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ABSTRACT Phenotypic heterogeneity is crucial to bacterial survival and could provide
insights into the mechanism of action (MOA) of antibiotics, especially those with poly-
pharmacological actions. Although phenotypic changes among individual cells could be
detected by existing profiling methods, due to the data complexity, only population av-
erage data were commonly used, thereby overlooking the heterogeneity. In this study,
we developed a high-resolution bacterial cytological profiling method that can capture
morphological variations of bacteria upon antibiotic treatment. With an unprecedented
single-cell resolution, this method classifies morphological changes of individual cells
into known MOAs with an overall accuracy above 90%. We next showed that combina-
tions of two antibiotics induce altered cell morphologies that are either unique or simi-
lar to that of an antibiotic in the combinations. With these combinatorial profiles, this
method successfully revealed multiple cytological changes caused by a natural product-
derived compound that, by itself, is inactive against Acinetobacter baumannii but synerg-
istically exerts its multiple antibacterial activities in the presence of colistin. The findings
have paved the way for future single-cell profiling in bacteria and have highlighted pre-
viously underappreciated intrapopulation variations caused by antibiotic perturbation.

KEYWORDS antibiotic combinations, phenotypic heterogeneity, high-content analysis,
single-cell profiling

Since the discovery of antibiotics, humans have enjoyed decades of success in controlling
bacterial infections. However, the overuse and misuse of antibiotics have caused multi-

drug-resistant (MDR) pathogens to emerge at an alarming rate. Consequently, it is now well
recognized by researchers around the globe that the postantibiotic era might arrive sooner
than previously assumed (1, 2). In recent years, bacteria have become resistant to almost all
antibiotics used clinically, and the number is rapidly rising (3–5). The widespread incidences
of MDR Enterococcus spp., Staphylococcus aureus, Klebsiella spp., Acinetobacter baumannii,
Pseudomonas aeruginosa, and Enterobacter spp., collectively called “ESKAPE,” are among the
most worrisome. A. baumannii in particular was listed as one of the critical priority patho-
gens worldwide by WHO in 2017 (5). Many of A. baumannii clinical isolates are resistant to
routinely used antibiotics and, carbapenem-resistant A. baumannii (CRAB) is particularly con-
cerning. The outbreak of CRAB has been reported worldwide and recognized as a serious
public health issue due to the limitation of treatment available, high cost, and high mortality
rate (6–9). Moreover, some strains are also now resistant to the last line of antibiotics for
Gram-negative pathogens, including colistin (10–12). Thus, novel antibacterial molecules
that are effective against the bacteria are urgently needed to keep them at bay.
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In search of novel antibiotics, we recently applied a fluorescence microscopy-based
method called bacterial cytological profiling (BCP) (13, 14) to study the mechanism of
action (MOA) of antibiotics that are active against A. baumannii (15). BCP identified differ-
ent MOAs of known antibiotics by analyzing cell morphological profiles upon antibiotic
treatment, and it also correctly identified the MOA of unknown compounds, without
prior knowledge of its MOA or structure. In principle, a cytological profiling method such
as BCP provides morphological data at a single-cell level. However, in order to accurately
determine the MOA of compounds, a simple population averaging method had been
used (13, 15, 16), thereby losing the ability to capture heterogeneity. It has long been
known that phenotypic variations among individual cells are observable even in isogenic
populations of bacteria growing under the same environmental conditions (17, 18). The
physiological heterogeneity, in an evolutionary perspective, plays a crucial role in ensur-
ing survival of the microorganism under various environmental stresses, including antibi-
otic treatment (19, 20). Thus, quantitation of heterogeneity in response to treatment can
be used to better understand how antibiotics orchestrate their activity in individual cells
and provides insight into antibiotic MOA and resistance.

The ability to dissect an individual cell’s response not only provides insight into the
MOA of antibiotics but also possibly reveals multiple MOAs simultaneously. Even though
population-based BCP analysis was successful in dissecting morphological changes caused
by two MOAs at once, it overlooked phenotypic heterogeneity, thereby reporting multiple
detected cell profiles as a single MOA (21–23). For example, aminoglycosides are known
to both inhibit protein translation and perturb the membrane (24). Using population aver-
ages with BCP, aminoglycoside-treated cells were categorized into a single MOA profile of
protein translation inhibition, profile P2 (13, 15), despite presenting clear heterogeneity at
a single-cell level. This suggests that upon exposure to a single antibiotic with multiple
MOAs or multiple antibiotics, the phenotypic heterogeneity was not properly captured by
population-based BCP. Single-cell analysis has played a vital role in examining heterogene-
ity of cellular response in other omics-based profiling methods, leading to an insight into
not only disease pathogenesis but also the MOA of drugs (25–28). Recently, various single-
cell microbiology studies have provided a fundamental understanding of the heteroge-
nous response of the individual bacterial cell to antibiotics, which is crucial in advancing
antibiotic discovery (29–31). Therefore, enhancing BCP resolution to a single-cell level is
particularly promising in order to provide a clearer picture of heterogenous bacterial cell
profiles and to accurately identify multiple MOAs simultaneously.

In the past decade, the advancement of applied mathematics, engineering, and com-
puter science has accelerated the development of single-cell technologies, delivering
both single-cell microscopy and an exceptional quantitative analysis of individual cell
profiles (32, 33). In order to identify phenotypic variations, marginal in most cases,
among individual cells, machine learning strategies are often introduced into the analy-
sis pipeline to unbiasedly and accurately capture meaningful morphological data pat-
terns that are related to the perturbation of interest (34, 35). This is especially crucial in
bacterial cell morphology analysis, where the small size of bacteria limits human visual
perception. In this study, we first implemented machine learning strategies in combina-
tion with BCP to improve the method’s resolution down to a single-cell level. Then, we
showed that this machine learning-assisted single-cell BCP method can identify subpro-
files of bacterial cells when treated with antibiotics. Next, we demonstrated that the
method can be used to reveal combinatorial effects of dual antibiotic treatment on mor-
phological changes and provide insight into relationships between each morphological
profile. Finally, we used the method and the knowledge of dual-treatment combinatorial
effects to reveal multiple MOAs of a natural product-derived compound that synergisti-
cally kills A. baumannii together with colistin. Altogether, we envision that our findings
will enhance the use of BCP as a high-resolution MOA-defining method, improving the
screening of compounds and assisting the process of discovery of much-needed antibac-
terial molecules.
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RESULTS
Extended bacterial morphological features were used for MOA classification

via high-resolution BCP. Our previous study indicated that by analyzing 36 bacterial
morphological parameters upon antibiotic treatment, BCP in A. baumannii can distinguish
different MOAs of antibiotics in spite of inhibiting the same cellular pathway (15). As
a result, 8 different MOA profiles, from antibiotics targeting 6 cellular pathways, were
reported: protein translation (P1 and P2), cell wall synthesis (C1 and C2), DNA replication
(D1), RNA transcription (R1), lipid synthesis (L1), and membrane integrity (M1) (see Table
S1 in the supplemental material). Although morphological differences between each pro-
file can easily be detected by mean population data based on morphological features that
were selected by experienced researchers (15), subtle variations at the single-cell level that
are crucial for differentiating MOA pose a major challenge, thus rendering human-oriented
morphological feature selection unsuitable for single-cell variation analysis.

High dimensionality of data sets obtained from extracting hundreds of morphological
features from images is known to be one of the major challenges affecting classification
accuracy of the analysis (36, 37). Thus, feature selection is necessary to reduce the dimen-
sion of the data set by selecting a subset of features that is most relevant to the analysis.
In this study, 1,000 individual cell profiles were first randomly selected from three inde-
pendent experiments for each antibiotic treatment as detailed in Materials and Methods
and used as a data set for feature selection. Then, we used the recursive feature elimina-
tion with cross-validation based on support vector machine (RFECV-SVM) method (38),
which was shown to effectively handle high-dimensional biological data sets (39–41), to
identify optimal morphological features that can classify A. baumannii cells treated with
different antibiotics into distinct MOA profiles. Of all 156 features from image analysis,
62 features were selected for MOA profile classification analysis with an overall model ac-
curacy at 92.97% (Fig. S1A and B and Table S2). Unsurprisingly, piperacillin (PIP), merope-
nem (MER), and ciprofloxacin (CIP) were among the top ranks in accuracy (>95%). The
previous study found that these antibiotics cause noticeable morphological changes
such as elongated cells from PIP and CIP and ovoid cells from MER (15). In contrast, triclo-
san (TCS)- and colistin (CST)-treated cells resulted in precisions below 90% possibly due
to their subtle morphological changes. These results are in agreement with our previous
finding that cells treated with these antibiotics clustered closely together and centered
around untreated cells (15). Amikacin (AMI), which was previously shown to have more
than one morphology, also resulted in a marginally lower precision, 88%. Collectively,
the results show that high-resolution BCP can classify individual antibiotic-treated cells
according to MOAs of antibiotics with an overall accuracy above 90%.

High-resolution BCP reveals intrapopulation variation in A. baumannii cells
upon antibiotic treatment. Once the single-cell analysis pipeline had been obtained,
we next determined if, at a single-cell resolution, BCP could provide more information
regarding the heterogenous response of the cell for each of the reported MOA profiles.
Minocycline (MIN)-treated cells, which were known to display a signature toroidal DNA,
were grouped into only one cluster, P1_1 (Fig. 1A, panel i), while AMI-treated cells were
separated into two subprofiles (Fig. 1A, panel ii). Cells in subprofile P2_1 consisted of
doublet cells containing two separated condensed DNA, while cells in P2_2 showed sin-
gle, slightly condensed nucleoids. Due to the strain difference, A. baumannii ATCC 17978
used in this study, when treated with AMI, did not result in signature toroidal DNA as
observed previously in A. baumannii strain ATCC 19606. This is not unexpected since the
difference in morphological response to antibiotics between the two strains was previ-
ously reported (15). A cell wall synthesis inhibitor, MER, produced ovoid cells that were
divided into two subprofiles: C2_1 and C2_2 (Fig. 1B, panel ii). The majority of the cells
were in C2_1, i.e., were ovoid, and the rest were clustered into profile C2_2, which con-
sisted of doublet ovoid cells whose cell division was incomplete. These findings are
probably due to the meropenem affinity toward different penicillin binding proteins
(PBPs) of the bacteria (42). It is possible that cells in which the drug mostly affected PBP2
showed the ovoid shape and clustered in C2_1 group, while cells whose PBP2 and PBP3
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were both affected might have shown both ovoid and incomplete cell division and
hence clustered into C2_2.

Unlike those antibiotics that resulted in multiple subprofiles, PIP (Fig. 1B, panel i), CIP
(Fig. 1C) and rifampicin (RIF) (Fig. 1D) displayed a single cluster. Even though TCS (Fig. 1E)
and CST (Fig. 1F) were shown to yield two separate subprofiles, one subprofile from each
(L1_2 and M1_2) was positioned in close proximity to the untreated cluster. This indistin-
guishability from the untreated cells explains why the previous study of average-based
analysis of these two antibiotics saw them closely clustered to the untreated cells (15).
Altogether, we showed that high-resolution BCP is not only able to classify MOA profiles of
antibiotics with more than 90% accuracy but also capture morphological variations within
the population upon antibiotic treatment.

Combinatorial effects of two antibiotics caused either unique or overlapping
morphologies with one of the two antibiotics in the combination. The ability of the
BCP to dissect multiple subprofiles of antibiotic-treated cells urged us to determine if the
method can reveal the effect of two antibiotics on bacterial cell morphology. A method that
can determine MOAs of mixed compounds simultaneously or compounds possessingmultiple
MOAs could play an important role in accelerating antibiotic discovery, such as screening for
active compounds for combination therapy (43–46). Although previous studies have shown
that the combined effect of two antibiotics could be detected using population-based BCP
(21, 23) or analysis of representative morphological changes of imaging fields (47), a compre-
hensive framework of single-cell BCP on antibiotic combinations is still lacking.

FIG 1 High-resolution BCP analysis reveals intrapopulation variation of A. baumannii upon antibiotic treatment. Representative cell images and PaCMAP plots are
shown. (A) Untreated A. baumannii cells; (i) MIN-treated and (ii) AMI-treated cells; (B) (i) PIP-treated and (ii) MER-treated cells; (C) CIP-treated cells, (D) RIF-treated
cells, (E) TCS-treated cells; (F) CST-treated cells. Bacterial cells were treated with 1� MIC of each antibiotic for 1 h and stained with fluorescent dyes. Scale bar
represents 1 mm.
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To test if the effect of two antibiotics could be detected, all combinations of the
previous 8 MOA profiles (total of 28 combinations) were studied. For each combina-
tion, cell features were selected using the RFECV-SVM model based on each single
drug in the combination to accurately select relevant features for combinatorial effect
analysis (Fig. S2A). By using a similarity index cutoff of 0.75, which was calculated as
the lowest similarity index between two randomly divided groups of single antibiotic-
treated cells (see Materials and Methods), the 28 combinations were divided into
unique (type A) and overlapping (type B) morphological responses (Fig. 2). For type A,
the combined effect of the two drugs on the morphology of bacteria resulted in mor-
phological profiles that were clearly separated from the profiles of the single antibiotic
treatments (similarity index , 0.75). For example, cells treated with amikacin plus
piperacillin (AMI1PIP) exhibited a brighter 49,6-diamidino-2-phenylindole (DAPI) signal
and were longer, which are the morphological changes that are influenced by AMI and
PIP, respectively. Thus, the combined morphology gave rise to separate cell profiles
that did not significantly overlap individual profiles of either AMI or PIP (Fig. 2A). On
the contrary, for type B, the effect of the drug combination resulted in a morphological
profiles that was similar to that of either one of the two in the combination (similarity
index $ 0.75). For instance, treatment with MIN1PIP resulted in a cell profile that was
indistinguishable from that of cells treated with MIN alone (Fig. 2B). In summary, from
all the 28 combinations (Fig. 2C and Fig. S2B), we found 15 antibiotic pairs that gave
rise to morphological changes that were separate from those of single antibiotic-
treated cells (type A), suggesting the ability of the method to identify unique morpho-
logical changes caused by two antibiotics. However, the combinatorial effect of the
other 13 pairs on morphological profiles overlapped with one of the two antibiotics in
the combination and hence could not be separated by the method (type B).

It is interesting that antibiotic combinations that resulted in type A are likely to be
from the antibiotics causing prominent cell morphological changes such as PIP, CIP,
and MER (Fig. 1B and C). Cell length and width have been elucidated to be the major
features that contributed to the morphology variation in Escherichia coli (48); therefore,
it is possible that the extreme alteration of cell area-related features caused by one of
these antibiotics offers more morphological space for the additional antibiotic to show
its effect that would, in turn, appear as a “mixed morphology.” In contrast, when MIN
was introduced into the combination, its effect on cell morphology dominated all
other antibiotics and thus the combined treatments were always found to be largely
overlapped with MIN, resulting in type B (Fig. 2C).

In order to understand the likelihood of morphological changes caused by each an-
tibiotic to become dominant or recessive in combination treatments as observed in
type B, the similarity index of each drug toward the other, for each combination, was

FIG 2 High-resolution BCP analysis of A. baumannii treated with antibiotic combination reveals unique (type A) or overlapping (type B) cytological profiles.
(A) Representative cell images and PaCMAP plots of AMI1PIP-treated cells showing unique profiles compared with cells treated with a single antibiotic or
untreated cells. (B) Representative cell images and PaCMAP plots of PaCMAP plots of MIN1PIP-treated cells showing overlapped profiles with cells treated
with a single antibiotic. Cells were treated with 1� MIC of each antibiotic for 1 h, for both single-drug and antibiotic combination conditions. Scale bar
represents 1 mm. (C) Summary of combined morphology types of all 28 combinations. For type B, combined morphology overlapped with the profile of
antibiotics shown in parentheses.
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analyzed (Fig. 3A). In the case of MIN, every combination yielded a higher index of simi-
larity to the profile of MIN (Fig. 3B; similarity index $ 0.75 in all cases) and lower similar-
ity to the profile of the other antibiotic, suggesting that morphological changes caused
by MIN are likely to be dominant and resilient against those caused by the other antibi-
otics in the combination. This trend was also observed in MER, although to a lesser
degree of dominance (Fig. 3A). In contrast, the presence of CIP in combination with
other antibiotics yielded a lower index of similarity to its own profile (Fig. 3C) but a
higher index of similarity to the others, suggesting that morphological changes caused
by CIP are likely to be masked by the effect of the others. Therefore, dominant or reces-
sive traits of antibiotics present in the combination play an important role in understand-
ing combinatorial effects of two antibiotics on bacterial morphological changes.

Morphological changes caused by antibiotic combination could not accurately
indicate antibiotic interaction type. Based on the finding of unique profiles of cells in
the antibiotic combination (type A), we next sought to test if the morphological
changes caused by two antibiotics could be used as a predictor of synergism between
the two antibiotics. A previous study (48) showed that E. coli strains, whose genetic

FIG 3 Combinatorial effects of two antibiotics on bacterial morphological changes influenced by
dominant or recessive profiling traits of antibiotics. (A) Summary of the indices of similarity of all
antibiotic combinations to the antibiotics indicated in the top row. (B) Profiles of cells treated with
antibiotic combination containing MIN showed a higher index of similarity to the MIN profile and a lower
index of similarity to the other. Antibiotics with a dominant profiling trait suppress morphological
changes caused by other antibiotics. (C) Profiles of cells treated with antibiotic combination containing
CIP showed a lower index of similarity to the CIP profile and a higher index of similarity to the other.
Morphological changes caused by antibiotics with a recessive profiling trait were overshadowed by the
other.
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alteration causes an increase in cell width, are more susceptible to compound A22—
which also causes the same morphological outcome, highlighting the synergistic rela-
tionship between morphological changes and level of antibiotic susceptibility. To test
if this is the case, we examined if type A combination could indicate synergism and
type B combination could indicate nonsynergistic interaction by comparing with drug
interaction results from checkerboard analysis in all 28 combinations. We found that
while some type A combinations corresponded with their synergistic interaction, such
as PIP1AMI and MER1CST (type A and synergistic), some gave opposite results, such
as PIP1TCS and CIP1RIF (type A but nonsynergistic) (Fig. S3). In contrast, some type B
combinations, including PIP1MER, PIP1MIN, and PIP1RIF, exhibited synergistic inter-
action in the checkerboard assay (type B but synergistic) (Fig. S3). Thus, we did not find
the relationship between type of combination profile and type of antibiotic interaction
in our study. Our findings were consistent with the previous study in E. coli in which
combinatorial effect of two antibiotics on representative morphological changes could
not be used to indicate the interaction type of the two antibiotics (47).

Combinatorial profile-based predictive model classifies A. baumannii cells
treated with usnic acid (USN) into multiple profiles. Even though the combinatorial
profiles could not be used as indicators of antibiotic interaction type, we sought to
determine if the profiles could be used to reveal the possible hidden MOA of a com-
pound that can synergistically work with antibiotics. Finding antibiotics that are active
against Gram-negative bacteria, especially A. baumannii, is notoriously challenging (4,
49–51). This is mostly due to the existence of the bacterial outer membrane, which
diminishes drug influx, leading to low intracellular concentrations of the drug (52).
Thus, potential compounds that target cytosolic components but cannot enter the cell
often give negative readouts during screening. In this study, we also encountered the
same challenges when we examined a collection of natural product-derived com-
pounds for their antibacterial activity and found that while some of the compounds
inhibited the growth of the Gram-positive bacterium Bacillus subtilis, none of them
inhibited the growth of A. baumannii at concentrations below 500 mM (Table S3). We
hypothesized that in the presence of a membrane-permeabilizing antibiotic that would
potentially increase drug influx, the compounds that were previously deemed inactive
could enter into the cell and exert their activity, thereby resulting in detectable mor-
phological changes.

To test this hypothesis, we selected CST as the membrane-permeabilizing antibiotic
for a synergy study. In order to test if the compounds synergized with CST, we evaluated
the fractional inhibitory concentration (FIC) of each compound in the presence of 0.25�
MIC of CST. Out of the compounds tested, 250 mM USN inhibited the growth of the bac-
teria in the presence of CST, suggesting that CST promotes USN activity against A. bau-
mannii (Fig. 4A and Table S3). To confirm a synergistic effect of CST1USN, a time-kill
assay (TKA) was performed; it showed that the combination of 250 mM USN and 0.25�
MIC CST significantly decreased the number of bacteria compared to the case with CST
or USN alone (Fig. 4B). BCP results showed that even though not all CST1USN-treated
cells exhibited morphological changes, various morphological changes were observed in
the rest of the population. These morphological changes were similar to various profiles
shown earlier, such as toroidal DNA and small cells with a bright DAPI signal (Fig. 4C),
suggesting that USN might exert multiple activities against A. baumannii in combination
with CST.

Since multiple morphological changes were observed with CST1USN, we asked if
the method could classify CST1USN-treated cells into any profiles of A. baumannii
treated with all other antibiotics in combination with CST to relate the morphological
change caused by USN to any known MOAs. The predictive model was able to classify
the cell profile of each CST combination at an overall accuracy level of 89.88% (Fig. 5A)
and was then used to classify individual cell profiles treated with CST1USN (Fig. 5B).
The results showed that the majority of cells treated with CST1USN were predicted to
be untreated (46.10% 6 1.49%), followed by significant portions of cells treated with
CST1MIN (16.27% 6 4.39%), CST1TCS (16.10% 6 1.95%), CST1AMI (10.80% 6 5.69%),
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and CST1RIF (8.93% 6 3.64%). This finding is in agreement with the previous study in
which, despite its lack of activity against Gram-negative bacteria, USN was shown to in-
hibit the growth of Gram-positive bacteria, S. aureus and B. subtilis, via multiple path-
ways, including RNA transcription and DNA replication as a primary target and protein
translation as a secondary target (53). To rule out the concerns regarding the USN quality
in our natural product library, we also performed experiments on commercial usnic acid
(cUSN) and obtained similar results (Fig. S4). cUSN alone could not inhibit the growth of
A. baumannii but synergistically inhibited the growth of the bacterium at 250 mM with
CST (Table S3). Unlike for CST1USN, where the majority of cells were similar to untreated
cells, cells treated with CST1cUSN showed various observable morphological changes
(Fig. S4A) and were predicted be CST1MIN (35.3%), CST1TCS (21.4%), CST1AMI
(11.5%), CST1RIF (9.3%), and CST1MER (8.5%), and followed by untreated (8.1%) (Fig.
S4B). Notably, the orders of detectable profiles of CST1cUSN and CST1USN were the
same (CST1MIN > CST1TCS > CST1AMI > CST1RIF). Collectively, we demonstrated
that high-resolution BCP can be used to reveal multiple profiles of CST1USN-treated
cells based on different morphological changes among bacteria population.

DISCUSSION

This study highlights three complementary perspectives in bacterial phenotypic
screen for antibiotic discovery: (i) morphological variation of bacteria upon antibiotic
treatment, (ii) combinatorial effect of two antibiotics on morphological changes, and
(iii) detection of multiple cytological profiles in accordance with the MOAs of antibac-
terial molecules. In an aspect of morphological variation, we demonstrated that some
antibiotics provoked intrapopulation variation and later resulted in cells clustering into
different groups based on morphological changes, such as those in AMI-, MER-, and
CST1USN-treated populations (Fig. 1 and 4). It is possible that treatment at 1� MIC

FIG 4 Usnic acid in combination with colistin inhibits the growth of A. baumannii resulted in multiple
morphological changes. (A) Chemical structure of USN and a hypothesis diagram showing that CST
facilitates the entry of USN into the A. baumannii cell, resulting in detectable cell profile. (B) Time-kill
assay of A. baumannii treated with 0.25� MIC CST alone, 250 mM USN alone and in combination,
compared with untreated cells. (C) Representative cell images of CST1USN-treated cells showing
multiple morphological changes compared with untreated cells. Cells were treated with 0.25� MIC
CST and 250 mM USN for 1 h. Scale bar represents 1 mm.

BCP Reveals Bacterial Morphological Variations Antimicrobial Agents and Chemotherapy

February 2023 Volume 67 Issue 2 10.1128/aac.01307-22 8

https://journals.asm.org/journal/aac
https://doi.org/10.1128/aac.01307-22


could be responsible for the intrapopulation variation found in this study. The previous
study on antibiotic combination and bacterial morphology found that higher concen-
trations of antibiotics tends to, but not always, yield lower heterogeneity of bacterial
morphology (47). Thus, to minimize heterogeneity noise, treatment with a high con-
centration of antibiotic is probably suitable for the study that focuses on MOA identifi-
cation where average-based or representative morphological changes data sets are
preferable (16). It is also possible that the findings of cytological variation presented
here are limited to A. baumannii ATCC 17978. However, it has been shown in a previ-
ous study of BCP using A. baumannii ATCC 19606 that some heterogenous responses
of the bacterium to antibiotics were also seen (15). Thus, single-cell studies with other
strains would be beneficial in testing if cytological intrapopulation variation is limited
to particular strains. Moreover, clinical isolates, especially multidrug-resistant and
extensively drug-resistant strains, were not included in the study. Thus, the presence of
cytological variation upon antibiotic perturbation in these strains remains unexplored.
It has been elucidated that clinical strains have high genetic variations, resulting in het-
erogenous behavioral and physiological responses to environmental stresses (54, 55).
Hence, one would expect cytological variation among these clinical isolates. Whether or
not cytological variations upon antibiotic exposure could be detected in other strains of
A. baumannii or in other important pathogens is an interesting question worth investi-
gating in the future. Another finding worth noting is that in our study, regardless of the
MOA of the antibiotics being used, a small number of treated cells whose morphological
profiles were unaltered by treatment were detected in every treatment (Fig. 1). This cor-
responds with a previous discovery illustrating that under antibiotic or environmental
stress, a small fraction of bacteria persist without responding to the stress, thus ensuring
the survival of the species (18, 56, 57). A temporal study that can track individual cells
before, during, and after antibiotic treatment would provide the key to understanding
bacterial survival under antibiotic stress.

In search of antibacterial molecules with novel MOAs, information of novel morpho-
logical profiles may expand the border of morphological space that hints at possible

FIG 5 A. baumannii cells treated with usnic acid and colistin were classified into multiple antibiotic combinations. (A)
CST combination data set used for predictive model training (Fig. S2B) and the classification accuracy of the resulting
model. (B) CST1USN-treated cells were classified into different profiles by the predictive model (*CST1MER not
shown in the chart).
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new MOAs. In our antibiotic combination study, we found that 15 combinations (type
A) gave rise to profiles that are separated from those of the individual antibiotics
within the combination, suggesting probable morphological uniqueness. Our finding
is slightly in contrast with a previous study in which only four “unexpected morpholog-
ical phenotypes” were categorized from the higher-throughput and more comprehen-
sive combination study (47). We speculate that this difference is partly from the fact
that our study focused on examining single-cell morphological variation rather than
detecting a representative morphology of the major population from each imaging
well. Whether or not these unique patterns of cytological variation could provide com-
plementary perspective for novel MOA discovery needs further investigation. Another
limitation worth noting is that in an attempt to find the relationship between the com-
bination profile and drug interaction type in our study, only one representative antibi-
otic at one concentration from each previously reported profile was included in the
analysis. Since it has been shown that the physiological outcome from drug-drug inter-
action is highly complex (58) and determined not solely by the MOA of the compound
but rather by the characteristics of the compound itself (52, 59), more antibiotics repre-
senting each cytological profile at various concentrations are needed to investigate if
there is any correlation between cytological profile and drug-drug interaction.

Lastly, in an aspect of detecting multiple cytological profiles that match the MOAs,
a platform that can identify multiple MOAs simultaneously will be beneficial to directly
screen crude or partially purified extracts from natural products, where mixtures full of
compounds are commonly presented (60, 61). In this study, we showed that cells
treated with CST1USN were classified into multiple subprofiles that are in accordance
with previously reported MOAs of USN. However, it remains unclear whether this phe-
nomenon is limited to the compounds with various activities, such as USN (i.e., one
compound with many MOAs). Further investigations are needed to test if this phenom-
enon can be observed in the case of multitreatment (i.e., multiple compounds with dif-
ferent MOAs). Apart from the ability of the method to reveal multiple subprofiles, the
finding of dominant traits of some antibiotics in the study may lead to a better under-
standing of how multiple active compounds affect individual cells during screens. For
instance, antibacterial molecules in the extract whose profiles were masked by another
might have been overlooked. This might also be the case with CST1USN treatment in
A. baumannii in this study, where we observed significant amount of cells predicted to
have profiles similar to those treated with protein translation inhibitors (CST1MIN and
CST1AMI), while RNA transcription and DNA replication inhibition activity of USN were
also previously reported for S. aureus and B. subtilis (53). It is possible that the domi-
nant trait of protein translation inhibition profiles overshadowed all the effects of the
others in A. baumannii as demonstrated in this study. A previous study on transcrip-
tomic analysis of bacteria treated with antibiotics also showed that in some cases, the
secondary effect or MOA of the antibiotic might be more pronounced than its primary
MOA (62). Moreover, it is likely that the target preferences of antibiotics are different in
different bacteria (63), thereby, resulting in different cytological changes in different
bacteria. Solving the riddle of the effect of dominant and recessive traits of antibiotics
on bacterial morphology will play an important role in developing a phenotypic
screening platform that can effectively sift through a large collection of chemical libra-
ries to identify novel antibacterial molecules.

MATERIALS ANDMETHODS
Bacteria strain and growth. Acinetobacter baumannii strain ATCC 17978 was used throughout this

study. The bacterium was grown in LB medium or LB agar at 30°C.
MIC determination. The MICs of antibiotics were determined by microdilution method as previously

described (15), and the results are shown in Table S1. Briefly, overnight cultures of A. baumannii were
diluted 1:100 in LB and grown on a roller at 30°C to an optical density at 600 nm (OD600) of 0.2. The bac-
terial cultures were diluted 1:100 into each well of a 96-well plate containing antibiotics in LB medium at
different concentrations. The bacterial cultures were incubated at 30°C for 24 h. The lowest antibiotic
concentration resulting in no visible growth was designated the MIC.
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Fluorescence microscopy. Overnight cultures of A. baumannii were diluted 1:100 in LB and grown
at 30°C to an OD600 of 0.2 prior to the addition of antibiotics at the MIC level. After 1 h of incubation
with the antibiotic, cultures were stained with 2 mg/mL FM4-64, 2 mg/mL DAPI, and 0.5 mM SYTOX
green. Bacterial cells were harvested by centrifugation at 6,000 � g for 1 min and resuspended in 1/10
of the original volume. A few microliters of concentrated bacterial cultures were added onto an agarose
pad (1.2% agarose in 10% LB broth) on concave glass slides for microscopy. Experimental setting and
imaging parameters were constant throughout every experiment included in the statistical analysis of
all training sets of antibiotics.

Image data analysis. Prior to downstream image analysis, raw images from the microscope were
preprocessed into an appropriate image format on ImageJ software (64). Then, machine learning-based
image analysis software Ilastik (65) was used to determine individual cells on the images using the bac-
terial cell membrane to identify each cell. Once all individual cell locations were identified, cell mem-
branes and nuclei were segmented and subsequently analyzed on CellProfiler 4.0 software (66) for cell
feature extraction. After image data extraction, statistical calculations and machine learning were carried
out using the scikit-learn library (67) in python. Briefly, 1,000 individual cell profiles of each antibiotic
treatment from three independent experiments were randomly selected and transformed with
QuantileTransformer (68). The outlier data, such as cell debris, abnormal image segmentation, and
incomplete cell along the image edge, which amounted to about 10% of the detected objects, were
removed with hierarchical density-based spatial clustering of applications with noise (HDBSCAN) (69)
with a 10% cutoff. The optimal morphological features were identified by the recursive feature elimina-
tion with cross-validation based on support vector machine (RFECV-SVM) model (70). At each iteration,
three cross-validations were conducted to determine the best feature set. Then, the performance of the
SVM model was evaluated with the data set containing only the selected features to ensure that these
selected features were relevant in distinguishing cytological profiles of each antibiotic. The data set was
randomly divided into an 80% training and 20% test set on which the model was trained and evaluated,
respectively. Accuracy score, f1, recall and confusion matrix were used as indicators for model perform-
ance as shown in Fig. S1. Finally, the dimension of the data set was reduced and then visualized with an
unsupervised data dimension reduction method, pairwise controlled manifold approximation (PaCMAP)
(71).

Similarity index calculation. The similarity index was calculated based on Euclidean distance
between PaCMAP coordinates of the main clusters of single-antibiotic-treated cells and 200 randomly
selected dual-antibiotic-treated cells. Due to the scatter coordinate of cell profiles, an unsupervised
learning mean shift clustering algorithm (72) was used to determine the main cluster (high density clus-
ter) of single-antibiotic treatment, each of which contained more than 50 cells. Then, only cells in the
main cluster of single-antibiotic treatment were used to calculate similarity index as follows:

similarity index ¼

X200

i¼1

1
dij

200

where dij is a minimum Euclidean distance between coordinate of dual-antibiotic-treated cell i and sin-
gle antibiotic-treated cell j.

To examine the degree of overlapping between single- and dual-antibiotic-treated clusters, a similar-
ity index of 0.75 was used as a cutoff, which was calculated from the lowest similarity index of single-an-
tibiotic-treated cells shown in Fig. 1. Briefly, the single-antibiotic-treated cells were randomly divided
into two groups and the similarity index between these two groups was calculated. The lowest similarity
index between the two groups was selected as the cutoff threshold. For type A or B classification, if the
index of similarity of the dual antibiotic to both the single antibiotics in the combination was lower than
0.75, it indicated that the dual antibiotic provided a unique morphological cluster and separated from
the single-antibiotic treatments and thus was classified as type A. In contrast, a similarity index higher
than 0.75 indicated that dual-antibiotic treatment provided an overlapping morphological cluster with
single-antibiotic treatments and thus was classified as type B.

Screening natural product-derived compounds that synergize with colistin in killing A. bau-
mannii. The collection of natural product-derived compounds was a gift from Warinthorn Chavasiri, Center
of Excellence in Natural Products Chemistry (CENP), Chulalongkorn University. MICs of all compounds
against A. baumannii and B. subtilis were determined by microdilution method as mentioned above, and
the results are shown in Table S3. For the primary synergistic test, compounds that were shown to inhibit
the growth of A. baumannii at 500 mM in the presence of 0.25� MIC CST were chosen for the fractional in-
hibitory concentration (FIC) assay. For FIC testing, overnight cultures of A. baumannii were diluted 1:100 in
LB and grown on a roller at 30°C to an OD600 of 0.2. Cultures were added into LB medium containing 0.25�
MIC CST and different concentrations of compound and then subjected to 24 h of incubation at 30°C. The
FIC of the compound that could synergize with 0.25� MIC CST was determined as the lowest concentration
of the compound that resulted in no visible growth of the bacteria.

TKA. Time-kill assay (TKA) was performed as previously described (73). Briefly, overnight cultures of
A. baumannii were diluted 1:100 in LB and grown at 30°C to an OD600 of 0.2. Then, day cultures of A. bau-
mannii were diluted 1:100 into each tube containing 0.25� MIC CST, 250 mM USN, or the combination
prior to incubation at 30°C. At each time point (0, 1, 2, 4, and 6 h), 100 mL each of the untreated and
treated bacterial culture was collected, serially diluted in LB medium, plated on an LB agar plate, and
incubated overnight at 30°C. The CFU were determined, calculated as log CFU per milliliter, and plotted
against time.
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Classification of USN-induced cytological profiles. A supervised learning model, support vector
machine (SVM) (74), was used to classify cell profiles caused by USN. The SVM model was trained on the
data set of untreated cells and treated cell profiles of every colistin-based combination: CST1AMI,
CST1CIP, CST1MER, CST1MIN, CST1PIP, CST1RIF, and CST1TCS. Similar to the previously mentioned
analysis pipeline, the raw data set was transformed with QuantileTransformer, the outlier was removed
with HDBSCAM, and relevant morphological features were selected by RFECV-SVM. The data set was
then randomly divided into 80% training and 20% test sets. Finally, the model performance was deter-
mined by accuracy score, f1, and recall. The trained SVM model was used to classify each bacterial cell
profile from CST1USN (unknown), resulting in a percentage of CST1USN-treated cells distributed over
the previously trained categories. The percentage of each predicted category from three independent
experiments was averaged and included in a chart (Fig. 3D).

Fractional inhibitory concentration (FIC) determination via checkerboard assay. An overnight
culture of A. baumannii was diluted 1:100 in LB and grown on a roller at 30°C to an OD600 of 0.2. Prior to
addition of bacterial culture, two different compounds were serially diluted, in a perpendicular manner
to each other, in a 96-well plate to obtain different concentrations of the two antibiotics in the combina-
tion. Then, the bacterial cultures were diluted 1:100 into each well and incubated for 24 h at 30°C.

The R FICs were calculated as

X
FICs ¼ A

MICA
1

B
MICB

where A and B are the MICs of each concentration in combination and MICA and MICB are the MICs of
each drug individually. Drug interaction is synergistic when the R FICs is #0.5 and otherwise is nonsy-
nergistic (75).
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