Random Forests |
(Gadaleta et al., 2019; García-Jacas et al., 2019; Lei et al., 2016; Luechtefeld, 2018; Lunghini et al., 2019; Sayed, 2018) |
Artificial Neural Networks |
(García-Jacas et al., 2019; Kleandrova et al., 2015; Lawless et al., 2018) |
Deep Learning |
(Jain et al., 2021; Liu et al., 2018b; Sayed, 2018; Zakharov, 2018) |
Local Lazy Learning |
(Lu et al., 2014) |
k-Nearest Neighbors |
(Gadaleta et al., 2019; García-Jacas et al., 2019; Roncaglioni et al., 2018; Sayed, 2018; Zhu et al., 2009a, 2009b) |
Support Vector Machines |
(García-Jacas et al., 2019; Lunghini et al., 2019) |
Arithmetic Mean Toxicity |
(Raevsky et al., 2010) |
Partial Logistic Regression |
(Myatt et al., 2018b) |
Partial Least Squares Regression |
(Myatt et al., 2018b; Sayed, 2018) |
Multi-Descriptor Read Across |
(Muratov et al., 2018) |
Clustering-based QSAR model |
(Zhang et al., 2018) |
Multiple Linear Regression |
(Sayed, 2018) |
Global, Adjusted Locally According to Similarity |
(Sazonovas et al., 2010) |
Decision Trees |
(Sayed, 2018) |
Expert rule-based methodology |
(Bercu et al., 2021) |
Read-Across Structure Activity Relationships |
(Luechtefeld et al., 2018) |
Naïve Bayesian |
(Lunghini et al., 2019) |