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ABSTRACT

Aberrant expression of protein kinase C (PKC) isozymes is a hallmark of
cancer. The different members of the PKC family control cellular events
associated with cancer development and progression. Whereas the clas-
sical/conventional PKCα isozyme has been linked to tumor suppression
in most cancer types, here we demonstrate that this kinase is required
for the mitogenic activity of aggressive human prostate cancer cells dis-
playing aberrantly high PKCα expression. IHC analysis showed abnormal
upregulation of PKCα in human primary prostate tumors. Interestingly,
silencing PKCα expression from aggressive prostate cancer cells impairs
cell-cycle progression, proliferation, and invasion, as well as their tumori-
genic activity in a mouse xenograft model. Mechanistic analysis revealed
that PKCα exerts a profound control of gene expression, particularly over
genes and transcriptional networks associated with cell-cycle progression
and E2F transcription factors. PKCα RNAi depletion from PC3 prostate
cancer cells led to a reduction in the expression of proinflammatory cy-
tokine and epithelial-to-mesenchymal transition (EMT) genes, as well as a

prominent downregulation of the immune checkpoint ligand PD-L1. This
PKCα-dependent gene expression profile was corroborated in silico us-
ing human prostate cancer databases. Our studies established PKCα as a
multifunctional kinase that plays pleiotropic roles in prostate cancer, par-
ticularly by controlling genetic networks associated with tumor growth
and progression. The identification of PKCα as a protumorigenic kinase
in human prostate cancer provides strong rationale for the development of
therapeutic approaches toward targeting PKCα or its effectors.

Significance: PKCα was found to be aberrantly expressed in human
prostate cancer. Silencing the expression of this kinase from aggressive
prostate cancer cell lines reduces their proliferative, tumorigenic, and in-
vasive properties. In addition, our findings implicate PKCα as a major
node for transcriptional regulation of tumorigenic, inflammatory, and
EMT networks in prostate cancer, highlighting its potential relevance as a
therapeutic target.

Introduction
Prostate cancer is the second leading cause of cancer-related deaths among
men in the United States, with approximately 268,500 new cases and approx-
imately 34,600 projected deaths in the United States for 2022 (1). Although
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patients with prostate cancer generally respond favorably to available thera-
pies, the disease eventually progresses tometastatic castration-resistant prostate
cancer (mCRPC), which is hard to eradicate and is ultimately lethal (2, 3). The
initiation and progression of prostate cancer is driven by genetic and epigenetic
changes leading to dysregulation of oncogenic signal transduction pathways
mostly linked to the acquisition of proliferative and invasive traits. Hallmarks
of prostate cancer include the functional inactivation and/or deletion of tumor
suppressors (e.g., PTEN, NKX3.1), genomic rearrangements (e.g., TMPRSS2-
ERG), altered growth factor signaling (e.g., IGF-1R, FGFR, ErbB receptors), and
aberrant signaling (e.g., PI3K/Akt, Src; refs. 4–6).

The protein kinase C (PKC family) has been recognized as a major player in
the progression of multiple cancers, including prostate cancer. Members of the
three PKC classes (“conventional/classical” cPKCs α, β, and γ; “novel” nPKCs δ,
ε, η, and θ; and “atypical” aPKCs ζ and ι) have been widely implicated in funda-
mental cancer-driving events, such as cell proliferation, survival, motility, and
invasion. cPKCs and nPKCs, the PKCs activated by the lipid second messenger
diacylglycerol (DAG) and phorbol esters, have a remarkably high functional
complexity. Indeed, these kinases could wield either tumor-promoting or
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tumor-suppressive activities depending on the cell type (7–9). While PKC
isozymes are rarely mutated in cancer, upregulation of prooncogenic PKCs and
downregulation of tumor-suppressing PKCs are common events in epithelial
tumors. This distorted pattern may result in rerouting DAG signals through
abnormally overexpressed PKCs, ultimately boosting mitogenic and survival
responses through oncogenic signaling pathways such as ERK, NFκB, PI3K,
and STAT3 (10). Aberrant PKC isozyme expression has been also linked to
epithelial-to-mesenchymal transition (EMT), a dynamic process by which can-
cer cells acquire invasive properties (11–14). In prostate cancer, PKCε expression
is causally associated with disease initiation and progression, as previously es-
tablished using transgenic mouse models. Conversely, overexpression of other
DAG-regulated PKCs in the mouse prostate, namely PKCα and PKCδ, failed
to confer a tumorigenic phenotype (15–17). Consistent with these in vivo stud-
ies, PKCα and PKCδ mediate proapoptotic responses in androgen-dependent
prostate cancer cellular models, such as LNCaP cells (18–20). Indeed, there is
a vast literature describing PKCα as a tumor-suppressive kinase in several can-
cers, such as lung, colon, endometrial, and skin cancer (21–26). Intriguingly,
PKCα has also been reported to be tumor-promoting kinase, for example in
triple-negative breast cancer (26–28). This dichotomy, together with the limited
information available in models of prostate cancer, prompted us to investigate
the role of DAG-regulated PKCα in this malignancy in further detail.

Here, we show that PKCα is upregulated in primary prostate cancer, and
its elevated levels in aggressive prostate cancer cell lines causally associate
with proliferative, tumorigenic, and invasive behaviors. We found PKCα to
be at the core of gene transcriptional networks associated with the progres-
sion of prostate cancer, playing a stringent control over mitogenic, invasive,
inflammatory, and tumor evasion gene expression signatures.

Materials and Methods
Cell Lines and RNAi Interference
Authenticated human prostate cancer cells were obtained from ATCC and cul-
tured in RPMI medium supplemented with 10% FBS, 2 mmol/L glutamine,
100 U/mL penicillin, and 100 μg/mL streptomycin). Cells are tested for
Mycoplasma at least twice a year, and normally used at low passage (generally
<10 passages).

For the generation of stably depleted PKCα cell lines, we used a short hair-
pin RNA (shRNA) lentiviral approach. Cells were infected with MISSION
shRNA lentiviruses (Sigma-Aldrich) designed for the human PRKCA gene
(TRCN0000196730, TRCN0000233512), and followed by puromycin selection,
as described previously (29).

For transient silencing of PKCα, we used three different siRNA duplexes (#1
and #2 as in ref. 12, #3 from Dharmacon, catalog no. J-003523-18-0005). As
non-target control (NTC), we used D-001810-02-05 ON-TARGETplus non-
targeting siRNA. siRNA duplexes were transfected using Lipofectamine RNAi
Max (Invitrogen), as described previously (30, 31).

Western Blots
Western blots were done essentially as described previously (31). Briefly, cells
were harvested in lysis buffer containing 50 mmol/L Tris-HCl, pH 6.8, 10%
glycerol, and 2% β-mercaptoethanol. Cell lysates were subjected to SDS-
PAGE and transferred to polyvinylidene difluoride membranes (Millipore

Corporation). After blocking with 5% milk or 5% BSA in TBS/0.1% Tween for
1 hour, membranes were incubated overnight with the following primary anti-
bodies: anti-PKCα anti-PKCδ, anti-PKCε (Cell Signaling Technology, catalog
nos. 2056, #2058, and #2083, respectively), anti-phospho-Rb (Cell Signaling
Technology, catalog no. 2181), anti-caspase-3 (Cell Signaling Technology, cat-
alog no. 9662), anti-caspase-9 (Cell Signaling Technology, catalog no. 9508),
anti-PARP1 (Cell Signaling Technology, catalog no. 9532), anti-vimentin (Cell
Signaling Technology, catalog no. 5741), anti-Zeb1 (Cell Signaling Technol-
ogy, catalog no. 3396), anti-AXL (Cell Signaling Technology, catalog no. 8661),
anti-E-cadherin (R&D, catalog no. AF748), anti-PD-L1 (Cell Signaling Tech-
nology, catalog no. 13684), anti-vinculin (Sigma-Aldrich, catalog no. V9131), or
β-actin (Sigma-Aldrich, catalog no. A5441). Membranes were then incubated
for 1 hour with either anti-mouse or anti-rabbit secondary antibodies conju-
gated to horseradish peroxidase (Bio-Rad Laboratories). Bands were visualized
and subjected to densitometric analysis using an Odyssey Fc system (LI-COR
Biotechnology).

Cell Proliferation and Viability Assay
Cell number was determined using a Bio-Rad TC20 automated cell
counter. Cell viability was assessed using an 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl-2H-tetrazolium bromide (MTT) colorimetric assay in 96-well plates.
Absorbance at 570 nm was determined in a plate-reader spectrophotometer
(EMax Plus Microplate Reader, Molecular Devices Inc.).

Invasion Assay
ABoyden chamber assay was used, as described previously (17, 29). Briefly, cells
were trypsinized, suspended in 0.1% BSA/RPMI, and seeded (2.5 × 104 cells/
well) in the upper compartment of a Boyden chamber (NeuroProbe). A 12-μm-
pore Matrigel-coated polycarbonate membrane was used to separate the upper
and lower compartments. In the lower chamber, RPMI medium containing
10% FBS was used. After an incubation period of 16 hours at 37°C, membranes
were recovered and cells on the upper side of the membrane (nonmigrating)
were wiped off the surface. Migrating cells on the lower side of the membrane
were fixed and stained with the Hema 3 Staining kit (Thermo Fisher Scientific).
Migrating cells in each well were counted in five random fields by contrast mi-
croscopy using an Eclipse E200 Nikon microscopy (4X magnification) and the
ImageJ/Fiji software.

Tumorigenesis in Nude Mice
Male athymic nude mice (Foxn1nu/Foxn1nu) were purchased from Harlan Lab-
oratories. Animals were maintained in a temperature-controlled room located
at the University of Pennsylvania School of Veterinary Medicine (Philadelphia,
PA) and fed ad libitum. All animal studies were carried out in strict accor-
dance with the University of Pennsylvania Institutional Animal Care and Use
Committee guidelines.

PC3 cells (1 × 105) were injected subcutaneously into the flanks of 6-week-old
male athymic nude mice (Foxn1nu/Foxn1nu). Tumor formation was monitored
for 37 days. Tumor volumewas determined with calipermeasurements and cal-
culated using the formula L× L×H× 0.5238, where L is the long diameter,
L is the short diameter, and H is the height of the tumor.

RNA Isolation and Real-time Quantitative PCR
Total RNA was extracted from subconfluent plates using the RNeasy kit as di-
rected by the manufacturer (Qiagen), as described previously (31). Briefly, 1 μg
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of RNA per sample was reverse transcribed using the TaqMan reverse tran-
scription reagent kit and random hexamers as primers (Applied Biosystems).
Primers for individual genes were purchased from Applied Biosystems. PCR
amplifications were performed using an ABI PRISM 7300 Detection System in
a total volume of 20 μL containing Taqman Universal PCR Master Mix (Ap-
plied Biosystems), commercial target primers (300 nmol/L), the fluorescent
probe (200 nmol/L), and 1 μL of cDNA. PCR product formation was contin-
uously monitored using the Sequence Detection System software version 1.7
(Applied Biosystems). The FAM signal was normalized to endogenous UBC
(housekeeping gene).

RNA Sequencing Data Analysis
RNAwas isolated from triplicate subconfluent plates using the RNeasy kit. RNA
concentration and integrity were measured on an Agilent 2100 Bioanalyzer
(Agilent Technologies). Only RNA samples with RNA integrity values (RIN)
over 8.0 were considered for subsequent analysis. One of the triplicate sam-
ples in the PKCα2 siRNA group behaved as an outlier based on unsupervised
analysis of the transcriptomic data, and therefore this group remained as du-
plicate samples. RNA samples were processed for directional RNA sequencing
(RNA-seq) library construction and sequencing at the Next-Generation Se-
quencing (NGS) Core facility of the Perelman School ofMedicine, University of
Pennsylvania (Philadelphia, PA).We performed 100 nt singled-end sequencing
using an Illumina HiSeq4000 platform and obtained approximately 20 million
reads per sample. The short-sequenced reads were mapped to the human refer-
ence genome (hg19) with the splice junction aligner Rsubread R/Bioconductor
package (v2.6.3). We employed featureCounts function to calculate the gene
expression abundance using the aligned BAM files. To identify differentially
expressed genes (log2 fold change > ±1, FDR < 0.001) between the three dif-
ferent siRNA duplexes (α1, α2, or α3) with the NTC siRNA and parental cells,
we employed the edgeR R/Bioconductor package based on the normalized log2
based count per million values.

For functional enrichment analyses (FEA), we usedClueGoCytoscape’s plug-in
(http://www.cytoscape.org/) and the InnateDB resource (http://www.innatedb.
com/) based on the list of dysregulated transcripts. Gene set enrichment analy-
sis (GSEA) of transcription factor binding sites (TFBS) was performed with the
R/Bioconductor package clusterProfiler based on the TFBS signature obtained
from MSigDB (c3.tft.v7.4.entrez.gmt). RNA-seq expression profiles of 497 pri-
mary prostate adenocarcinomas from The Cancer Genome Atlas Prostate
Adenocarcinoma (TCGA-PRAD) project were downloaded from the UCSD-
Xena resource (https://xena.ucsc.edu/). Prostate carcinomas were divided into
low (n = 75) or high (n = 134) PRKCA expression levels according to the Step-
Miner one-step algorithm for further analysis of PKCα-modulated genes. Data
integration and visualization of differentially expressed transcripts were done
with R/Bioconductor and the MultiExperiment Viewer software (MeV v4.9).

Correlation Analyses
To explore associations between PRKCA mRNA levels and EMT phenotype
of primary prostate carcinomas, EMTome resource (http://www.emtome.org/)
was employed to extract three relevant EMT gene expression signatures identi-
fied in invasive prostate carcinomas (32–34). PKCα mRNA expression levels,
the EMT gene expression signatures, and their derived EMT scores from
TCGA-PRAD dataset were directly retrieved and visualized using the UCSC
Xena resource (https://xenabrowser.net/). PKCαmRNA levels and EMT scores
for each of the EMT signatures across all primary invasive prostate carcinomas

were used for correlation analysis with R software. EMT scores were computed
as an average weighted sum of the gene expression levels that constitute each
EMT signature.

In a separate association analysis between PKCα expression and androgen re-
ceptor (AR), we carried out a meta-analysis of correlation coefficients obtained
from eight independent prostate cancer datasets using the DerSimonian-
Laird (DSL) random-effect method with correlation coefficients as effect sizes.
Briefly, PRKCA andARmRNAprofiles from primary prostate carcinomas were
retrieved from Gene Expression Omnibus (GSE41967 and GSE70768), Can-
cerTool (GSE3325, GSE3933, GSE21032, GSE35988, and MSKCC) and UCSC
Xena (GDC-TCGA-PRAD) resources. Pearson correlation coefficients were in-
dependently computed from each study in R and subsequently integrated into
a meta-analysis using metacor R package.

Cytokine Measurements
PC3 cells were transfected with siRNA duplexes for PKCα or NTC. After 48
hours, medium was replaced, and conditioned medium (CM) was collected
after 12 hours (IL8/CXCL8) or 24 hours (GRO). Cytokines in the CM were de-
termined using the Quantikine ELISA kit for human IL8 (R&D Systems) and
the human GRO ELISA kit (Invitrogen), following the protocols provided by
the manufacturers.

Tissue Microarray and IHC
For each case of prostatic adenocarcinoma, one slide most representative of
the overall Gleason score and stage was identified. The corresponding paraffin-
embedded tissue block was used to construct a tissue microarray (TMA) using
1 mm coring needle (Beecher Tissue Arrayer MTA-1). All 88 cases were rep-
resented at least in triplicate resulting in production of four TMA blocks that
contained a total of 284 cores. Non-neoplastic liver, kidney, spleen, and ton-
sil of patients operated for diseases other than cancer was also included in the
same blocks as controls. For staining, we used an anti-PKCα antibody (Abcam,
ab32376, clone Y124, a validated antibody for IHC in human specimens) at a
1:1,000 dilution. Stainingwas performed on a Leica Bond-IIITM instrument us-
ing the Bond Polymer Refine Detection System (Leica Microsystems DS9800).
Heat-induced epitope retrieval was performed for 20 minutes with ER2 so-
lution (Leica Microsystems AR9640). All the experiments were performed at
room temperature. For calculation of the H score, the intensity of staining was
graded on a scale of 0 to 3, with 0 being no staining and 3 being strongest
staining. The percentage of tumor cells staining was calculated over multiple
high-power fields in the region over the entire tumor. The staining was nor-
malized to compare different tumors by multiplying the intensity of staining
with the percentage of tumor cells staining.

Statistical Analysis
For most experiments, statistical analysis (Student t test, ANOVA) was per-
formed usingGraphPad Prism software built-in analysis tools. A P value< 0.05
was considered statistically significant.

Data Availability Statement
Raw data for this study were generated at the NGS Core facility of the Perelman
School of Medicine, University of Pennsylvania (Philadelphia, PA). Derived
data supporting the findings of this study are available in Supplementary
Table S1. Other data generated in this study are available within the article and
its Supplementary Data.
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Results
Upregulation of PKCα in Human Prostate Cancer
The aberrant PKC signaling observed in multiple cancer types foresees im-
portant roles for this pathway in disease progression (7, 8), as we previously
established for PKCε in prostate cancer (15–17). PKCα, a DAG-responsive
PKC with dual effects either as a tumor promoter or suppressor (21–28), has
been poorly studied in prostate cancer. Examination of PKCα expression in

established prostate cancer cell models showed a prominent upregulation
in PC3, PC3-ML, and DU145 prostate cancer cell lines compared with less
aggressive LNCaP cells and its sublines (C4, C4-2) or 22RV1 cells (Fig. 1A).

Next, we took advantage of a TMA comprising prostate cancer specimens from
88 patients and evaluated PKCα staining by IHC using an anti-PKCα antibody
previously validated in PKCαwild-type versus knockout mice (25), followed by
a quantitative analysis reported as H score. We observed heterogenous PKCα

FIGURE 1 PKCα upregulation in aggressive prostate cancer cells. A, Left, PKCα expression in prostate cancer cells, as determined by Western blot
analysis. Right, Densitometric analysis. Results are expressed as mean ± SEM (n = 4). B, Representative IHC staining of PKCα in prostate cancer
specimens. Left, Prostate cancer with low PKCα expression. Right, Prostate cancer with high PKCα expression. C, Enhanced view of PKCα staining in a
prostate cancer specimen. D, H score is plotted for normal and cancer areas stainings with an anti-PKCα antibody. The mean and P value are indicated.
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staining across different specimens, with cases displaying very high staining and
others with weak or no staining. Representative examples of TMAmicrographs
are shown in Fig. 1B. A detailed analysis revealed low or no intensity staining in
nontumor areas, whereas PKCα staining was primarily detected in those areas
defined as adenocarcinoma.An enhanced view is shown in Fig. 1C.Quantitative
analysis of PKCα immunostaining in tumor areas relative to normal areas is
depicted in Fig. 1D.

PKCα Mediates Human Prostate Cancer Cell Growth
To begin elucidating the functional consequences of PKCα upregulation in ag-
gressive cellular models of prostate cancers, we first analyzed the effect of PKCα

RNAi silencing on proliferation. Three different siRNA duplexes were used to
knockdown PKCα in PC3 and DU145 cell lines. These duplexes caused >80%
PKCα depletion in all cases without affecting the expression of PKCδ and PKCε,
the other DAG-responsive PKCs expressed in these cells (Fig. 2A). PKCα de-
pletion lasted for at least >120 hours posttransfection (Supplementary Fig. S1).
Silencing PKCα conferred slower growth rate properties to both PC3 (Fig. 2B,
top) and DU145 cells (Fig. 2B, bottom) when compared with parental cells
or cells subjected to NTC RNAi. Cell-cycle distribution analysis using FACS
revealed an accumulation of PKCα-depleted PC3 and DU145 cells in G0–G1,
with a subsequent reduction in S-phase (Fig. 2C). 5-Ethynyl-2′-deoxyuridine
(EdU) incorporation assays showed a significant decrease in the fraction of
cells undergoing DNA synthesis in PKCα-depleted PC3 or DU145 cells relative
to control cells (Fig. 2D). Consistent with the inhibition in G1 to S transition,
a prominent Rb dephosphorylation was observed in PKCα knockdown cells
(Supplementary Fig. S2A). We were unable to detect any significant changes in
the expression of apoptotic markers, namely cleaved PARP1, cleaved caspase-3,
and cleaved caspase-9, in PC3 or DU145 cells subjected to PKCα RNAi deple-
tion (Fig. 2E). There was no significant sub-G0–G1 population in the FACS
analysis in PKCα-depleted cells, consistent with the absence of apoptotic cells
(Supplementary Fig. S2B). In addition, there was no additive growth inhibitory
effect between PKCαRNAi and treatment with either the dual Cdk4/6 inhibitor
palbociclib/PD 0332991 (Supplementary Fig. S3A) or the Cdk4 inhibitor NSC
625987 (Supplementary Fig. S3B). Altogether, these results strongly support the
requirement of PKCα for mitogenesis in aggressive prostate cancer cells.

Next, to examine whether PKCα is involved in in vivo prostate cancer
tumor growth, we generated stably depleted PKCα PC3 cell lines using
shRNA lentiviruses. Like the siRNA-mediated PKCα transient approach, sta-
ble knockdown was highly specific for PKCα without significant changes in
the expression of other DAG-regulated PKCs (Fig. 3A). Upon subcutaneous
inoculation of parental PC3 cells into nude mice, a tumor growth response was
readily observed. Notably, PKCα-depleted PC3 cells displayed a significant re-
duction in tumor growth compared with parental PC3 cells or cells subjected
to NTC RNAi, as determined by measurements of tumor volume (Fig. 3B and
C) and weight (Fig. 3D). PKCα-depleted tumors exhibit reduced Ki67 staining,
a marker for mitotic index, as well as diminished phospho-Erk staining com-
pared to tumors from parental or NTC PC3 cells. We detected TUNEL-positive
areas in PKCα-depleted tumors (Fig. 3E), suggesting that PKCα may confer to
some degree an anti-apoptotic response in an in vivo setting.

PKCα Expression Correlates with EMT Markers and is
Required for Prostate Cancer Cell Invasion
Recent studies linked PKC isozymes to EMT in a variety of tumor types (11–14,
35). We used the Cancer Cell Line Encyclopedia (CCLE) to investigate whether
there is an association between the expression of PKCα and markers of the

mesenchymal phenotype in prostate cancer cell lines. This analysis revealed a
striking positive correlation between the expression of PKCα (PRKCA gene)
and mesenchymal markers vimentin, ZEB1, ZEB2, and AXL in prostate cancer
cell lines (Fig. 4A). A similar positive trend between PKCα and EMT markers
was detected in human prostate cancer specimens upon inquire of TCGA-
PRAD dataset (Fig. 4B). To further explore the association between PRKCA
and EMT phenotype, EMTome resource (http://www.emtome.org/) was em-
ployed to extract three relevant EMT gene expression signatures identified in
prostate carcinomas (32–34). A significant positive correlation between PRKCA
and prostate cancer EMT signatures was observed in all cases (Fig. 4C). Proof
of principle for the association between PKCα expression and EMT was es-
tablished by Western blot analysis using LNCaP cell lines and 22RV1 as an
“epithelial” model and PC3/PC3-ML/DU145 cells as “mesenchymal” models.
PC3, PC3-ML, and DU145 cell lines, which aberrantly express PKCα, displayed
high expression of mesenchymal markers vimentin and AXL as well as E-
cadherin downregulation, whereas the opposite was true for LNCaP/22RV1 cell
lines (Fig. 4D).

Because the mesenchymal phenotype of cancer cells is linked to highly inva-
sive traits, we next investigated the effect of knocking down PKCα on prostate
cancer cell invasion. Assessment of PC3 and DU145 invasion through Matrigel
using a Boyden chamber assay showed a major reduction in transwell migra-
tion in PKCα knockdown PC3 and DU145 cells relative to their corresponding
parental cells or cells transfected with NTC siRNA (Fig. 4E). Similar results
were observed using stably PKCα depleted PC3 andDU145 prostate cancer cells
(Supplementary Fig. S4).

Next, we explored a potential relationship between PKCα andAR expression by
analyzing eight prostate cancer datasets (seeMaterials andMethods for details).
Although a general pattern could not be defined, a trend for negative corre-
lation was observed in some cases, reaching statistically significance in four
datasets. No negative correlation between PRKCA and AR expression could
be found in TCGA-PRAD. Nonetheless, a meta-analysis of the eight datasets
showed a statistically significant negative correlation between PRKCA and AR
(Supplementary Fig. S5).

Characterization of the PKCα Transcriptome in Prostate
Cancer Cells
Previous studies from our laboratory established key roles for DAG-regulated
PKCs in the control of gene expression (17, 31, 36, 37). To begin elucidating the
molecular changes associated with PKCα proliferative and invasive activities in
prostate cancer, we carried out a whole transcriptome analysis in PC3 cells. We
used five cohorts (parental, NTC siRNA, PKCα siRNA #1, #2, and #3). RNAwas
extracted 48 hours after transfection of the corresponding siRNA duplexes and
subjected to RNA-seq. A comparison of transcriptome profiles was conducted
to identify differentially regulated genes using the edgeR test (FDR< 0.001).
A 2-fold change relative to parental cells was used as a cutoff. Cluster den-
drogram revealed significant overlapping between parental and NTC cells, as
well as between the three different PKCα knockdown cell lines (Fig. 5A). Using
the described stringent cutoffs, we identified 848 upregulated genes and 602
downregulated genes overlapped by all three PKCα RNAi sequences relative
to NTC (P < 0.05; Fig. 5B and C). A complete list of PKCα-regulated genes is
shown in Supplementary Table S1. As expected, the PKCα gene (PRKCA) was
a top downregulated gene (>99% depletion), whereas expression of other PKC
genes remained unchanged. The AR gene was not among the PKCα-regulated
genes (see Supplementary Table S1). Validation of the RNA-seq analysis was
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FIGURE 2 Silencing PKCα from aggressive prostate cancer cells induces cell growth arrest. PC3 or DU145 cells were transfected with three different
PKCα (α1, α2, or α3) or NTC siRNA duplexes. Twenty-four hours later, cells were serum starved for 24 hours and experiments carried out at the
indicated times. P, parental. A, Expression of PKC isozymes was determined by Western blot analysis at day 3 after transfection. Representative
Western blots are shown. B, Effect of PKCα RNAi depletion on cell number. Left, Representative micrographs 1–5 days after transfection of siRNA
duplexes. Right, Cell number was expressed as mean ± SD (n = 3). An additional experiment gave similar results. C, Percentage of cells in S-phase
48 hours after transfection with siRNA duplexes, as determined by flow cytometry in EdU-labeled cells. Results are expressed as mean ± SE (n = 3).
D, Cell-cycle distribution was determined by flow cytometry 48 hours after transfection with siRNA duplexes. Left, Representative flow cytometry
charts. Right, Cell-cycle distribution in a representative experiment. E, Expression of apoptosis markers (cleaved PARP1, cleaved caspase 3, and cleaved
caspase 9). A representative experiment is shown. *, P < 0.05; **, P < 0.01; ****, P < 0.0001 versus NTC.
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FIGURE 3 Silencing PKCα reduces PC3 cell tumorigenic activity in nude mice. PC3 cells were subjected to stable PKCα depletion using two different
shRNA lentiviruses, followed by puromycin selection. Cells were inoculated subcutaneously into nude mice, and tumor formation was followed for the
time indicated in the figure. A, Expression of PKC isozymes in the inoculated cell lines, as determined by Western blot analysis. B, Pictures of tumors
isolated from all mouse cohorts. C, Time-course analysis of tumor formation Results are expressed as mean ± SD (n = 8). D, Tumor weight was
determined after sacrificing mice at day 37 postinoculation with the different PC3 cell lines. Results are expressed as mean ± SD (n = 8).
E, Representative IHC images for Ki67, phospho-ERK, and TUNEL. NTC, non-target control shRNA lentivirus. ****, P < 0.0001 versus NTC.
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done by Q-PCR using specific probes for the three top downregulated genes
(ESM, BCLA, and PRKCA) and the three top upregulated genes (DMBT,
GLYATL, and ABCB; Fig. 5D).

By means of pathway enrichment analysis using REACTOME and Kyoto
Encyclopedia of Genes and Genomes (KEGG), we were able to identify promi-
nent enrichment of pathways associated with cell-cycle progression, DNA
replication, and regulation of the extracellular matrix (ECM; Fig. 6A). Gene
Ontology (GO) analysis provided similar enrichment in gene sets associated
with mitogenesis and ECM function, as well as processes related to cell migra-
tion and immune responses (Fig. 6B). Complete lists of pathway enrichment
analysis and GO enrichment analysis regulated by PKCα can be found in
Supplementary Table S2. Further analysis using GSEA for quantitative determi-
nation of activated versus suppressed functional enrichments, clearly revealed
a major suppression of pathways associated with cell proliferation in PKCα-
silenced cells, as depicted in Fig. 6C and D. Top suppressed pathways include

“chromosome segregation,” “mitotic cell-cycle process,” “DNA replication,”
“mitotic cell-cycle phase transition,” and “DNA replication.”

An analysis of TFBS enrichment in PKCα-regulated genes was performed
using the R/Bioconductor package clusterProfiler and the TFBS signatures
available at the Molecular Signatures Database. Results depicted in Fig. 6E
showed a striking enrichment for E2F TFBSs in the promoters of genes which
are downregulated when PKCα is silenced. We also noticed an enrichment
for Oct-1 TFBSs in the promoters of genes upregulated upon PKCα silenc-
ing. A complete list of transcriptional binding sites regulated by PKCα is
presented in Supplementary Table S3. Notably, this E2F signature is sup-
pressed in PKCα knockdown cells, a finding that fits with the expected G1

arrest and enhanced E2F activity resulting from Rb dephosphorylation upon
PKCα silencing. These results undoubtedly place PKCα as a major hub for
the control of transcriptional pathways associated with prostate cancer cell
proliferation.

1380 Cancer Res Commun; 2(11) November 2022 https://doi.org/10.1158/2767-9764.CRC-22-0170 | CANCER RESEARCH COMMUNICATIONS



Protein Kinase C Alpha in Prostate Cancer

A B

C D

E

G1–S

cell-cycle

cell-cycle

cell-cycle

cell cycle

-log10(Padj) -log10(Padj)

G1–S

FIGURE 6 FEAs for PKCα regulates gene expression in prostate cancer cells. A, FEA of pathways identified as affected by PKCα silencing in PC3
cells. B, FEA of GO biological processes affected by PKCα silencing in PC3 cells. C, GSEA of the activated and suppressed bioprocesses in PKCα

silencing in PC3 cells. D, GSEA of the activated and suppressed KEGG pathways in PKCα silencing in PC3 cells. E, GSEA of the activated and
suppressed TFBS upon PKCα silencing in PC3 cells based on the TFBS Molecular Signatures Database (MsigDB).

Differential Expression of EMT Genes in Human Prostate
Tumors Based on PKCα Expression
To further ascertain the biological relevance of the PKCα gene signature iden-
tified by RNA-seq in PC3 cells, we next analyzed TCGA-PRAD data collection.
Briefly, a group of 498 patients with primary prostate adenocarcinomas were
classified into “Low PKCα” or “High PKCα”mRNA expression levels according
to the StepMiner one-step algorithm, establishing 134 tumors and 75 tumors in

each category, respectively (Fig. 7A). Differentially expressed genes were scru-
tinized with the MultiExperiment Viewer software (MeV v4.9), revealing 116
genes in the “High PKCα” group which are downregulated in PKCα silenced
PC3 cells, and 196 genes in the “Low PKCα” group which are upregulated in
PKCα-depleted PC3 cells (Fig. 7B). Hence, a significant overlap exists between
PKCα-regulated genes in the RNA-seq analysis and a human prostate cancer
database.
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Next, we carried out an analysis for selected genes associated with epithelial
and mesenchymal phenotypes. Interestingly, RNA-seq analysis showed signifi-
cant downregulation of ZEB, ZEB, SNAI, and SNAI, as also determined in
the correlation analysis presented in Fig. 4B. Therefore, PKCα upregulation is
associated with the expression of these EMT transcription factors. No changes
were observed in TWIST, and TWIST was not detected in the RNA-seq pro-
filing. The RNA-seq in PC3 cells also revealed prominent downregulation of
AXL and vimentin (VIM) upon PKCα silencing (Fig. 7C, left). These results
display a remarkable overlap with expression data from TCGA-PRAD, which
shows a major upregulation of these EMT markers in “High PKCα” human
prostate adenocarcinomas relative to the “Low-PKCα” patient group (Fig. 7C,
right). A significant upregulation of CDH was detected upon PKCα silencing
in the RNA-seq profile; however, this was not observed in the human TCGA-
PRAD database. Violin plots depicted in Fig. 7D indicate the expression of
mesenchymal markers in “High PKCα” versus “Low-PKCα” groups with the
corresponding P values.

PKCα Controls the Expression of Proinflammatory
Cytokines and PD-L1 in Human Prostate Cancer
A focused analysis of cytokine expression from the RNA-seq data revealed
prominent downregulation of proinflammatory cytokines in PKCα-depleted
PC3 cells, including IL1β, IL6, IL8 (CXCL8), CXCL1 (GRO1), CXCL3 (GRO3),
and CXCL6 (Fig. 8A, left). This is remarkable because most of these cy-
tokines have important tumor-promoting roles in prostate cancer and have
been associated with high-grade disease (38–40). Interestingly, “High PKCα”
human prostate tumors displayed elevated expression of these cytokines rela-
tive to “Low PKCα” tumors, as depicted in heatmaps (Fig. 8A, right) and violin
plots (Fig. 8B). Proof of principle for the PKCα-dependent production of cy-
tokines (IL8 and GRO) was determined by ELISA in conditioned medium
(Supplementary Fig. S6).

Another important finding from the RNA-seq analysis was the identification
of the immune checkpoint PD-L1/CD274 as a PKCα-regulated gene. In agree-
ment with other studies (41, 42), we observed PD-L1 upregulation in PC3 and
DU145 cell lines compared to LNCaP cell lines (Fig. 8C). Notably, our RNA-
seq analysis showed downregulated PD-L1mRNA levels in PKCα-silenced PC3
cells, ranging between 60% and 80% (Fig. 8D and E, top). Moreover, analysis
in TCGA-PRAD revealed significantly elevated PD-L1 levels in “High PKCα”
versus “Low PKCα” human prostate adenocarcinomas (Fig. 8E, bottom; violin
plot in Fig. 8F). We verified the causal association between PD-L1 and PKCα

expression at the protein level, with a clear PD-L1 downregulation in PC3 cells
upon PKCα RNAi-mediated silencing, as determined by Western blot analysis
(Fig. 8G). In conclusion, high PKCα levels associate with upregulation of proin-
flammatory and/or tumorigenic cytokines as well as with immune checkpoint
PD-L1 in human prostate cancer.

Discussion
Our study established PKCα as a protumorigenic kinase in human prostate can-
cer. PKCα is prominently upregulated in aggressive cellular models of prostate
cancer, and is required for their growth in culture and as xenografts in mice.
Using a human prostate cancer TMA, we found PKCα to be highly expressed
in a significant fraction of tumors. We hypothesize that abnormally expressed
PKCα reroutes DAG inputs by boosting oncogenic PKCα effector pathways, fa-
voring prostate cancer cells to become addicted to this pro-oncogenic axis. The
tumorigenic role of PKCα in prostate cancer emphasizes its remarkable func-

tional complexity and epitomizes an example of a DAG/phorbol ester-regulated
kinase having dual effects. Indeed, PKCα has been shown to be downregulated
and to act as a tumor suppressor kinase in many cancer types. The dichoto-
mous roles of PKCα likely reflect unique links with effector pathways and
transcriptional programs depending on expression levels and context, as thor-
oughly reviewed recently (26), possibly exposing distinctive functional PKCα

interactions with oncogenic and tumor-suppressing signals.

Our findings, together with preceding studies, underscore precise roles for
PKC isozymes in different stages of prostate cancer progression. We previ-
ously generated prostate-specific transgenic mouse models for PKC isozyme
overexpression under the control of the probasin (PB) promoter. PB-PKCε

mice develop a dysplastic phenotype characteristic of prostatic intraepithelial
neoplasia (PIN; ref. 15), underlining a role for PKCε in tumor initiation, as
we also postulated in lung cancer models (37). PIN lesions in PB-PKCε mice
exhibit early signs of deregulated oncogenic signaling, including hyperactiva-
tion of Akt, ERK, STAT3, and NFκB (15–17). However, PB-PKCα mice did
not develop any obvious phenotype, indicating its lack of involvement in tu-
mor initiation (15). On the other hand, the PKCα requirement for proliferation
strongly supports its involvement in the expanding phase of tumor growth.
In this regard, our results show that silencing PKCα expression from PC3 or
DU145 cells leads to the accumulation of cells in G0–G1 and a discernible Rb
hypophosphorylation. While the mechanistic aspects of this growth delay re-
main to be determined, reduced growth upon PKCα inhibition has been linked
to p21cip1 induction in other cancer types (26, 43–45). The weakened phospho-
ERK signal in PKCα-deficient PC3 xenografts fits with the established role of
the MEK/ERK cascade in the control of transcriptional events leading to DNA
synthesis and mitogenesis (46). Moreover, the enrichment in E2F transcrip-
tion binding sites in PKCα-regulated genes is a clear indication of the impact
that this kinase has on transcriptional events associated with proliferative pro-
grams. On the other hand, in scenarios of G1 arrest driven by PKCα (i.e.,
tumor suppression), this kinase drives a transcriptional program of cell-cycle
exit, as extensively described by Black and co-workers in models of intestinal
epithelial cells (26, 47). In that model, PKCα suppresses the expression of in-
hibitor of DNA binding (Id) transcription factors through an ERK-dependent
mechanism (23, 26). Because Id transcriptions factors have been associated to
mitogenesis and oncogenicity, and they are heavily regulated by phosphoryla-
tion (48), it would be interesting to determinewhether aberrant PKCα signaling
contributes to Id activation and/or upregulation, which has been reported in
hormone refractory prostate cancer (49, 50). Of note, our RNA-seq analysis
reveals a major downregulation of Id1 upon PKCα silencing in PC3 cells (see
Supplementary Table S1). Disentangling this enthralling dichotomy represents
a significant challenge in PKCα signaling.

Intriguingly, PKCα expression levels do not unequivocally associatewithAR re-
sponsiveness status.While cell lines displaying aberrant PKCα expression (PC3,
PC3-ML, DU145) are AR negative, LNCaP variants that lose androgen respon-
siveness display low PKCα levels. Notably, PKCα-depleted PC3 cells did not
reveal changes in AR levels, an indication that PKCα per se does not regulate
AR expression. Moreover, analysis of PKCα and AR expression from multi-
ple databases did not show an obvious association, despite a trend for negative
correlation in some datasets and a statistically significant negative correlation
between PRKCA and AR in our meta-analysis. It would be interesting to de-
termine the molecular basis behind the PKCα upregulation in AR negative
cells, which presumably involves reprogrammed transcriptional mechanisms
that occur in mCRPC.
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Our bioinformatics analysis using theCCLEdatabase and the TCGA-PRAD tu-
mor database revealed positive correlations between PKCα and the expression
of EMT markers. Notably, “High PKCα” tumors express high levels of mes-
enchymal phenotype markers, including EMT transcription factors. A causal
association seems to be in place based on the noted downregulation of these

markers upon PKCα silencing, as shown in our RNA-seq analysis. It remains
to be determined whether PKCα is causally related to the transition from the
epithelial to mesenchymal state in prostate cancer. Our previous studies in lung
cancer cells revealed that silencing the expression of individual PKC isozymes,
including PKCα, did not prevent the acquisition of themesenchymal phenotype
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in response to TGFβ (51). Still, a partial reversal of the mesenchymal pheno-
type upon PKCα inhibition is seen in breast and lung cancer models (12, 52).
A likely possibility is that PKCα upregulation is secondary to the acquisition
of a mesenchymal state rather than contributing to the EMT transformation
process. Elevated PKCα signaling may aid in the maintenance of the mes-
enchymal phenotype by upregulating EMT transcription factors (14, 35) and
upholding invasive capacity, as revealed in our Boyden chamber analysis using
PKCα-silenced cells. Along this line, our previous study in lung cancer models
established PKCα as a determining factor for the production of metallopro-
teases required for ECM degradation (31). PKCαmay also control fundamental
cellular processes associated with cell migration, a conclusion supported by the
enrichment in PKCα-regulated genes associated with cell motility and ECM
function. PKCα may regulate basic mechanisms driving cell motility, such as
the coordinated processes involved in actin cytoskeleton assembly and disas-
sembly. In fact, PKC signaling regulates RhoGTPases involved in the formation
of promotility actin-rich peripheral protrusions (e.g., lamellipodia, ruffles) and
stress fibers (29, 30, 49, 53–55). Dissecting PKCα downstream effectors is key
to untangle the molecular basis of these regulatory processes.

Finally and unexpectedly, our study identified PKCα as a cancer cell intrinsic
factor responsible for PD-L1 upregulation in aggressive prostate cancer cells. It
is well known that oncogenes and loss of tumor suppressor genes induce PD-
L1 expression in cancer cells, often involving PKC effector pathways such as
MEK/ERK (56). Our finding may have significant impact on tumor immune
evasion, because elevated PKCα levels in prostate cancer cells may potentially
contribute to the abrogation of T-cell antitumor responses. Our RNA-seq analy-
sis also established PKCα as a key signaling node for proinflammatory cytokine
expression. Many of the identified cytokines, including IL6, IL8/CXCL8, and
IL1β, are known to stimulate cell-autonomous protumorigenicmechanisms and
shape the local microenvironment to support growth, survival, and invasion of
primary tumors (38–40). An additional inference relates to the ability of PD-
L1 to transduce intrinsic signals independent of T-cell PD-1 ligation. Indeed,
PD-L1 contributes to the protumoral activities of cancer cells by increasing
proliferation and suppressing apoptotic responses. In addition, overexpressed
PD-L1 promotes EMT, and augments migratory and invasive properties of can-
cer cells (57), Thus, our observation raises the question whether a PKCα/PD-L1
link contributes to proliferative and invasive activities of prostate cancer cells in
addition to promoting an inflammatory and/or immunosuppressive landscape.

In summary, the identification of PKCα as a “multifunctional” kinase un-
derlines its relevance in the control of myriad of events associated with

prostate cancer. Considering the reported antitumorigenic activity of PKC
inhibitors, including those targeting cPKCs (10), PKCαmay represent an attrac-
tive therapeutic target for aggressive prostate cancer. Overall, the extraordinary
functional complexity of PKCα signalingmerits a dedicatedmechanistic analy-
sis in a cancer type–specificmanner, determining their eligibility for a rationale
pharmacological approach targeting this kinase or its effectors.
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