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ABSTRACT: Vibrational spectroscopy is a key technique to
elucidate microscopic structure and dynamics. Without the aid of
theoretical approaches, it is, however, often difficult to understand
such spectra at a microscopic level. Ab initio molecular dynamics
has repeatedly proved to be suitable for this purpose; however, the
computational cost can be daunting. Here, the E(3)-equivariant
neural network e3nn is used to fit the atomic polar tensor of
liquid water a posteriori on top of existing molecular dynamics
simulations. Notably, the introduced methodology is general and
thus transferable to any other system as well. The target property is
most fundamental and gives access to the IR spectrum, and more
importantly, it is a highly powerful tool to directly assign IR
spectral features to nuclear motion�a connection which has been
pursued in the past but only using severe approximations due to the prohibitive computational cost. The herein introduced
methodology overcomes this bottleneck. To benchmark the machine learning model, the IR spectrum of liquid water is calculated,
indeed showing excellent agreement with the explicit reference calculation. In conclusion, the presented methodology gives a new
route to calculate accurate IR spectra from molecular dynamics simulations and will facilitate the understanding of such spectra on a
microscopic level.

Vibrational spectroscopy, be it IR or Raman spectroscopy, is
one of the most important techniques to unveil micro-

scopic properties of matter, such as structure determination1 or
structural dynamics of water.2,3 It can also be used to time-
dependently monitor dynamical processes, e.g. intramolecular
couplings in peptides,4 or proton transfer mechanisms.5

Attenuated total reflection (ATR) IR or sum-frequency
generation (SFG)6 can selectively probe molecules at interfaces,
such as metal/liquid water interfaces7,8 or water/air interfaces.9

Using THz spectroscopy, the chemical environment of
molecules can directly be probed, and it elucidated solvation
dynamics in aqueous solutions from ambient10,11 to extreme
thermodynamic conditions, such as high-pressures,12 super-
critical phases,13 or confined systems.14

Because of the broad applicability and power of vibrational
spectroscopy there is a demand to calculate accurate vibrational
spectra from ab initio techniques which are predictive and also
aid to understand experiments at the molecular level. When it
comes to spectroscopy of condensed phase systems at finite
temperature, ab initio molecular dynamics (AIMD),15 where the
electronic structure is calculated on-the-fly at every time step, is
the prime technique for several reasons. First, the potential
energy surface can be accurately represented�clearly depend-
ing on the underlying electronic structure theory setup
employed to drive the MD. Second, as the electronic structure

is available at every time step, charge transfer and polarization
effects are naturally included, and dipole moments can directly
be obtained, e.g. from maximally localized Wannier functions15

or from the electron density.16 Third, anharmonic effects are
also naturally taken into account which can break the standard
normal-mode analysis17 if they are too large. Notably, such large
anharmonicities can even be present for single molecules (e.g.,
peptides) in the gas-phase,18,19 where AIMD simulations are
required because the normal-mode analysis fails to correctly
reproduce the measured spectra.
From a MD trajectory, the frequency dependent Beer−
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can be calculated from the time auto correlation function of the
total dipole moment vectorM(t) of the simulation box (see e.g.
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ref 20), where β = 1/kBT, kB is the Boltzmann constant, T is the
temperature, V is the volume of the periodic simulation box, c is
the speed of light in vacuum, ϵ0 is the dielectric constant, and
n(ω) is the frequency dependent refractive index. Note that the
so-called “quantum correction factor”21 has already been
included. The main disadvantage of this technique is that the
MD simulations need to be quite long, also to reduce the
statistical noise to a minimum. Clearly, this is a problem for
AIMD which can be highly demanding computationally,
especially if more expensive techniques, such as hybrid DFT,
are used to drive the MD.
Over the last decades, machine learning (ML) approaches

have been introduced with the aim to accelerate AIMD
simulations. Therein, the expensive electronic structure
calculations are replaced with a cheaper machine learning
model, while retaining the same accuracy.22−25 Arguably, ML
techniques have repeatedly proved to reliably represent the
potential energy surface from explicit electronic structure
calculations at a fraction of the cost. One apparent problem of
these pioneeringML techniques usually is that only the potential
energy surface is trained (which is generally sufficient to runMD
simulations), but all information on the electronic structure
itself is lost. Therefore, total dipole moments at the quality of the
underlying electronic structure theory cannot be obtained along
the “MLMD” (machine learning molecular dynamics) simu-
lation. One way to circumvent this issue was to extract single
snapshots from theMLMD trajectory and explicitly calculate the
electronic structure for those snapshots again, e.g. to calculate
polarizability tensors for Raman spectra.26 However, formally,
time correlation functions (as in e.g. eq 1 for IR spectra), require
the electronic structure at each time step or at least frequently
enough such that all vibrations present in the system are
correctly sampled. Note that the sampling theorem can be
employed to determine how frequently time-dependent data
needs to be provided;27 however, the fastest vibration needs to
be known. For example, in the case of liquid water, the fastest
vibration is theO−H stretch at roughly 3500 cm−1. According to
the sampling theorem, data needs to be provided at least every
roughly 4.5 fs to correctly sample this vibration. This introduces
a huge bottleneck forMLMD simulations, if a significant amount
of configurations needs to be explicitly recalculated anyways to
get exact vibrational spectra.
In recent years, training atomic or molecular properties using

ML has been an extremely active field, and the calculation of
vibrational spectra byML is no exception. In the following, some
key methodological ideas are summarized as to how the
computation of vibrational spectra can be accelerated by ML.
Since the approach introduced herein aims to calculate
vibrational spectra fromMD simulations, i.e. via time correlation
functions, the following discussion is restricted to accelerating
these methods only. Notably, ML approaches have been used
previously to accelerate complementary approaches, too, e.g. the
normal-mode analysis or vibrational Hamiltonians. ML
approaches have also been used for the reverse “Spec-to-
Struc” process, where a given spectrum is used to gain
information on the underlying structure. The interested reader
is referred to ref 28 for a detailed review on ML in the context of
these methods and on applications of ML in the context of
vibrational spectroscopy in general.
Partial atomic charges have been introduced in third

generation NNPs,25 but with the main purpose to include
long-range interactions. Such trained atomic partial charges
could potentially also be used as an output parameter to

calculate dipole moments along an MLMD trajectory. An
apparent problem of partial charges in general is that there are no
physical observables. As such, their magnitude depends on the
chosen partitioning scheme employed, e.g. Mulliken,29

Hirshfeld,30 or Bader31 (incomplete list). It could be shown
that different partitioning schemes can yield very different
results.32−34 Moreover, choosing an unsuitable scheme for a
given problem can lead to wrong molecular dipole moments34

and can yield unphysical atomic charges.35 Clearly, these caveats
potentially also affect the quality of the IR spectrum calculated
from such partial atomic charges.
A complementary approach is to train partial charges such

that molecular dipole moments are reproduced correctly33,36 or
to train the positions of Wannier centers.37,38 Molecular dipole
moments are generally measurable and can thus be validated
against experiments. In the case of gas-phase systems (without
periodic boundary conditions), the total dipole moment vector
has recently been trained as a whole to predict IR spectra of
protonated water clusters39 as well as of an ethanol and an
aspirin molecule.40 For small single molecules, also the
polarizability tensor has been trained40,41 which can then be
used to calculate Raman spectra of these molecules. Finally, even
the full electron density of single molecules has been trained42,43

as well as transition dipole moments to excited states44 which
allow the calculation of UV/vis spectra.
In condensed phase systems with periodic boundary

conditions, the total dipole moment is, however, multivalued45

which can possibly lead to ambiguities in the training and
prediction process. This problem can be circumvented by
considering molecular dipole moments instead. The total dipole
moment vector required to calculate the IR spectrum according
to eq 1 is then the sum of all molecular dipole moment vectors in
the system. Molecular dipole moment vectors have been trained
directly by symmetry-adapted Gaussian process regression to
accurately calculate the IR spectrum of liquid ambient water.46

Using the same approach, it was shown that the molecular
polarizability tensor can also directly be trained which enables
one to calculatemachine learned Raman46−48 and SFG48 spectra
from molecular dynamics simulations.
In this work, I introduce a machine learning model to train the

atomic polar tensor (APT)49 which is then utilized to accurately
calculate an IR spectrum. The APT is a proper physical
observable which does not rely on any charge partitioning
scheme or any definition of molecules or molecular reference
frames. Its definition is therefore also perfectly valid when
covalent bonds are broken during an MD simulation and the
molecular composition changes, e.g. during proton transfer in
water. Conceptually, the herein introduced APT neural network
(APTNN) is therefore transferable to any system with or
without periodic boundary conditions. It is noted in passing that
nuclear quantum effects are essential to describe e.g. proton
transfer in water correctly which are not considered in this work.
However, the introduced APTNN is readily applicable to path
integral trajectories since the APT centroid can straightfor-
wardly be computed.
Importantly, the APT itself is a highly relevant property for

spectroscopy, because it can be utilized to assign specific atomic
motion to spectral features. As it will be laid out in the following,
the APT represents nothing else than the definition of the IR
selection rule. As such, any velocity spectrum (e.g., the
vibrational density of states) can be promoted to a proper IR
spectrum by weighting with the respective APTs. This has been
done several times in the past, e.g. to decompose the IR
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spectrum of liquid water into translational, rotational, and
vibrational contributions.50 IR spectra of peptides have also
been dissected in terms of atomic velocities in the past,51 even
using sophisticated decompositions based on graph theory to
understand the origin of low-frequency backbone vibrations.18

Moreover, it has also been used to calculate SFG spectra.52 None
of these works have yet utilized the full power of the APT simply
due to the enormous computational cost: A single APT requires
six additional single point calculations to obtain the necessary
finite differences (if the APT is calculated numerically), see
below. As a result, severe approximations have been used so far,
such as parametrizing the APT,52 using the instantaneous
normal mode (INM) approximation,50 or calculating the APT
not at every time step, under the approximation that it does not
change much as a function of time.53 These approximations
clearly counteract its potential power: The INM approximation
typically introduces imaginary frequencies (similar to the
standard normal-mode analysis) which need to be dealt with
in some ad hoc way. Similarly, calculating the APT not
frequently enough can induce spurious signals in the IR
spectrum.53 Having a machine learning approach available to
specifically predict the APT at each time step is therefore highly
beneficial for all above-mentioned problems. To the best of my
knowledge, such an ML model does not exist yet.
The derivation of the APT has already been presented in the

literature, see e.g. refs 52 and 53. To set the stage, its derivation
is, however, summarized here. First, a Fourier transform identity
is used on eq 1, such that the equation can be rewritten

=
Vc n

dt tM M( )
3 ( )

1
2

e (0) ( )i t

0 (2)

where Ṁ(t) is the time derivative of the total dipole moment. In
an effort to express the dipolar velocity as a function of atomic
velocities, the chain rule can be applied to express the ξ-th
component of Ṁ(t)
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where ζ and ξ represent the three Cartesian coordinates. In
matrix notation, this equation can be rewritten in a more
compact way

= ·t t tM P v( ) ( ) ( )
i

i i
(4)

where vi(t) is the velocity of the i-th nuclei, and

=t tP M( ) ( ( ))i i
T (5)

is the APT of atom i. The atom velocities vi(t) are readily
available along any MD trajectory. As shown in eq 3, the APT is
the spatial derivative of the total dipole moment vector, which is
indeed nothing else than the IR selection rule. Any IR spectrum
can therefore be expressed based on atomic velocities weighted
by the corresponding APTs. The atomic velocities in turn can
intuitively be dissected a la carte using classical mechanics. The
herein introduced APTNN is meant to be trained on existing
MD trajectories (AIMD, MLMD). After the training, the APTs
of each sampled configuration can be predicted, and the time
correlation function can be sampled. Note that IR spectra have
usually been computed using the autocorrelation function
depicted in eq 1 from explicit AIMD simulations where electric
dipole moments are straightforwardly available. Training the

APT therefore only becomes relevant either if the APT is used
for the spectral analysis itself, see e.g. refs 18, 50, 52, and 53, or if
sampling is performed by MLMD simulations where the total
dipole moment is usually not naturally available. The latter is
especially important when longer time scales are required which
exceed the ones accessible by explicit AIMD or when more
expensive electronic structure calculations, e.g. hybrid DFT or
beyond, are applied.
The APT of atom i is the spatial derivative of the total dipole

moment with respect to a displacement of that atom (eq 5). It is
thus a 3 × 3 tensor which is invariant with respect to translations
but equivariant with respect to rotations. This means that if the
atomic coordinates are translated in space, the corresponding
APTs do not change. However, if the set of atomic coordinates
rotates in space, the APTs also rotate accordingly. Here, the
derivative is evaluated numerically from central (or “two-sided”)
finite differences as it has frequently been done before, see e.g.
refs 18, 50, and 52, using a displacement of 0.01 Å. Due to the
finite differences, 6 additional single point calculations are
necessary to calculate the APT of a single atom. Previously, it
could already be shown that the chosen displacement is small
enough for liquid water.50 Indeed, I also computed the APT
explicitly with a displacement of 0.04 Å and did not find any
significant difference. It might, however, not be sufficiently small
enough for other systems. Notably, it is also possible to calculate
an APT analytically using Density Functional Perturbation
Theory (DFPT) as implemented in CP2k.54 This way, only one
electronic structure calculation is required per atom per
Cartesian coordinate to calculate the APT. The total number
of required electronic structure calculations would thus be
reduced compared to using numerical derivatives. More
importantly, the displacement for the numerical derivative is a
convergence parameter which could be omitted completely
when using analytical derivatives. However, the herein
employed numerical derivatives render the presented method-
ology general, such that it can directly be applied even if
analytical APTs are not available, e.g. when other codes or
electronic structure methods beyond DFT are used.
An apparent problem when training an APT (see eq 5) is that

it is an equivariant property as already mentioned, while most
machine learning models can only infer invariant properties.
Recently, the e3nn framework has been introduced55 for
PyTorch which can be used to train E(3)-equivariant graph
Neural Networks and thus enables one to infer also equivariant
properties by a machine learning model. Its introduction also
caused a huge boom in the field, and numerous works have been
published, where equivariant properties have been modeled. For
example, theNequIP package was recently developed56 to model
potential energy surfaces using equivariant message passing.
Moreover, it was also used recently to train the electron density
as a whole for gas-phase molecules.43 Besides such equivariant
message passing Neural Networks, also Gaussian process
regression can be used to create equivariant machine learning
models.57 This approach was utilized recently to train molecular
dipole moment vectors and polarizability tensors.46−48

Here, I now use the so-called SimpleNetwork (v2106) from the
e3nn toolkit to create an APTNN for liquid ambient water
which is capable to predict the APTs of all atoms at a given MD
snapshot. The predicted APTs are then used to calculate the IR
spectrum via eq 2 and eq 4. Although the IR spectrum of liquid
ambient water has already been machine learned by training
molecular dipole moments,46,48 even explicitly considering
nuclear quantum effects, it is merely done here to demonstrate
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the applicability of the herein introduced technique. The
introduced APTNN methodology and the training protocol is
generally transferable to any other system, with and without
periodic boundary conditions. As the underlying electronic
structure theory, I opt to use the RPBE functional58

supplemented by D3 dispersion corrections.59 It could be
shown repeatedly in the past that this electronic structure model
reproduces fluid water excellently, even far away from ambient
conditions.13,60−62 Previously, liquid ambient water has been
simulated,60 and these data (16 trajectories, 20 ps each using a
time step of 1 fs) are used in this work. Note that the APTNN
was meant to be trained on top of existing MD trajectories. This
means that these underlying MD trajectories are entirely
responsible for sufficiently sampling the configuration space.
As a starting point, I randomly selected 10 statistically
independent configurations from the available AIMD trajecto-
ries and calculated the APT. The calculation setup is exactly the
same as before,60 and I refer to that reference for an elaborate
description. All electronic structure calculations have been
performed using version 8.0 of the CP2k program package63

and the Quickstep module.64 Each configuration contains
384 atoms, and therefore 2304 single point calculations are
required. This is undoubtedly a substantial computational
commitment; however, this way 384 APTs are obtained from a
single MD snapshot, which is quite a lot of training data which
will become apparent in the following.
Having 10 MD snapshots with explicitly calculated APTs for

all atoms available, an APTNN is trained by randomly selecting
9 (90%) configurations for its training set. The remaining
configuration is used to validate how well the model generalizes
during the training. Recall that the APT is calculated for each
atom in each of the 10 snapshots and a single configuration

contains 128 water molecules, i.e. 384 atoms. The training and
test sets therefore consist of 3456 and 384 APTs, respectively. I
use an e3nnSimpleNetwork (v2106) model consisting of two
message passing layers and a technical feature configuration
“20x0o+20x0e+20x1o+20x1e+20x2o+20x2e”, de-
scribing the feature set of each atom. The latter string encodes
that each atom is represented by a feature vector containing 20
scalars (tensor rank 0), 20 vectors (tensor rank 1), and 20
tensors of rank 2 with even (“e”) and odd (“o”) parity each. In a
nutshell, the input geometry is translated into a graph
representation, where each atom is represented by a node and
each interatomic connection is represented by an edge. Through
the message passing layers, the feature vector of each node
(atom) is iteratively refined, taking the graph edges (interatomic
distance vectors) and the feature vectors of all neighboring
nodes (atoms) into account. Thereby the feature vectors are
optimized, such that they contain a unique representation of the
environment of each atom. After the message passing phase, the
feature vectors are then used to predict an APT in a given
configuration. The interested reader is referred to ref 56 for an
elaborate discussion on how the feature vectors are iteratively
refined in the e3nn framework. Here, I use a radial cutoff of 6 Å
to create the graph from the input geometry. This means that
only edges between two nodes are added to the graph, if the
interatomic distance is smaller than 6 Å. The radial cutoff is
mainly implemented for computational efficiency. It ensures
that each atom has approximately the same number of neighbors
in the graph representation, irrespective of the total system size.
This effectively reduces the computational cost, since the
number of graph edges (connections between atoms) is limited
to the local environment of each atom only. Moreover, the
computational cost then scales only linearly with the total

Figure 1. (a) Test error evaluated on an unknown test set containing 3840 APTs stemming from 10 randomly sampled MD snapshots as a function of
training data set size (learning curve, top panel). Mind the log−log scale of the plot and that the expected linear relation (indicated by the red dashed
line) is recovered. In the bottom panel, the MSE on the respective validation set is shown as a function of training epoch and training data set size, i.e.
four (black), 9 (brown), 18 (red), and 27 (green) MD snapshots, corresponding to 1536, 3456, 6912, and 10368 APTs, respectively. (b) Performance
of the APTNN trained on 3840 APTs (9 MD snapshots) on an unknown test set containing 3840 APTs stemming from 10 randomly sampled MD
snapshots. The figure compares all components of the APT matrix individually for O (blue) and H (red) atoms. Note that the test set used to
benchmark the APTNN in the top panel of (a) and in (b) is the same.
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number of atoms in the system.56 The radial cutoff clearly is a
convergence parameter which needs to be tested to be large
enough. Here, the actual cutoff value of 6 Å was chosen because
it was proved previously that it is large enough to correctly
reproduce the potential energy surface of liquid ambient water
using High-Dimensional NNPs65 as well as graph Neural
Networks.56 Note that I will also show in the following that the
cutoff is large enough to train the APT and to accurately
reproduce the IR spectrum of liquid ambient water.
The model has been trained using the Adam optimizer66

implemented in pyTorch.67 The Adam optimizer is one of the
most frequently used optimizers in pytorch and has been
successfully applied when training e3nn based models in the
past, see e.g. ref 56. An initial learning rate of 0.01 is used which
is automatically reduced by a factor of 0.1, when the loss of the
validation data set does not decrease further over the last 10
training epochs. The hyperparameters have been chosen
manually based on the validation set performance during the
training and have then been fixed. The overall performance of
the trained model was finally evaluated on an unrelated test set
and on the predicted IR spectrum compared with available
reference and experimental data, see below.
The learning curve of a APTNN model as a function of the

data set size (4, 9, 18, and 27 training configurations,
corresponding to 1536, 3456, 6912, and 10368 APTs,
respectively) is shown in the top panel of Figure 1a. All
APTNNs have been trained according to the above-described
training procedure. The presented test mean squared error
(MSE) is computed on an unknown test set containing 3840
APTs in total stemming from 10 randomly sampled MD
snapshots. The test error systematically decreases as a function
of provided training data set size, following a linear behavior in
the log−log plot as expected.
All data presented in the following are calculated from the

APTNN trained using 9 configurations only (solid brown
learning curve in the bottom panel of Figure 1a) after 100
epochs (marked by a vertical dashed line). To benchmark this
model, I randomly select 10 configurations from the available
AIMD simulations of liquid water which have not been included
in the training set (“test set”). For those configurations, the APT
is explicitly calculated using the electronic structure method as
before and compared with the prediction of the APTNN. The
direct component-wise comparison is shown in Figure 1b, and
the overall component-wise RMSE is 3.49 × 10−2 e, where e is
the electron charge.
As a second quality benchmark, I now use the trained APTNN

to predict the IR spectrum of liquid ambient water. In practical
terms, I take all the available AIMD trajectories of RPBE-D3
liquid ambient water (16 trajectories, 20 ps each using a time
step of 1 fs, see above) and predict the APT for each atom at each
time step. Recall that this is a daunting task for explicit electronic
structure calculations. Having all these APTs available, I then
calculate the total dipole moment derivative at each time step
according to eq 4. Finally, the machine learned IR spectrum is
obtained by eq 2 and presented in Figure 2. The figure also
shows the reference IR spectrum which has been obtained
directly from the explicit AIMD simulations. Note that this
reference IR spectrum of RPBE-D3 water has already been
published before, see e.g. ref 13. The comparison shows that the
machine learned spectrum reproduces the explicitly calculated
reference spectrum exactly in shape and intensity.
Remarkably, this accuracy is reached by only considering 9

randomly selected configurations for training, i.e. without even

using more sophisticated active learning techniques. Indeed, the
NequIP package which also utilizes thee3nn library to train the
potential energy surface also showed a high data efficiency.56

This means that a very good agreement with the reference data
could be achieved with providing a comparably small training
set. Interestingly, the data efficiency could directly be traced
back to the equivariance of the model, since the performance of
the model significantly declined as the equivariance was
disabled.56 This data efficiency foreshadows that training an
APTNN with even more computationally expensive electronic
structure theory will be possible; indeed, potential energy
surfaces39,56,68 and polarizability tensors41 of coupled cluster
accuracy have been successfully trained already. This could for
example be achieved using a committee of APTNNs which
straightforwardly enables active learning. Committees have
recently shown to be an efficient tool to obtain a highly accurate
model while the training set size is minimized.69−71

The acceleration gained by the APTNN is significant. To have
a fair comparison, a benchmark was conducted on the very same
machine (16 Intel(R) Xeon(R) E5-2640 v3 CPUs, 128 cores in
total). A single MD step including wave function extrapolation
took about 8 s using the GGA functional RPBE. Calculating an
APT for a single atom requires six single points and therefore
amounts to 48 s. Predicting an APT for a single atom using the
APTNN however only takes about 8 ms, giving an acceleration
of more than 3 orders of magnitude. Note that the acceleration
becomes even larger when more expensive electronic structure
methods are used, e.g. hybrid DFT or beyond. In that case, the
computational time to calculate a single point increases
dramatically, while the time needed to predict a single APT
from the APTNN remains constant. Moreover, pyTorch and
e3nn are designed to run more efficiently on GPUs than CPUs.
A significant additional acceleration is therefore expected when
switching to GPUs; however, this has not been tested yet.
In conclusion, an equivariant neural network has been used to

model the atomic polar tensors in liquid ambient water. From
this machine learned model, the IR spectrum was calculated
which showed excellent agreement with the explicit reference

Figure 2.Machine learned IR spectrum of liquid ambient water (red) is
compared with the explicit AIMD reference spectrum (black), see text.
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calculation. Thereby it was demonstrated that the training of the
atomic polar tensors is indeed possible. The presented
methodology is transferable to any other system class as well.
This transferability simply arises by the atomic polar tensor
itself: It reduces an IR spectrum to a very fundamental basis,
namely atomic motion (given by the atom velocity) and the
dipolar changes caused by this motion (given by the atomic
polar tensor), corresponding to the IR selection rule. It is
therefore a fundamental physical property which is rigorously
defined for any atom. Moreover, it does not rely on any
definition of molecules or charge partitioning schemes. This
virtue is preserved by the herein introducedmodel, and the latter
thus formally must be able to describe any atomistic system.
Indeed, explicit ab initio molecular dynamics simulations
showed that vibrational spectra of e.g. molecules or
clusters,18,53,54 solids,54 liquids,50 or solid/liquid interfaces52

can faithfully be described by the atomic polar tensor.19

Atomic polar tensors have been used in the past to understand
IR spectra at themicroscopic level since they allow one to dissect
the spectrum in terms of atomic velocities. This feature was
utilized several times in the past already,18,19,50,53 however, only
using severe approximations due to the prohibitive computa-
tional cost. This computational bottleneck can be overcome
with the herein presented model. Importantly, it was
demonstrated that the latter does not compromise on accuracy
compared to the presented exhaustive explicit ab initio
molecular dynamics benchmark. Moreover, to achieve that
accuracy, a surprisingly small training data set was required
which foreshadows that it might even be possible to train an
APTNN on more expensive electronic structure calculations,
such as hybrid DFT or even beyond. Machine learned MD
simulations have already been performed using hybrid DFT71 or
even CCSD(T)72 and allow one to sample nanoseconds of MD
trajectories at that level of theory. Such high level MD
trajectories can easily be postprocessed by the APTNN model
to obtain well converged vibrational spectra, which are clearly
computationally prohibitive otherwise.
Given the generality of the atomic polar tensor and the rather

small training data set required to accurately train the herein
presented APTNN model, the latter has the potential to
significantly contribute toward novel physical findings in various
systems, especially where large-scale MD simulations or
expensive electronic structure calculations are required.
Notably, the herein employed modology can also be generalized
to other 3 × 3 tensors, such as the polarizability tensor which is
required for Raman and SFG spectra. A general toolkit to
automatically and efficiently train an APTNN on top of existing
(machine learned) molecular dynamics trajectories is currently
being developed.
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