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Abstract 

Live-cell imaging is extremely common in synthetic biology research, but its ability to be applied reproducibly across laboratories can 
be hindered by a lack of standardized image analysis. Here, we introduce a novel cell segmentation method developed as part of a 
broader Independent Verification & Validation (IV&V) program aimed at characterizing engineered Dictyostelium cells. Standardizing 
image analysis was found to be highly challenging: the amount of human judgment required for parameter optimization, algorithm 
tweaking, training and data pre-processing steps forms serious challenges for reproducibility. To bring automation and help remove 
bias from live-cell image analysis, we developed a self-supervised learning (SSL) method that recursively trains itself directly from 
motion in live-cell microscopy images without any end-user input, thus providing objective cell segmentation. Here, we highlight this 
SSL method applied to characterizing the engineered Dictyostelium cells of the original IV&V program. This approach is highly general-
izable, accepting images from any cell type or optical modality without the need for manual training or parameter optimization. This 
method represents an important step toward automated bioimage analysis software and reflects broader efforts to design accessible 
measurement technologies to enhance reproducibility in synthetic biology research.
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1. Introduction
Synthetic biology has the potential to address crucial issues that 
society will face in the 21st century and beyond, ranging from cell-
based therapies (1) to climate change (2). However, for synthetic 
biology to have a measurable effect on society, basic research 
results must first be established as reproducible to transition 
into viable technologies. Reproducibility of key results is increas-
ingly seen as a benchmark of the quality and importance of the 
research, with research institutions and communities beginning 
to stress the need for reproducibility efforts and open dialogs as to 

how to effectively implement them (3–9). Crucial to this aim is the 

availability of tools that function identically across laboratories in 

biological research.

As participants in a real-time reproducibility project admin-

istered by the U.S. Defense Advanced Research Projects Agency 

(DARPA), referred to as Independent Verification & Validation 

(IV&V), the aim was to apply engineering principles of design 

and control to synthetic biology. At every step in conducting an 

experiment, if a human judgment is required in the process, it 

is a potential risk to successful replication. Thus, general ‘tools’ 
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that reduce or eliminate human judgment from a given step are 
extremely valuable for meaningful biological research. Much of 
the bandwidth of replication dialogs focuses on the methodology 
involved in the ‘front end’ of an experiment (10–13). However, less 
attention has been given to reproducibility at the ‘back end’ of 
an experiment: how the data are collected, processed and ana-
lyzed has significant impact on the ultimate interpretation of an 
experimental result (6, 14).

Here, we demonstrate the use of a novel back-end tool created 
in our IV&V program for reproducible cell segmentation through 
our efforts to replicate key findings from the Iglesias Laboratory 
in their program with DARPA’s Biological Technology Office. The 
original experiments tasked for replication (15), an overview of 
the IV&V program’s scope and broad lessons learned (11) and a 
detailed description and validation of the self-supervised learning 
(SSL) segmentation algorithm (16) are published elsewhere.

Cell segmentation poses significant technical challenges in bio-
logical research, with many recent efforts to aid the process. 
Broadly speaking, the segmentation algorithms are often clas-
sified as model-based (e.g. CellProfiler) (17) or machine learn-
ing (e.g. U-Net) (18) approaches, but neither is completely 
autonomous. Model-based approaches require manual tuning of 
multiple parameters in processing steps (e.g. intensity threshold-
ing), sometimes upwards of dozens. Along similar lines, machine 
learning requires the user to provide annotations on the curated 
data from which the algorithm is trained—a data-hungry pro-
cess known as supervised learning (SL). In either approach, there 
is human involvement, which poses a problem for reproducibil-
ity efforts. Algorithms that are tuned or trained at the onset can 
problematically miss relevant features as the cellular phenotypes 
or background characteristics evolve, inadvertently skewing the 
analysis (e.g. variations in label intensity from photobleaching, 
changes in morphology from blebbing). This requires intervention 
as experiments or experimental conditions shift, with the end user 
imparting judgment of both ‘when’ to retune/retrain and ‘how’ to. 
Especially concerning in SL is that the training process is inher-
ently subjective in nature with no established way to measure bias 
embedded in training.

This communication focuses on the novelty of SSL segmenta-
tion as applied to the engineered Dictyostelium cells, which pro-
poses unique challenges due to the range of morphological and 
dynamic phenotypes Dictyostelium cells exhibit. The goal was the 
development of software that enabled blind image segmentation 
by means of complete automation, thereby achieving best practice 
in image analysis reproducibility. General segmentation strategies 
are of enormous value to the biological research community, as 
evidenced by the significant efforts invested toward developing 
accurate and accessible segmentation tools (19). SSL segmenta-
tion is a natural extension of these efforts—expanding toward a 
general, configuration-free, single-cell segmentation method. The 
crux behind this advance is harnessing the dynamic nature of 
cells (motion) to distinguish what parts of images are cells versus 
the background. The result is a method that is robust across lab-
oratories and experimental configurations and does not require 
any input from the end user, showcasing a new approach to 
reproducible bioimage analysis.

2. Materials and methods
2.1. Cells and microscopy
In their original study, Miao et al. utilized Dictyostelium as a 
model system to investigate the role of signal transduction 
excitable networks (STENs) in cell migration, with perturbations to 

phosphatidylinositol-4,5-bisphosphate (INP54P) levels or Ras/Rap-
related activities controlling the migration modes of individual 
cells between amoeboid and keratocyte-like/oscillatory pheno-
types. Details on the engineered Dictyostelium cells and exper-
iments are in the original publication (15), with no significant 
deviations to report in their replication. A systematic approach, 
based on open communication channels and site visits, was taken 
to transfer experimental methodologies and their accurate execu-
tion by the IV&V team and performer laboratory (11), a laborious 
process that is increasingly being mitigated in part by platforms 
like protocols.io (20). Replicated experiments were conducted on 
Zeiss Axio Observer microscopes with either 10× phase contrast 
(0.45 NA), 10× transmitted light (TL, 0.3 NA) or 40× TL (1.4 NA) and 
imaged with a Zeiss Axiocam 702 CMOS or Hamamatsu ORCA R2 
CCD camera. All the data presented here are from three biologi-
cal replicates—meaning experiments were conducted on different 
days, on different batches of cells/reagents and on two differ-
ent microscopes/experimental setups. The Dictyostelium cells were 
observed for periods of ∼30 min both before and after the addition 
of 5 μM rapamycin (Rap− and Rap+, respectively).

2.2. Cell segmentation
The SSL algorithm is described and validated in detail elsewhere 
(16), but the overarching concept is outlined in Figure 1A. The crux 
of SSL is that the relative motion between consecutive images is 
leveraged to automatically label which parts of an image belong 
to a cell versus the background. Two consecutive images from a 
dataset are recursively used to self-train, from t to t + 1. The opti-
cal flow between images is calculated by the Farnebäck method 
(21), which is utilized as a dynamic feature vector to self-label 
pixels for cell or background classification. A threshold is auto-
matically determined, above which pixels are labeled ‘cell’ (red, 
hashed), and a similarly lower threshold is used to label pixels as 
‘background’ (green). Pixels with intermediate optical flow are left 
unclassified (solid yellow ‘unlabeled’ pixels). Additional static fea-
ture vectors (intensity gradients and entropy) are then generated 
for each of these self-labeled training pixels. These additional fea-
ture vectors are then used to train and generate a naive Bayesian 
classifier model that is applied to the entire image in a pixel-wise 
fashion, allowing for the unlabeled pixels by optical flow to be 
classified and cell-segmented. The entire self-training and reclas-
sification process begins from scratch on the next consecutive 
images, t + 1 to t + 2, and so on, in a completely automated fashion. 
The resulting advantage of SSL is that neither parameter tuning 
nor training images are required, as the self-supervised training 
data are updated for every image pair automatically. For esti-
mating reproducibility on manual segmentation, three support 
scientists on the IV&V program were tasked to manually segment 
over 50 individual Dictyostelium cells on representative 10× TL 
images, and the ground truth (GT) was established by the lead sci-
entist/liaison with the performer laboratory. Each user’s F1 score 
was calculated, and the resulting dissimilarity measurement is a 
simple percentage difference of F1 scores. 

where true positives (TP), false positives (FP) and false negatives 
(FN) are calculated in a pixel-wise fashion.

2.3. Phenotype classification
Cell segmentation was achieved via SSL, while phenotype analysis 
and classification strictly followed the methodology of Miao et al.
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Figure 1. SSL and bias in cell segmentation. (A) The underlying concept of SSL segmentation is that the relative motion between consecutive images (i) 
is automatically calculated via optical flow, after which pixels with high flow are automatically labeled as ‘cell’, and pixels with low flow are 
automatically labeled as ‘background’ (ii). Optical flow acts as a dynamic feature vector for automatically labeling training pixels, which then 
incorporate additional static feature vectors (intensity gradients and entropy) used to train and generate a naive Bayesian classifier model (iii). This 
model is then applied to the entire image in a pixel-wise fashion, allowing the unlabeled pixels by optical flow to be classified and cell-segmented (iv). 
(B) Three scientists were tasked to manually segment over 50 individual Dictyostelium cells on standard TL images of the replicated experiments 
similar to the performer’s microscope set-up (green (solid), red (dashed) and blue (dark solid) outlines). Their results were compared with one 
another/GT, and the accuracy (F1 score) is tabulated in the above dissimilarity matrix (right). Whether it is manual segmentation, tuning parameters 
or selecting and labeling data for training, human judgment is always required for current segmentation techniques and thus varies from person to 
person and laboratory to laboratory. Scale bar 50 μm.

as to not introduce potential discrepancies in results from differ-
ing types of analysis and are detailed under the ‘image analysis’ 
and ‘assignment of migratory modes’ of (15). Briefly, segmented 
cells that did not leave the field of view and did not interact with 
other cells were assembled into tracks of a 10-min time window. 
The segmented area was analyzed over the time of the track, and 
the coefficient of variation (CoV) of the cell area was calculated. 
A threshold of COVth = 0.12 was used to designate oscillator phe-
notypes that exhibit dynamic spreading and contracting behavior. 
For cells with a COV < COVth, the migration behavior was used to 
distinguish between amoeboid and fan phenotypes—phenotypes 
that exhibit highly persistent migration with the direction of 
movement perpendicularly relative to the long axis of the cell (cell 
polarity) are deemed fan phenotypes, and the rest are classified as 
amoeboid.

3. Results and discussion
The replicated experiments tested the hypothesis that the spec-
trum of migratory modes observed in cells arises from different 
thresholds of a STEN. Since components in the STEN undergo 
highly coordinated transient changes during network activation, 
‘clamping’ one component near the level it achieves during acti-
vation might alter the excitability of the entire network, offering 
an opportunity to test the idea. The Iglesias team has demon-
strated the use of a chemically inducible dimerization system in 
Dictyostelium to clamp INP54P at low levels, as would be expected 
to transiently occur during STEN activation (15). In their system, 

the addition of rapamycin to the extracellular media of INP54P-
transfected cells initiated a causal chain of events: the thresh-
old for network activation was lowered, the speed and range of 
propagating waves of signal transduction activity increased, actin-
driven cellular protrusions expanded and, consequently, the cell 
migratory mode transitions ensued from amoeboid to either an 
oscillatory or migratory (fan-shaped) phenotype. The resulting 
data from the replicated experiments are in the form of time-
lapse images of individual Dictyostelium cells, which need to be first 
segmented to extract their dynamic morphology and, ultimately, 
phenotype to be classified.

The original study utilized a combination of manual and 
model-based approaches to segment cells and track their migra-
tion (15). For the analysis of the replicated experimental data, 
both manual and conventional SL segmentation methods were 
deemed to include too much end-user judgment, bias and variabil-
ity (Figure 1B). Blinded analysis of data is the best practice, but for 
practical reasons, images were analyzed by the same researchers 
who designed and conducted the experiments. For a segmenta-
tion algorithm to be an effective tool for synthetic biology research 
that can be applied identically across different laboratories, we 
sought to abrogate the required human supervision present in cell 
segmentation by exploiting the motion present in all time-lapse, 
live-cell microscopy. The SSL method uses optical flow (21) to cal-
culate the relative motion between pairs of time-lapse images of 
cells (22). Pixels that undergo higher levels of optical flow between 
consecutive images are automatically self-labeled as ‘cell’, and 
those that do not are self-labeled as ‘background’ (Figure 1A). 
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Figure 2. SSL segmentation and tracking of distinct Dictyostelium phenotypes. (Left) Representative SSL segmentation overlays of (A) amoeboid, (B) fan 
and (C) oscillator cells. (Middle) The centroid tracks of each phenotype of migrations (10 min in the field of view), with each track a different color and 
reset to the same origin (n = 25 cells for ease of visualization). (Right) Temporal morphological profiles of individual cells highlight the distinct 
morphological characteristics of each phenotype, with normalized spread area versus time profile and migration speed shown. Source: See the original 
results in Figure 1C and D in Ref. (15) for comparison.

These labels are then used to extract the additional feature vec-
tors (entropy and gradients) to train a classification model to 
fully segment cells. This self-training occurs recursively on every 
pair of consecutive images, an appealing strategy to account for 
experimental drifts that lead to changes in image characteris-
tics. By leveraging the structure of time-lapse, live-cell data, this 
SSL approach achieves accurate single-cell segmentation across 
different cell types, optical modalities and microscope setups 
and does so in an entirely automated manner—encapsulating the 
requirements of a reproducible segmentation method (16).

The SSL approach readily segments Dictyostelium regardless of 
whether optical objective or imaging modality is used, achiev-
ing satisfactory accuracy (F1 score of 0.71), with performance 
(16) comparable to contemporary segmentation techniques like 
CellPose (23) and could be compiled into tracks for analysis. Cor-
roborating Miao et al., we observed three distinct phenotypes, 
which are shown in Figure 2. The amoeboid phenotype has the 
characteristics of a rounded morphology, small fluctuations in the 
spread area and low migration speeds/distances (Figure 2A). The 
fan phenotype exhibits a spread-out morphology with a broad 
lamellipodia typically at its leading edge. Fan phenotypes also 
exhibit extremely fast and highly persistent motion with moderate 
fluctuations in their spread area (Figure 2B). Oscillator phenotypes 
are characterized by large fluctuations in the spread area and fast 
motion with low persistence/directionality (Figure 2C). The mea-
sured average naive speed of cells approximately doubled from 
3.5 ± 1.8 to 6.9 ± 4 μm/min (n > 50 cells taken from three biologi-
cal replicates, ±standard deviation) 30 min after the addition of 
rapamycin, in good agreement with the original results (4.2 and 
7.3 μm/min, respectively) (15).

The heterogeneity within cell populations before and after 
rapamycin exposure is highlighted in Figure 3, showing the shift 
in phenotypes that arise from different STEN thresholds. The 
population of INP54P-transfected cells exhibited 25% oscillator 
phenotypes (SD 7%) based on a CoVth = 0.12 applied to SSL seg-
mented cells, higher than that reported by Miao et al. (∼7%). 
However, after exposure to rapamycin, the population shifted to 
23% fans and 43% oscillators (SD 5%), in good agreement with that 
given by Miao et al. (∼20 and 50%, respectively) (15).

This IV&V pilot program was unique in that it was built into 
the grants awarded by DARPA’s Biological Technologies Office 
(11), but it remains unclear if such efforts will be adopted more 
widely. The sheer cost in both resources and time, as well as the 
unclear recognition of conducting replication studies, creates a 
high barrier-to-entry for IV&V efforts (24, 25). Thus, to encour-
age replication studies, the field should strive for the creation 
of automated tools that can be easily implemented by different 
research groups. We leveraged our opportunity as participants in 
an IV&V program to create such a tool to address the problem of 
cell segmentation, which is an important measurement in most 
biological research. Here, we highlight a configuration-free SSL 
segmentation method and demonstrate that it can aid in repli-
cating research on the back end by removing human judgment 
from the process of cell segmentation. Our replicated experiments 
analyzed via automated SSL segmentation agreed well with the 
original results, despite the performing laboratory’s use of manual 
and model-based approaches for cell segmentation.

The automation accompanied by SSL segmentation removes 
the need for manual labor, saving time and reducing potential 
bias—ensuring every laboratory is using the same tool in the 
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Figure 3. SSL-enabled phenotype classification. (A) Fractions of amoeboid (blue), fan (green) and oscillator (red) phenotypes before and 30 min after 
the addition of 5 μM rapamycin (n > 50 cells, three biological replicates; error bars indicate ±1 standard deviation). (B) Temporal profiles of normalized 
areas of 10 representative cells before rapamycin and (C) 30 min after, with each cell track initialized to zero. Source: See the original results 
in Figure 1E and F in Ref. (15) for comparison.

same manner. However, automation has the trade-off of poten-
tially becoming a ‘black box’ for end users. We tried to avoid 
this by focusing on motion as the main feature vector used 
for self-labeling, which is more intuitive and interpretable com-
pared to many machine learning methods. Future work will focus 
on simulating images from fixed immunofluorescence or con-
fluent cell data in order to enable SSL’s application to static 
images. To the best of our knowledge, this SSL segmentation 
represents the first of its kind method and an important step 
toward the development of general automated bioimage analysis
software.

Data availability
The SSL application is available for download at Zenodo as (1) a 
stand-alone Graphical User Interface download for Windows, Mac 
and Linux operating systems and (2) SSL Matlab source code with 
user interface application (https://zenodo.org/record/7108601).

The raw data sets used in this replication study are available at 
https://zenodo.org/record/7429795#.Y5ockXbMIuU.
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