (Republican) share of the 2020 Presidential vote.11 

Welsch (Table 2) used the 2016 value of this variable as an instrument for facemask usage, 

measured in July 2020 in a survey conducted by The New York Times.

Perhaps surprisingly, the Trump variable has a great deal of explanatory power for 

vaccination rates across states, even after holding constant key socio-economic variables, 

such as those mentioned before—old-age share, life expectancy, education, fraction black, 

and urbanization. That is, the Trump variable does not matter for vaccine take-up because 

it proxies for these kinds of socio-economic factors. Therefore, from the standpoint of 

having a lot of independent explanatory power for vaccination rates, the Trump variable 

is a good candidate as an instrument. In effect, the 2020 Presidential voting pattern sorts 

people (and states) into bins for vaccine attitudes in a manner that is largely orthogonal to 

socio-economic characteristics.

A reasonable concern is that the Trump variable would matter for COVID outcomes in 

ways that do not work entirely through vaccination status. For example, Welsch (2020, 

Appendix Table A1) found that the Trump vote share was inversely related to facemask 

usage in the New York Times survey. Consistent with Welsch’s findings, for the period 

3/16/20–2/1/21, which precedes major distribution of vaccines, the presence of a facemask 

mandate at the state level is significantly negatively related to the Trump vote share.12 

However, a combination of the estimated negative effect of the Trump vote variable 

on facemask mandates with the Hansen and Mano (2021a) estimated negative effect of 

facemask mandates on COVID deaths yields a very small implied positive effect of the 

Trump vote on COVID deaths, compared with the effects estimated below that work through 

vaccinations. Similarly, in the RCT of Abaluck, et al. (2022), the significantly negative 

effect of facemask usage on COVID infection corresponds to a minor likely impact of 

11The voting data are from Federal Election Commission (fec.gov).
12The facemask mandate is measured from information given in Raifman, et al. (2022) as the fraction of days between March 16, 
2020 and February 1, 2021 in which a statewide facemask mandate was in effect.
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facemask usage on COVID deaths, probably around two-to-three lives saved out of a total 

sample of 300,000. Therefore, from a quantitative standpoint, the Trump variable may 

be a satisfactory instrument for vaccination rates even though this variable has influences 

on COVID outcomes that work through facemask mandates and usage or other forms of 

non-pharmaceutical interventions.

II. Data and Empirical Setup

Data on COVID-related deaths, hospitalizations, and cases, measured relative to state 

population, are reported by the CDC and provided by Opportunity Insights, Economic 
Tracker (see Chetty, et al. [2022]).13 The data used in this study are for the 50 U.S. states 

plus the District of Columbia.

The three measures of COVID outcomes enter as dependent variables in the regressions and 

are examined over the five periods noted before. The starting date, March 19, 2021, is 14 

days after the beginning of data on vaccination rates (fully vaccinated persons relative to 

state population), also coming from the CDC and Opportunity Insights.14 The first three 

periods, shown in Table 1, are 3/9/21–6/13/21, 6/13/21–9/6/21, and 9/6/21–12/1/21. These 

periods are of equal length (86 days) and extend to the rough date of onset of the omicron 

variant in the United States. The two most recent periods, 12/1/21–2/25/22 and 2/25/22–

5/22/22, are the same length as the first three. For each period, COVID-related deaths or 

hospitalizations or cases are the changes in the cumulative per capita numbers, expressed at 

annual rates.

III. Regression Results

A. COVID-related deaths

Regression results in Table 2 are for COVID-related deaths per capita, observed over the 

five periods of 86 days: Period I (3/19/21–6/13/21), Period II (6/13/21–9/6/21), Period III 

(9/6/21–12/1/21), Period IV (12/1/21–2/25/22), and Period V (2/25/22–5/22/22).15 The first 

two columns are for seemingly-unrelated regressions, which use a least-squares procedure 

but compute standard errors of estimated coefficients when allowing for different error-term 

variances in each period and for correlation of the error terms across periods. The first 

column has on the right-hand side the average of the full vaccination rate over periods 

lagged 14 days relative to the dependent variable.16 Note that, whereas the dependent 

13Data sources indicated by Chetty, et al. (2022) are The New York Times, The Johns Hopkins Coronavirus Resource Center, and 
U.S. Department of Health & Human Services.
14The data reported by Opportunity Insights have occasional large jumps in cumulative COVID deaths and vaccinations. (The death, 
hospitalization, and case data are reported as 7-day moving averages of daily data, whereas the vaccination data are reported daily.) 
My interpretation, consistent with feedback obtained from the CDC, is that the jumps do not represent real changes but rather reflect 
shifts in procedures or assessments of data already processed, with past data not subsequently revised. This view accords with the 
observation that some of the jumps are negative. As one example of a jump, the reported cumulative COVID deaths per 100,000 
persons in Oklahoma shifts from 125 on 4/6/21 to 169 on 4/13/21. In the most egregious case, for the full vaccination rate in West 
Virginia, the variable jumps from .415 to .489 on 12/2/21, from .492 to .690 on 12/8/21, from .690 to .710 on 12/10/21, and from 
.716 to .548 on 12/23/21. The data on deaths and vaccinations were modified to smooth out these jumps by making proportional 
adjustments at dates that precede the jumps. (A few of these adjustments were also made for cases, but these adjustments did not seem 
to be necessary over the sample period for hospitalizations.) The main inferences from the results, for example from Table 2, do not 
change when the original data are used. However, the overall fit of the regressions is much poorer with the original data.
15Results are broadly similar when the data are broken down into periods of 43 days each.
16The results are similar with a lag of 28 days.
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variable is the change in cumulative deaths per person over the periods shown, the 

independent variable is the cumulative level of full vaccinations per person (with a 14-day 

lag compared to the dependent variable).

To allow for a possible waning effectiveness of the vaccine, the specification in column 2 of 

Table 2 includes two measures of vaccination rates—one for full vaccinations that occurred 

roughly within the last six months and the other covering full vaccinations from six or more 

months in the past. In this specification, booster shots, for which CDC information starts on 

10/20/21,17 are viewed as effectively converting an old full vaccination into a recent one. 

That is, when combined with the remaining efficacy of a full vaccination from six months 

ago, a booster is modeled as generating efficacy equal to that of a recent full vaccination. 

The inclusion of booster shots applies only to the three most recent periods in Table 2; that 

is, no boosters existed and none of the full vaccinations were “old” up to roughly September 

2021.

The regressions include on the right-hand sides the socio-economic variables mentioned 

before—old-age fraction, life expectancy, high school education, fraction black, and 

urbanization. Also included is the historical average maximum temperature over the relevant 

period (computed from monthly data for the largest city in each state). In the estimation, 

separate coefficients are estimated for each period for each independent variable, including 

the constant term, which absorbs variations over time in aggregate COVID outcomes.

In column 1, the estimated coefficients on the (roughly) contemporaneous vaccination 

rate are negative and significant at the 1% level for Periods II and III (6/13/21–9/6/21 

and 9/6/21–12/1/21), negative and significant at the 5% level for Period IV (12/1/21–

2/25/22), and roughly zero for the other two periods. To assess the magnitudes of the 

estimated responses, consider period III, for which the estimated coefficient is the largest 

in magnitude, −0.0092. Over this interval, the mean of the vaccination-rate variable is 

0.548 with a standard deviation of 0.079. Therefore, a one-standard-deviation increase in 

the vaccination rate, a rise by 14.4%, is estimated to lower the death rate by 0.00073, 

compared to the mean death rate of 0.00175. That is, the death rate falls by 41.7%. The 

implied elasticity of response is the ratio of −41.7 to 14.4, which equals −2.9. The estimated 

elasticity is similar for Period II (−3.2) but smaller in magnitude for Period IV (−0.7).18

When the two measures of vaccination rates are included in column 2, the results for 

period III (9/6/21–12/1/21) suggest that recent vaccinations are roughly twice as effective 

against deaths as older vaccinations; point estimates of coefficients are −.0100 and −.0058, 

respectively. Each of these estimated coefficients is statistically significant at least at the 5% 

level, and the two estimated coefficients differ from each other with a p-value of 0.22. Period 

17The national fraction of reported booster shots on 10/21/21 was already positive, 0.034.
18For the other explanatory variables, the fraction over age 65 is positive and at least marginally significant in each period, and 
high school education is negative and at least marginally significant in each period. Life expectancy is significantly negative in three 
periods, fraction black is significantly negative in two periods, and urbanization rate is significantly positive in two periods. The 
temperature variable is significantly negative in the December-to-February period (Period IV), thereby suggesting that colder places 
have more COVID deaths during the winter. However, the temperature variable is not statistically significant when considered for an 
earlier winter period, 12/23/20–3/19/21, which precedes the advent of full vaccinations.
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IV (12/1/21–2/25/22) shows no indication of a waning influence of vaccinations, and Period 

V (2/25/22–5/22/22) provides essentially no information.

The small size of the estimated coefficient for Period I (3/19/21–6/13/21) may reflect reverse 

causation from COVID deaths to vaccination propensity. This effect is likely to be powerful 

during the early stages of vaccination rollout, when the places most adversely impacted are 

likely to have large rollouts of vaccinations.

Another way to interpret the estimated effects of vaccinations on COVID deaths comes from 

the literature on the value of a statistical life.19 The point estimates for Period III from Table 

2 imply that the coefficient −0.0100 applies to full vaccination rates over the first six months 

and the coefficient −0.0058 applies over the next six months. If vaccinations are ineffective 

after 12 months, a quantity V of full vaccinations would be expected to reduce deaths by 

V∙(.5∙.0100 + .5∙.0058) = .0079∙V. Therefore, to expect to save one life, one needs 1/.0079 = 

127 full vaccinations, which correspond to 254 shots for a two-dose regime. (This analysis 

could also be applied to booster shots.)

The marginal cost of COVID-19 vaccinations has several components. First, the Department 

of Health and Human Services (2021, Table 18) estimates that the direct cost of each dose 

is $20 and the cost per dose from vaccine administration averages $20. The time required 

per dose for persons receiving shots is estimated to average 2 hours, with an hourly value 

of time of $20.55, implying a cost per dose of $41. The Occupational Safety and Health 

Administration (2021, p. 61480) estimates that the average worker time lost due to adverse 

reactions to the shots is 0.36 days for 2 doses, corresponding, if a work day consists of 8 

hours, to 2.9 hours for 2 doses. With an hourly value of time of $20.55, the implied average 

cost for 2 doses due to adverse reactions is $60. Combining the various terms, the overall 

marginal cost for a two-dose regime is $222.

The value $222 implies that it costs about $56000 at the margin to expect to save one life 

through added two-dose vaccinations. Usual estimates of the value of a statistical life for the 

average person in the United States are much larger than $56000; for example, Robinson, 

Sullivan, and Shogren (2021) assume values as high as $10 million. Therefore, the present 

empirical results indicate that vaccinations against COVID-19 were a great bargain in late 

2021. The results are less powerful with the smaller magnitudes of coefficients estimated for 

other periods. For example, with the coefficients estimated for 12/1/21–2/25/22 in Table 2, 

it requires 426 full vaccinations or 852 shots or about $189,000 to expect to save one life. 

Even this higher magnitude suggests that vaccinations were a great deal.20

The instrumental estimation treats the vaccination rates as endogenous. The instrument list 

includes the 2020 Republican vote share for President, along with the other explanatory 

variables mentioned before. That is, the Trump vote share is the one excluded instrument.21 

19The early literature is surveyed in Viscusi and Aldy (2003). Recent applications to the COVID pandemic include Viscusi (2020); 
Hammitt (2020); Robinson, Eber, and Hammitt (2020); and Robinson, Sullivan, and Shogren (2021).
20The benefits from vaccination could be expanded to include reduced morbidity. Possibly the results below on hospitalizations and 
cases could be used to gauge the effects on morbidity.
21When two vaccination variables are included, an additional instrument is required. The results in column 4 of Table 2 include on 
the instrument list the difference between the vaccination variable for the current period and that for the period roughly 6 months 
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Table 3 shows first-stage regressions, with the vaccination-rate variable over the various 

periods as the dependent variable. The remarkable aspect of these results is the strong 

explanatory power of the Republican vote share in the 2020 election (Trump vote), 

especially for the four most recent periods. The important point is that a higher Trump 

vote share strongly associates with a lower vaccination rate even when the other explanatory 

variables are held fixed. An increase by 0.12 in this vote share (which has a mean of 0.49 

and a standard deviation of 0.12) associates in Period V, 2/11/22–5/8/22, with a decline by 

0.073 in the vaccination rate (which has a mean in this period of 0.64). The results are 

similar for the three preceding periods but are weaker for Period I, 3/5/21–5/3/21.

The results from instrumental estimation are in columns 3 and 4 of Table 2. For Periods II 

and III, where the estimated effects from vaccinations on COVID deaths were strongest, the 

estimated coefficients from instrumental estimation are still highly significant. For Period I, 

3/19/21–6/13/21, the extent of the change in the point estimate of the coefficient is much 

larger under instrumental estimation, and this estimated value is now in the ballpark of those 

found for Periods II and III. However, the standard error of the coefficient estimate blows 

up, likely because the excluded instrument—the Trump vote variable—is only marginally 

significant for explaining the vaccination rate in this period (Table 3). That is, the instrument 

is weak.

For Period IV, 12/1/21–2/25/22, the instrumental estimate in column 3 of Table 2, which 

includes only one vaccine variable, is close to that found before. In column 4, the results 

do not clearly distinguish the effect from recent vaccinations (including boosters) to that 

from older vaccinations. In any event, the main inference is that vaccinations had less effect 

overall against COVID deaths, compared to that in periods that preceded the rise of the 

omicron variant in early December 2021. For Period V, 2/25/22–5/22/22, the instrumental 

estimates differ insignificantly from zero.

B. All-Cause Excess Mortality

A number of measurement issues arise for the CDC data on COVID-related deaths. One 

concern is that the dates entered refer to report dates, rather than the timing of deaths. 

However, this issue may not be of major consequence for data averaged over periods of 

substantial length, such as the roughly three months used for each period in the regressions.

A likely more serious issue involves the classification of causes of death between COVID 

and alternatives. Specifically, this assignment may be sensitive to the degree of testing 

for COVID—as mentioned before (n. 4), this testing has varied substantially over time. A 

high level of testing has a direct positive impact on the number of reported cases, but an 

increased tendency to test hospitalized patients for COVID may also raise the numbers of 

hospitalizations and deaths assigned to COVID.

earlier. The idea is that the main endogeneity for vaccinations in the cross section involves the level of vaccination, not the timing. 
Hansen and Mano’s (2021b) county-level analysis used as an instrument the state-level vaccine allocation interacted with the county 
density of pharmacies. Brownstein, et al. (2022) used a related variable based on the density of pharmacies that participated in vaccine 
distribution. Possibly variables along these lines could be used to form instruments for the state-level analysis.
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A possible way to deal with this measurement problem is to use excess all-cause mortality, 

rather than deaths specifically ascribed to COVID-19, to construct the dependent variable. 

One downside of this procedure is that it introduces a lot of noise into the dependent variable 

by including in deaths the large numbers unrelated to COVID and, therefore, unlikely to be 

related to vaccination against COVID. As discussed in the Appendix, estimates of excess 

all-cause mortality are provided by state on a weekly basis by the CDC. However, the CDC 

indicates that there is a lag of more than eight weeks for the all-cause mortality data to be 

nearly complete.

Death rates constructed from excess all-cause mortality are highly correlated with those 

based on COVID-related mortality for Periods II and III of Table 2 but less strongly 

correlated for Periods I and IV. The correlations between the two alternative concepts of the 

dependent variable are 0.32 for Period I, 0.89 for Period II, 0.88 for Period III, and 0.50 for 

Period IV. (This comparison was not conducted for Period V because of the lag in reporting 

of data on all-cause excess mortality.)

The estimated regression coefficients based on all-cause excess mortality, shown in Table 

A1, are broadly similar to those shown for COVID deaths in Table 2. Most importantly, 

the estimated effects of vaccinations on mortality still appear weaker in Periods I and IV, 

compared to those in Periods II and III. In addition, for all-cause excess mortality, there 

is no indication of a negative effect from vaccines on mortality in Period IV. Overall, 

the main differences in the results are that the regression fits are poorer and the standard 

errors of coefficient estimates are higher when all-cause excess mortality is used instead of 

COVID-related mortality.

C. COVID-related hospitalizations

Table 4 has regression results with COVID-related reported hospitalizations per capita as 

the dependent variable. This setting parallels that in Table 2 for COVID deaths. Results 

on hospitalizations in Table 4 for Periods II and III (6/13/21–9/6/21 and 9/6/21–12/1/21) 

roughly parallel those for COVID deaths. To evaluate the magnitudes of the estimated 

responses for hospitalizations, consider Period III, for which the estimated coefficient on the 

vaccination rate in column 1 is −0.28. As noted before, the mean of the vaccination rate 

over this period is 0.548 with a standard deviation of 0.079, so that a one-standard-deviation 

increase in the vaccination rate, a rise by 14.4%, is estimated to lower the hospitalization 

rate by 0.022, compared to the mean of 0.077. That is, the hospitalization rate falls by 

28.6%. The implied elasticity of response is the ratio of −28.6 to 14.4, which equals −2.0 

(compared to −2.9 for deaths).

Results in Table 4 for Period I, 3/19/21–6/13/21, are also parallel to those for deaths 

in the sense that the vaccination rate does not have statistically significant effects on 

hospitalizations. These results may again reflect reverse causation in this period—the point 

estimate of the coefficient on the vaccination rate is negative and larger in magnitude in the 

instrumental estimation, but the standard error blows up.

The hardest results to interpret for COVID hospitalizations are for Periods IV and V, 

12/1/21–2/25/22 and 2/25/22–5/22/22, which cover the rise of the omicron variant. There 
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is no indication in these periods that vaccinations reduce COVID-related hospitalizations 

and some indications of positive effects. Positive effects might arise if vaccinations induce 

reductions in protective practices such as social distancing and masking.

D. COVID-related cases

Table 5 has regression results with COVID-related reported cases per capita as the 

dependent variable. This setting parallels that in Tables 2 and 4 for COVID deaths and 

hospitalizations, respectively. The results for cases in Table 5 for Periods II and III 

(6/13/21–9/6/21 and 9/6/21–12/1/21) roughly parallel those for deaths and hospitalizations. 

To evaluate the magnitudes of the estimated responses for cases, consider Period III, for 

which the estimated coefficient on the vaccination rate in column 1 is −0.41. As noted 

before, the mean of the vaccination rate over this period is 0.548 with a standard deviation 

of 0.079, so that a one-standard-deviation increase in the vaccination rate, a rise by 14.4%, is 

estimated to lower the case rate by 0.032, compared to the mean of 0.134. That is, the case 

rate falls by 23.9%. The implied elasticity of response is the ratio of −23.9 to 14.4, which 

equals −1.7 (compared to −2.0 for hospitalizations and −2.9 for deaths).

Results in Table 5 for Period I, 3/19/21–6/13/21, also parallel those for deaths and 

hospitalizations in the sense that the vaccination rate does not have a statistically significant 

effect on cases. These results may again reflect reverse causation—the point estimate of 

the coefficient on the vaccination rate is negative and much larger in magnitude in the 

instrumental estimation, but the standard error blows up.

The hardest results to interpret are again for Periods IV and V, 12/1/21–2/25/22 and 

2/25/22–5/22/22, which cover the rise of the omicron variant. As with hospitalizations, 

there is no indication in these periods that vaccinations reduce COVID cases. Moreover, 

there is a stronger indication of positive coefficients. As noted before, this pattern might 

reflect negative influences of vaccination on protective actions such as social distancing and 

masking.

E. Effects of Prior Infection on COVID Outcomes

A common view is that COVID infection provides natural immunity against future mortality, 

partly by reducing infection risk and partly by lowering mortality probability conditional 

on infection. One way to assess this possibility is to add measures of lagged COVID cases 

per capita to the regressions for COVID deaths per capita in Table 2. This analysis is 

challenging because, as noted before, case numbers are subject to substantial measurement 

error. Moreover, there is a lack of instruments to use to isolate exogenous variations in 

cases. The present analysis uses 6-month lags of case rates as explanatory variables and also 

includes these variables on the instrument lists.

Table 6 has results when 6-month lags of COVID cases per capita are added to the 

regressions for COVID deaths per capita from columns 2 and 4 of Table 2. These regressions 

also include, as before, recent and older vaccination rates. Column 1 of Table 6 has estimates 

for seemingly-unrelated regressions, and column 2 has instrumental estimates when the 

instruments are those used in Table 2, along with the lagged values of the case rates.
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For periods II and III, the estimated coefficients on the lagged case rate in Table 6 are 

significantly negative, with larger magnitudes under instrumental estimation. As an example, 

the results for period III imply elasticities of response of COVID death rates to prior COVID 

cases at the sample means of −1.2 for the SUR estimation and −1.6 under instrumental 

estimation. The estimated coefficients on the vaccination rates are larger in magnitude than 

those found in Table 2, when the lagged case rate was omitted. There is also less indication 

than before of an attenuation of vaccine efficacy for older vintages.

For other periods, the coefficients on the lagged case rate are significantly negative for 

period II and negative but not statistically significant for period IV. For Period V, there is no 

indication of a negative effect from previous infection on current mortality. This result goes 

along with the lack of effect from vaccination.

F. Summing Up

Regression results reveal clear negative effects from vaccination on COVID-related deaths 

up to the rise of the omicron variant in early December 2021. There is some evidence that 

the impact of vaccinations attenuates over time, but vintages over six months old retain some 

efficacy. The influence of vaccination on deaths weakens by early 2022 and disappears in 

the period from February to May 2022. This pattern likely reflects reduced effectiveness 

of vaccination against new variants of the virus. Hospitalizations show a similar overall 

pattern, though the evidence for weakening effects appears earlier than for deaths. This 

pattern appears in a stronger form for cases, and there is some indication in recent periods of 

coefficients with the “wrong” sign; that is, higher vaccination associating with more cases. 

This pattern can arise if vaccinations motivate individuals to engage in more risky behavior, 

such as increased social interaction. There is also some indication up to December 2021 of a 

negative effect on mortality from prior infection. As with vaccination, there is no evidence in 

the period from February to May 2022 that prior infection reduces mortality.

IV. Observational Studies of COVID Vaccinations

A number of observational studies exist that can be compared with the present regression 

findings. First are the regular CDC reports on COVID outcomes in relation to vaccination 

status.22 On October 17, 2021, data from 31 jurisdictions indicated that COVID cases per 

capita for unvaccinated persons were 4.3 times those for fully vaccinated and 15.4 times for 

those with a booster shot. The respective ratios fell to 2.2 and 3.4 on January 2, 2022, 3.2 

and 1.5 on April 24, 2022, and 3.5 and 1.7 on May 15, 2022. The higher case rates for those 

boosted compared to those only fully vaccinated in April-May 2022 suggest a selection issue 

related to those who chose to become boosted. In any event, case rates for vaccinated had 

become closer to those for unvaccinated, when compared to the outcomes from October 

2021.

For COVID deaths, covering 30 jurisdictions, the ratio on October 17, 2021 for unvaccinated 

versus fully vaccinated was 14.3, whereas that for unvaccinated versus boosted was 30.6. 

The respective ratios fell to 6.7 and 23.5 on January 2, 2022 and to 5.6 and 6.6 on April 24, 

22See cdc.gov/covid-data-tracker/#rates-by-vaccine-status.
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2022. Thus, compared to October 2021, death rates for unvaccinated became closer to those 

for vaccinated, but a substantial gap remained in April 2022, with boosted still doing better 

than fully vaccinated.

Overall, the CDC reports on outcomes in relation to vaccination status seem consistent with 

the present regression findings, which indicate weaker effects of vaccinations on COVID 

deaths and, especially, cases since early December 2021. It is worth keeping in mind that 

the CDC analysis is subject to issues analogous to those that apply to the cross-state 

regressions. For example, if less healthy people are more likely to die from COVID, for 

given vaccination status, and more likely to be vaccinated, then the association between 

vaccination and death would tend to understate the beneficial effects from vaccination. 

Similar effects arise if older people are more likely to die for given vaccination status and 

more likely to be vaccinated, although the CDC indicates that its statistics adjust for age. 

However, the CDC analysis does not adjust for other socio-economic variables or for vintage 

of vaccination.

Another group of large-scale observational studies assesses the efficacy of the Pfizer-

Biontech vaccine in Israel. As a recent example of this research, Arbel, et al. (2022) studied 

the effects on COVID-19 mortality in a 40-day period in early 2022 from a second booster 

shot of the Pfizer-Biontech vaccine. The sample consisted of the 563,000 members of a 

large healthcare organization who had previously received a first booster shot, were aged 

60 and above, and who satisfied some other criteria. The rate of uptake of second booster 

shots in this sample was 58%. The regression analysis held fixed age and gender and 

other socio-economic characteristics, as well as an array of existing health conditions. The 

main finding (Arbel, et al. [2022, Table 3]) was that the second booster shot significantly 

lowered COVID-related mortality, particularly among the oldest group. However, as with the 

regression results in the first two columns of Table 2 in the present study, the analysis did 

not take account of the endogeneity of vaccine uptake (aside from the relationships with the 

observable variables that were included in the regressions).

V. Speculative Thoughts and Research Plans

The results in Tables 2 and 4-6 reveal substantial negative effects of vaccinations on COVID 

deaths, hospitalizations, and cases up to roughly the emergence of the omicron variant 

of the virus in early December 2021. Results on deaths (Table 2) suggest that the power 

of vaccines wanes over time but still remains effective even after about six months. This 

waning influence is offset by the introduction of booster shots. In comparison to the findings 

from earlier periods, the results since early December 2021 indicate that vaccinations have a 

weaker effect in reducing COVID deaths and may no longer reduce COVID hospitalizations 

and cases.

There are a number of possible explanations for the apparent reduction in the effectiveness 

of vaccinations in the cross-state analysis for the period since early December 2021 (Tables 

2, 4, and 5). One is waning efficacy of vaccinations over time, though the regression analysis 

attempted to take account of this channel by considering the vintages of vaccinations and 

allowing for the introduction of booster shots. Another factor is diminishing effectiveness 
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of existing vaccines against new forms of the virus, notably the omicron variant. A further 

possibility is that confidence engendered by vaccinations may have motivated individuals 

and governments to lessen non-pharmaceutical interventions, such as masking and social 

distancing. These responses may have been reinforced by “COVID fatigue,” which raised 

the perceived benefits from social interactions compared to the costs attached to health 

risks. Of course, this response need not be irrational; that is, the benefits from heightened 

social interactions may, in fact, more than offset the costs from increases in deaths, 

hospitalizations, and cases.

More narrowly, in terms of research plans, the first idea is to carry out the analysis at 

the county level. This change will sharply raise the available number of cross-sectional 

observations. However, the county-level data introduce new concerns about measurement 

error and about the connection between location of vaccination and location of outcome. 

There are also likely to be important spillover effects of disease transmission from one 

county to others.

Second, a key issue in the estimation involves the instrumental variables employed. Even 

if the Trump 2020 vote is viewed as an appropriate instrument, there are difficulties in 

extending the analysis to allow for more than one endogenous variable on the right-hand 

side of the regressions. This issue arises, for example, in attempting to distinguish the 

impact of recent from older vaccinations and in isolating effects from the lagged case 

rate. Relatedly, this analysis involves the role of booster shots. At this stage, it is unclear 

what additional instruments will be useful. Possibilities include the measures of pre-existing 

locations of retail pharmacies used by Hansen and Mano (2021b) and Brownstein, et al. 

(2022).
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Appendix

The analysis for COVID-related deaths per capita was redone with deaths calculated from 

all-cause excess mortality rather than COVID-related mortality. The underlying information 

for calculating excess mortality is given by the CDC in Provisional COVID-19 Death Counts 
by Week Ending Date and State, updated June 28, 2022, available at data.cdc.gov. Data 

are from columns K (total deaths) and L (percent of expected deaths). The number of 

expected deaths is calculated by the CDC from the observed average number of deaths 

for the corresponding weeks in 2017–2019. The computed all-cause excess mortality rate 

equals total deaths divided by state population multiplied by (percent of expected deaths – 

100)/(percent of expected deaths). State population is taken to be the value for 2020 from 

the U.S. Census Bureau. This measure of the all-cause excess mortality rate is used to 

calculate the dependent variables in Table A1. The CDC indicates that there is a substantial 
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lag in computing nearly complete data for total deaths—“data are generally at least 75% 

complete within 8 weeks of when the death occurred.” Therefore, these data are used only 

for regressions in Table A1 that go through late February 2022.

Table A1

Regressions for All-Cause Excess Mortality per Capita

(1) (2) (3) (4)

Estimation method SUR SUR Instruments Instruments

Period I: 3/20/21–6/12/21

 vaccination rate −.0024 (.0018) −.0012 (.0021) .0012 (.0125) .0012 (.0125)

Period II: 6/12/21–9/4/21

 vaccination rate −.0082*** 
(.0019)

−.0078*** (.0020) −.0057* (.0031) −.0057* (.0031)

Period III: 9/4/21–12/4/21

 vaccination rate −.0089*** 
(.0018)

−.0094*** (.0018) −.0052* (.0031) −.0062* (.0032)

 vaccination rate, older -- -.0052 (.0039) -- -.0005 (.0041)

 joint p-value 0.000 0.012

 p-value for equal coeffs 0.29 0.027

Period IV: 12/4/21–2/26/22

 vaccination rate −.0002 (.0023) .0001 (.0026) .0026 (.0030) .0023 (.0034)

 vaccination rate, older -- −.0006 (.0032) -- .0031 (.0038)

 joint p-value 0.98 0.68

 p-value for equal coeffs 0.84 0.82

R-squared .36 .60 .60 .36 .36 .60 .61 .36 .37 .59 .59 .34 .37 .59 .56 .34

s.e. .0004 .0007 
.0008 .0009

.0004 .0007 .0008 
.0009

.0004 .0007 .0008 
.0009

.0004 .0007 .0009 
.0009

Note: The specification is the same as in Table 2 except that the death rate is measured by all-cause excess mortality per 
capita and Period V is excluded.
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Table 1

Means and Standard Deviations of Variables

Variable Mean s.d. Natl Avg

COVID cumulative deaths per capita (change per year)

 3/19/21–6/13/21 .00067 .00031 .00077

 6/13/21–9/6/21 .00058 .00043 .00061

 9/6/21–12/1/21 .00175 .00092 .00168

 12/1/21–2/25/22 .00207 .00066 .00202

 2/25/22–5/22/22 .00086 .00044 .00082

COVID cumulative excess mortality per capita (change per year)

 3/20/21–6/12/21 (week-ending dates) .00072 .00052 .00075

 6/12/21–9/4/21 .00172 .00108 .00173

 9/4/21–12/4/21 .00295 .00123 .00263

 12/4/21–2/26/22 .00202 .00106 .00212

COVID cumulative hospitalizations per capita (change per year)

 3/19/21–6/13/21 .0360 .0169 .0398

 6/13/21–9/6/21 .0480 .0297 .0536

 9/6/21–12/1/21 .0773 .0284 .0727

 12/1/21–2/25/22 .1107 .0338 .1115

 2/25/22–5/22/22 .0248 .0092 .0247

COVID cumulative cases per capita (change per year)

 3/19/21–6/13/21 .049 .022 .049

 6/13/21–9/6/21 .077 .044 .082

 9/6/21–12/1/21 .134 .057 .110

 12/1/21–2/25/22 .389 .069 .387

 2/25/22–5/22/22 .056 .029 .054

“Full” vaccinations per capita

 3/5/21–5/30/21 (data start 3/5/21) .237 .031 .228

 5/30/21–8/23/21 .450 .071 .448

 8/23/21–11/17/21 .548 .079 .553

 11/17/21–2/11/22 .607 .083 .614

 2/11/22–5/8/22 .641 .089 .650

Booster vaccinations per capita

 8/23/21–11/17/21 (data start 10/20/21) .025 .008 .024

 11/17/21–2/11/22 .199 .053 .196

 2/11/22–5/8/22 .290 .075 .290

Fraction over age 25 with completed high school, 2019 .901 .027 .886

Population fraction 65 and older, 2020 .173 .020 .169
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Variable Mean s.d. Natl Avg

Life expectancy at birth, 2018 78.8 1.8 79.3

Population fraction black, 2020 .110 .101 .124

Urbanization rate, 2010 .741 .149 .809

Fraction of votes Republican, 2020 Presidential election .492 .120 .469

Population fraction 75 and older, 2020 .068 .010 .067

Fraction over age 25 with completed college, 2019 .327 .065 .331

Per capita personal income ($1000s), 2020 57.7 9.4 59.6

Maximum temperature, December 1-February 25 25.2 12.7 51.0

Maximum temperature, September 6-December 1 66.2 8.9 69.7

Maximum temperature, June 13-September 6 84.7 6.5 85.0

Maximum temperature, March 19-June 13 69.6 8.1 71.6

Maximum temperature, February 25-May 22 63.0 9.3 66.0

Notes: COVID-related deaths, hospitalization, and cases are differences in cumulative values per person for dates shown (corresponding to 
cumulations of new deaths, hospitalizations, and cases), expressed at annual rates. Data for cumulative deaths and cases per person are from Chetty, 
et al. (2022). Values for deaths and cases are adjusted in accordance with n. 11. (Data for cumulative hospitalizations are given in the downloadable 
file provided in Chetty, et al. (2022). Adjustments in the hospitalization numbers do not seem to be necessary.) The changes in cumulative values 
were divided by state population in 2020. Full and booster vaccinations are averages per person over periods shown. The averages apply to dates 
at the start, end, and middle of each period, with the middle value getting double weight. Vaccination data are adjusted in accordance with n. 11. 
Maximum temperature is average high temperature in degrees Fahrenheit over dates shown. Underlying values are monthly for largest city in each 
state.
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Table 2

Regressions for COVID Deaths per Capita

(1) (2) (3) (4)

Estimation method SUR SUR Instruments Instruments

Period I: 3/19/21–6/13/21

 vaccination rate −.0010 (.0014) −.0011 (.0014) −.0057 (.0086) −.0057 (.0086)

Period II: 6/13/21–9/6/21

 vaccination rate −.0042*** (.0008) −.0041*** (.0008) −.0041*** (.0012) −.0041*** (.0012)

Period III: 9/6/21–12/1/21

 vaccination rate −.0092*** (.0016) −.0100*** (.0017) −.0093*** (.0021) −.0096*** (.0021)

 vaccination rate, older -- −.0060* (.0032) -- −.0063 (.0047)

 joint p-value 0.000 0.000

 p-value for equal coeffs 0.24 0.44

Period IV: 12/1/21–2/25/22

 vaccination rate −.0023** (.0010) −.0023** (.0012) −.0025* (.0014) −.0031** (.0015)

 vaccination rate, older -- −.0023 (.0015) -- .0016 (.0017)

 joint p-value 0.08 0.13

 p-value for equal coeffs 0.99 0.39

Period V: 2/25/22–5/22/22

 vaccination rate −.0002 (.0007) .0000 (.0007) .0004 (.0010) .0006 (.0009)

 vaccination rate, older -- −.0012 (.0012) -- .0010 (.0014)

 joint p-value 0.58 0.44

 p-value for equal coeffs 0.32 0.23

R-squared .28 .65 .65 .65 .60 .28 .65 .66 .65 .61 .16 .65 .65 .65 .59 .16 .65 .66 .65 .60

s.e. .0003 .0003 .0006 
.0004 .0003

.0003 .0003 .0006 .0004 
.0003

.0003 .0003 .0006 .0004 
.0003

.0003 .0003 .0006 .0004 
.0003

Notes: Sample is 50 U.S. states plus District of Columbia. Sample dates shown in the left-most column refer to the dependent variable. This 
variable is the change in cumulative reported COVID-related deaths per capita over each period (values expressed per year). Vaccination rate in 
columns 1 and 3 is the fraction of the population fully vaccinated against COVID-19 (not counting booster shots). This variable is lagged 14 days 
from the dependent variable and is entered as an average over each period, as described in Table 1. In columns 2 and 4, vaccination rate is the 
fraction of the population fully vaccinated over roughly the last 6 months plus the fraction fully vaccinated earlier who have received booster shots. 
In these columns, “vaccination rate, older” is the fraction fully vaccinated roughly 6 or more months in the past less the fraction who have received 
booster shots. Other explanatory variables, shown in Table 1, are fraction of population aged 65 and over in 2020, life expectancy at birth in 2018, 
fraction of population aged 25 and over who completed high school or more in 2019, fraction of population black in 2020, urbanization rate in 
2010, and average maximum temperature over periods corresponding to the dependent variable. Coefficients on these variables, constant terms, and 
the vaccination rates differ across periods. Standard errors of coefficient estimates are in parentheses. SUR (seemingly-unrelated regression) allows 
for a different error variance in each period and for correlation of the error terms across periods. s.e. is the standard error of each regression. In 
columns 1 and 3, instrumental estimation (three-stage least-squares) uses as the excluded instrument the fraction of the population voting in 2020 
that voted Republican (as shown in Table 1). In columns 2 and 4, the instrument list also includes the difference in the vaccination variable for the 
current period from that in the period roughly 6 months earlier.

***
Significant at 1%,

**
significant at 5%,

*
significant at 10%.
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Table 3

First-Stage Regressions for Vaccination Rates

(1) (2) (3) (4) (5)

Periods for vaccination rates 3/5/21–5/3/21 5/3/21–8/23/21 8/23/21–11/17/21 11/17/21–2/11/22 2/11/22–5/8/22

Constant .02 (.29) .10 (.36) .22 (.37) .17 (.40) .20 (.42)

Over-65 .24 (.19) .75*** (.23) .81*** (.24) .71*** (.26) .65** (.26)

Life expectancy .0020 (.0036) .0043 (.0046) .0072 (.0047) .0098** (.0051) .0105** (.0053)

High School Education .12 (.17) .18 (.20) −.08 (.21) −.14 (.22) −.17 (.23)

Black −.131*** (.050) −.247*** (.062) −.213*** (.063) −.203*** (.068) −.211*** (.072)

Urban −.046 (.036) −.037 (.045) −.025 (.045) −.041 (.049) −.039 (.051)

Average Maximum Temperature .0001 (.0005) .0001 (.0004) −.0001 (.0002) .0000 (.0002) .0001 (.0003)

Trump vote −.095** (.044) −.475*** (.054) −.531*** (.055) −.561*** (.059) −.606*** (.063)

R-squared .42 .82 .84 .84 .84

s.e. .026 .033 .034 .036 .038

Notes: Sample is 50 U.S. states plus District of Columbia. Dependent variables, over the periods shown in the top row, are the averages of full 
vaccination rates, as used in Table 2. Over-65 is the fraction of the population in 2020 that was aged 65 or more. Life expectancy at birth is for 
2018. High School Education is fraction of the population in 2019 aged 25 or more that had completed four years of high school or more. Black 
is the fraction of the population in 2020 classified as black. Urban is the fraction of the population urbanized in 2010. Trump vote is the fraction 
of votes for President in 2020 that went Republican. Estimation is by seemingly-unrelated regression, which allows for a different error variance 
in each period and for correlation of the error terms across periods. Standard errors of estimated coefficients are in parentheses. s.e. is the standard 
error of each regression.

***
Significant at 1%,

**
significant at 5%,

*
significant at 10%.
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Table 4

Regressions for COVID Hospitalizations per Capita

(1) (2) (3) (4)

Estimation method SUR SUR Instruments Instruments

Period I: 3/19/21–6/13/21

 vaccination rate −.003 (.058) .048 (.061) −.085 (.380) −.085 (.380)

Period II: 6/13/21–9/6/21

 vaccination rate −.261*** (.053) −.275*** (.053) −.257*** (.073) −.257*** (.073)

Period III: 9/6/21–12/1/21

 vaccination rate −.274*** (.046) −.312*** (.046) −.245*** (.068) −.272*** (.065)

 vaccination rate, older -- −.098 (.083) -- −.108 (.145)

Period IV: 12/1/21–2/25/22

 vaccination rate .008 (.052) −.059 (.053) .081 (.082) −.011 (.085)

 vaccination rate, older -- .135** (.066) -- .237** (.095)

Period V: 2/25/22–5/22/22

 vaccination rate .032 (.019) .020 (.018) .056* (.026) .043 (.026)

 vaccination rate, older -- .092** (.029) -- .133*** (.040)

R-squared .49 .70 .64 .54 .24 .49 .70 .68 .60 .33 .46 .70 .63 .52 .23 .46 .70 .67 .59 .31

s.e. .013 .018 .018 .025 .009 .013 .017 .018 .023 .008 .013 .017 .019 .025 .009 .013 .017 .018 .024 .008

Notes: See notes to Table 2. The only difference is that the dependent variable is based on COVID-related reported hospitalizations per capita.

***
Significant at 1%,

**
significant at 5%,

*
significant at 10%.
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Table 5

Regressions for COVID Cases per Capita

(1) (2) (3) (4)

Estimation method SUR SUR Instruments Instruments

Period I: 3/19/21–6/13/21

 vaccination rate −.015 (.091) .031 (.092) −.684 (.711) −.684 (.711)

Period II: 6/13/21–9/6/21

 vaccination rate −.462*** (.083) −.459*** (.083) −.509*** (.117) −.509*** (.117)

Period III: 9/6/21–12/1/21

 vaccination rate −.397*** (.089) −.503*** (.086) −.328*** (.121) −.390*** (.114)

 vaccination rate, older -- .075 (.156) -- .460* (.254)

Period IV: 12/1/21–2/25/22

 vaccination rate .294* (.165) .147 (.181) .272 (.220) .200 (.242)

 vaccination rate, older -- .541** (.222) -- .394 (.273)

Period V: 2/25/22–5/22/22

 vaccination rate .253*** (.044) .242*** (.046) .317*** (.060) .307*** (.061)

 vaccination rate, older -- .303*** (.075) -- .379*** (.095)

R-squared .43 .65 .71 .16 .61 .43 .65 .76 .17 .61 -.16 .66 .71 .17 .61 -.16 .66 .74 .19 .61

s.e. .018 .028 .033 .068 .020 .018 .028 .030 .068 .020 .025 .028 .033 .067 .020 .025 .028 .032 .067 .020

Notes: See notes to Table 2. The only difference is that the dependent variable is based on COVID-related reported cases per capita.

***
Significant at 1%,

**
significant at 5%,

*
significant at 10%.
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Table 6

Regressions for COVID Deaths per Capita, Including Lagged Cases

(1) (2)

Estimation method SUR Instruments

Period I: 3/19/21–6/13/21

 vaccination rate −.0010 (.0014) −.0044 (.0076)

 lagged case rate .0011 (.0019) .0005 (.0021)

Period II: 6/13/21–9/6/21

 vaccination rate −.0049*** (.0009) −.0057*** (.0014)

 lagged case rate −.0037** (.0018) −.0043** (.0020)

Period III: 9/6/21–12/1/21

 vaccination rate −.0132*** (.0017) −.0166*** (.0030)

 vaccination rate, older −.0083*** (.0030) −.0156*** (.0056)

 lagged case rate −.0124*** (.0038) −.0170*** (.0051)

Period IV: 12/1/21–2/25/22

 vaccination rate −.0034** (.0014) −.0056** (.0025)

 vaccination rate, older −.0040** (.0018) −.0052* (.0030)

 lagged case rate −.0037 (.0030) −.0064 (.0044)

Period V: 2/25/22–5/22/22

 vaccination rate .0001 (.0009) .0020 (.0018)

 vaccination rate, older −.0013 (.0013) .0006 (.0021)

 lagged case rate −.0001 (.0019) .0030 (.0029)

R-squared .28 .68 .71 .66 .61 .22 .67 .67 .66 .57

s.e. .0003 .0003 .0005 .0004 .0003 .0003 .0003 .0006 .0004 .0003

Note: These results extend columns 2 and 4 of Table 2 to include the lagged cumulative number of COVID cases per capita. The lagged case rates 
are for 12/23/20 for period I, 3/19/21 for period II, 6/13/21 for period III, 9/6/21 for period IV, and 12/1/21 for period V. These lagged values are 
included on the instrument lists in column 2.

***
Significant at 1%,

**
significant at 5%,

*
significant at 10%.
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