Skip to main content
. Author manuscript; available in PMC: 2023 Nov 1.
Published in final edited form as: Comput Toxicol. 2022 Jul 14;24:100237. doi: 10.1016/j.comtox.2022.100237

Table 5.

A variety of algorithms (and structural and physico-chemical descriptors) can be used to develop models for the prediction of acute oral toxicity.

Algorithms References
Random Forests (Gadaleta et al., 2019; García-Jacas et al., 2019; Lei et al., 2016; Luechtefeld, 2018; Lunghini et al., 2019; Sayed, 2018)
Artificial Neural Networks (García-Jacas et al., 2019; Kleandrova et al., 2015; Lawless et al., 2018)
Deep Learning (Jain et al., 2021; Liu et al., 2018b; Sayed, 2018; Zakharov, 2018)
Local Lazy Learning (Lu et al., 2014)
k-Nearest Neighbors (Gadaleta et al., 2019; García-Jacas et al., 2019; Roncaglioni et al., 2018; Sayed, 2018; Zhu et al., 2009a, 2009b)
Support Vector Machines (García-Jacas et al., 2019; Lunghini et al., 2019)
Arithmetic Mean Toxicity (Raevsky et al., 2010)
Partial Logistic Regression (Myatt et al., 2018b)
Partial Least Squares Regression (Myatt et al., 2018b; Sayed, 2018)
Multi-Descriptor Read Across (Muratov et al., 2018)
Clustering-based QSAR model (Zhang et al., 2018)
Multiple Linear Regression (Sayed, 2018)
Global, Adjusted Locally According to Similarity (Sazonovas et al., 2010)
Decision Trees (Sayed, 2018)
Expert rule-based methodology (Bercu et al., 2021)
Read-Across Structure Activity Relationships (Luechtefeld et al., 2018)
Naïve Bayesian (Lunghini et al., 2019)