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One of the major aims of bio-engineering tissue equivalents in vitro is to create physiologically relevant culture 
conditions to accurately recreate the cellular microenvironment. This often includes incorporation of factors such 
as the extracellular matrix, co-culture of multiple cell types and three-dimensional culture techniques. These ad- 
vanced techniques can recapitulate some of the properties of tissue in vivo , however fluid flow is a key aspect 
that is often absent. Fluid flow can be introduced into cell and tissue culture using bioreactors, which are be- 
coming increasingly common as we seek to produce increasingly accurate tissue models. Bespoke technology is 
continuously being developed to tailor systems for specific applications and to allow compatibility with a range 
of culture techniques. For effective perfusion of a tissue culture many parameters can be controlled, ranging from 

impacts of the fluid flow such as increased shear stress and mass transport, to potentially unwanted side effects 
such as temperature fluctuations. A thorough understanding of these properties and their implications on the cul- 
ture model can aid with a more accurate interpretation of results. Improved and more complete characterisation 
of bioreactor properties will also lead to greater accuracy when reporting culture conditions in protocols, aiding 
experimental reproducibility, and allowing more precise comparison of results between different systems. In this 
review we provide an analysis of the different factors involved in the development of benchtop flow bioreactors 
and their potential biological impacts across a range of applications. 
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. Introduction 

The microenvironment of cells in vivo is a highly complex and dy-
amic system which is regulated by a number of factors ( Fig. 1 ). These
actors have a significant impact on the structure and function of cells
nd therefore are key to the successful creation of tissue models, though
re often absent in conventional in vitro culture methods. Techniques
uch as three-dimensional (3D) cell culture can be used to provide a
ore natural morphology for the cells [ 1 , 2 ], and often incorporate other

omponents such as extracellular matrix and growth factors which can
urther aid in the formation of functional tissue models [3] . Co-culture
f multiple cell types is also a commonly used technique, possible in
ither a paracrine or juxtacrine manner, to incorporate native tissue in-
eractions such as that between stromal supports and epithelia which
an lead to enhanced polarisation and functionality in epithelial cells
 4 , 5 ], or between immune cells and the surrounding tissue to model the
ffects of complex pathways such as diseases and drug responses [6–8] .
Abbreviations: 3D, three-dimensional; ABS, acrylonitrile butadiene styrene; ALI, air  

DM, fused deposition modelling; PC, polycarbonate; PET, polyethylene terephthalat  

L, unstirred layer; UV, ultraviolet light. 
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By combining these methods, complex tissue equivalents can be gen-
rated for modelling a wide range of organs and tissues. These vary in
omplexity from utilising single cell types in a 3D structure to co-culture
f several cell types and incorporation of physiologically relevant ECM.
ull thickness models of the skin are a widely used example of a tis-
ue model, due to the ethical concerns with animal models as well as
he European Union ban on testing cosmetics on animals in 2013 [9] .
hese incorporate a stratified epidermis and supporting dermal com-
artment to allow interplay between the keratinocytes and fibroblasts
10] . Further complexity can be created through the inclusion of cell
ypes such as melanocytes, Langerhans cells and endothelial cells, mak-
ng it possible to model processes such as UV-induced tissue damage and
nvestigate potential treatments [ 11 , 12 ]. Tissue equivalents have also
een created for internal organs such as the lungs [13] , kidneys [14–
6] , liver [ 17 , 18 ] and intestines [ 4 , 19 , 20 ]. Testing these models with
rugs has been frequently performed and results often demonstrate an
mproved predictive response, though variable between different mod-
 2022 
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Fig. 1. The cellular microenvironment in vivo and in vitro . (A) 
In the body, cells exist in a complex microenvironment sur- 
rounded by a wide range of stimuli (an example of an epithelial 
tissue is shown). These include mechanical stimulation such as 
from blood flow, contact between a large number of cells, both 
of the same type and different types, and contact with struc- 
tural support such as the extracellular matrix and basement 
membranes. (B) Many of these factors are missing in standard 
in vitro monolayer culture. The lack of a 3D growth surface 
leads cells to flatten out, minimising contact with other cells. 

Cells adhere to the growth surface in a single direction, leading to an enforced polarisation which may not resemble that found in vivo . 

Fig. 2. An overview of the parameters presented in this re- 
view. Section 2 covers the different techniques for creating 
fluid flow. In Section 3 the different parameters which are af- 
fected by fluid flow are explored, followed by the parameters 
which are independent of the fluid flow in Section 4 . Finally 
the limitations of current techniques and future directions will 
be discussed in Section 5 . 
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ls, compared to 2D cultures [ 21 , 22 ]. Other factors such as the use of cell
ines instead of primary cells can also significantly alter the outcomes
f such experiments, making comparisons between studies more diffi-
ult [ 23 , 24 ]. Despite the potential sources of variation between these
odels, tissue equivalents represent an improvement over standard 2D

ell cultures and are a step closer to accurately recapitulating the in vivo

icroenvironment [25] . 
These techniques, whilst able to recreate aspects of the in vivo mi-

roenvironment, often utilise a static culture medium which lacks many
f the dynamic cues created by the movement of fluids in tissue. To ad-
ress this shortfall, fluid flow may be introduced when culturing cell and
issue models using bioreactor technologies. These allow the creation of
he dynamic conditions found in native tissue, such as blood and in-
erstitial fluid flow. This can not only provide mechanical stimulation
f cells, but also allows the levels of nutrients and metabolites in the
edium to be maintained at more consistent levels, reducing the vari-

bility caused by factors such as medium changes and unstirred layers
26] . 

A wide variety of methods can be used to drive the fluid flow in a
ioreactor, such as through the use of pumps or rotary motion. The level
f complexity can also be hugely variable depending on the desired level
f control, the tissue complexity, and the requirements for outputs such
s real-time data readouts. This complexity brings with it many proper-
ies which need to be understood to ensure the systems reach their full
otential from both the biological and engineering perspectives, and to
ake sure that data is correctly interpreted. Combined with the fact that

he field of tissue engineering is highly interdisciplinary and requires re-
earchers to have a broad knowledge of many fields means that there is
otential for knowledge gaps which can be a hindrance to the develop-
ent of effective bioreactor systems. Drawing this information together

o give abroad overview of the different properties which may be en-
ountered could therefore aid in the effective development of future
ioreactors. 

In this review we provide an overview of the parameters involved in
he creation of bioreactor technology to support cell and tissue growth
long with the impacts these factors can have on cultured cells and tis-
ues. An outline of these parameters is shown in Fig. 2 . In Section 2 ,
2 
he different types of bioreactor design and ways in which they have
een used in literature will be discussed. In Section 3 , different cul-
ure properties which are influenced by the fluid flow will be described.
ection 4 will work through a series of other culture properties which are
ot affected by fluid flow, however, can be influenced by design choices
uch as the geometry of the bioreactor system. Finally, in Section 5 the
imitations of current methods and future directions will be discussed. A
horough understanding of these factors can have the potential to help
xplain some unexpected results and aid with creation of a biological
ystem which represents in vivo tissue accurately and effectively. The
roperties to be discussed in this review can be separated into two ma-
or categories: Fluid flow parameters and flow-independent properties.

ithin these two categories are different properties which will be dis-
ussed throughout this review. 

. Bioreactor design and usage 

Bioreactors are increasingly used in cell culture for the creation of
issue equivalents in dynamic conditions with physiologically relevant
uid flow. These can range widely in complexity and utilise a range
f additional components to generate the desired conditions. The main
art of a bioreactor is the vessel in which the culture is held. This can be
 simple, readily available piece of culture plasticware such as a multi-
ell plate or can be a bespoke vessel with complex control systems de-

igned to direct fluid flow and perfusion of the tissue construct. The use
f different three-dimensional cell culture techniques such as hydrogels
nd scaffolds in these systems is common. For example, a simple porous
olystyrene scaffold used in 3D cell culture [27] is held in a cell culture
nsert and can be placed in a standard cell culture multi-well plate for
tatic culture. Fig. 3 shows examples of two different designs that have
een developed to maintain these 3D scaffold cultures in inserts whilst
lso providing fluid flow. These different techniques introduce fluid flow
nd of different types, demonstrating that flexibility that can be built
nto dynamic culture systems. A standard 6-well plate allows both sub-
erged and air-liquid interface culture to be performed with ease. The
erfusion plate shown in Fig. 3A utilises pumped flow through the wells
n a continuous-fed manner to provide fluid flow across the 3D scaffold
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Fig. 3. Fluid flow in cell culture inserts can 
be introduced in different ways. (A) A modi- 
fied culture plate which allows medium to be 
pumped between 4 wells housing a scaffold in- 
sert. Additional equipment required includes a 
peristaltic pump and fresh and waste medium 

reservoirs. The inserts can be cultured in this 
system in the same way as with a standard 
6-well plate. (B) A stirred bioreactor system 

for introducing fluid flow to scaffold inserts. 
This utilises a magnetic stirrer and uses a baf- 
fle to help direct the flow. A larger volume of 
medium is used to minimise the need for regu- 
lar replenishment. 
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ulture [28] . This allows inserts to be cultured in the same manner as
 standard 6-well plate, minimising the variables which are changed.
he rate of fluid flow is controlled through the pump whilst medium
an be either recirculated or continually refreshed. The bioreactor sys-
em in Fig. 3B uses a batch-fed stirred tank system which can draw fluid
oth across and through the membrane [29] . This uses a large volume
f batch-fed medium to minimise the need for additional changes, and
he fluid flow rate is controlled by the stir speed. These demonstrate the
exibility of bioreactor systems for providing fluid flow with a range of
roperties and using different methods whilst able to support a standard
ulture insert. There are many alternative methods which can also be
sed to introduce fluid flow, some of which will be highlighted in the
ext section. 

.1. Methods used for creating fluid flow 

A variety of techniques can be used to introduce fluid flow into a
ell culture system, with a range of commonly used approaches shown in
ig. 4 . These methods can be used individually, or multiple methods can
e incorporated into one system to give a higher level of control over the
onditions. Further apparatus can be added including heat exchanges,
umidifiers, bubble traps and oxygenators, which may be needed with
ome bioreactors if specific culture conditions are required. A range of
onitoring systems can also be incorporated to measure properties such

s pH, temperature, and oxygenation and provide insight into conditions
ithin the bioreactor. The more complex apparatus typically has a trade-
ff in terms of cost, spatial requirements, and technical ability. 

There are a range of commercially available bioreactor systems avail-
ble for cell and tissue culture ( Table 1 ). These also have a range
f scales, from microfluidic chips to vessels which can hold litres of
edium. There are also variations in complexity, from simple vessels
ith a minimal system to generate fluid flow to bioreactors which can
onitor atmospheric conditions [ 30 , 31 ] or culture properties such as

rans-epithelial electrical resistance of epithelial barriers [32] . 
Although many studies utilise bespoke bioreactor systems, the use

f commercially available bioreactors has a number of advantages. Key
mongst these is the reproducibility benefit, with laboratories around
he world able to access these systems to carry out experiments. There
3 
as also been a large amount of characterisation already performed by
ifferent research groups for some of these bioreactors, and often litera-
ure is available for applications of interest, providing a starting point to
uild upon rather than having to perform full optimisation before using
he systems. 

Rotary bioreactors ( Fig. 4A ), such as the Rotary Cell Culture Sys-
em produced by Synthecon [33] and the ClinoReactor TM by CelVivo
30] , allow the formation of aggregate cultures in a dynamic environ-
ent across a range of volumes. The speed of rotation allows for control

ver mass transfer and shear stress, as well as giving control over the
verage size of the aggregates formed [ 40 , 41 ]. Further complexity can
e incorporated into the cultures using materials such as the use of mi-
rocarriers [ 42 , 43 ] and scaffolds [44] to provide extracellular matrix
omponents and give additional spatial control over tissue structures.
n top of their simplicity, these systems can also be readily scaled be-

ween millilitre and litre volumes, with both single use and autoclavable
essels available at a range of sizes. Additional features such as atmo-
pheric control and real-time imaging of cultures are also available with
ome systems [30] . 

Pumped bioreactors ( Fig. 4B ) can be designed to use existing culture
are or made as bespoke systems. These utilise a pump, often peristaltic,

o provide a flow of medium across a culture. These also usually employ
ither one or two reservoirs to provide a supply of medium, which al-
ows either recirculation of the same medium or a constant supply of
resh medium. A wide range of different systems have been designed,
ncorporating different cell supports such as porous membranes [45] ,
ynthetic or extracellular matrix (ECM) scaffolds [46–48] and hydro-
els [ 49 , 50 ]. An advantage of these systems is the ease of incorporat-
ng them into standard static 3D culture methods, allowing complex
issue equivalents to readily be perfused with medium without needing
o simplify other aspects of the culture, as has been demonstrated with
ull-thickness skin equivalents [ 51 , 52 ]. These systems are available in a
ange of sizes, such as the 6-well plate format of the Alvetex® Perfusion
late [34] or as microfluidic and organ-on-a-chip systems which require
uch smaller volumes of medium [ 31 , 35 ]. 

Microfluidic systems ( Fig. 4C ) are typically a subset of pumped biore-
ctors, utilising a fluidic chip to house the cell culture. These use much
maller volumes (microtiters) and flow rates, therefore presenting an
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Fig. 4. Commonly used technologies to intro- 
duce fluid flow into cell culture. Different tech- 
niques lead to flow patterns which can have 
desirable properties for modelling different tis- 
sues in vitro. The designs shown here are sim- 
ple methods for creating fluid movement in 
cell culture. Variations exist for each design 
which vary widely in complexity. Simple sys- 
tems may use conventional cell culture plas- 
ticware on equipment such as a mechanical 
rocker to produce fluid flow whilst maximis- 
ing ease of use. More complex designs combine 
several of these technologies to maximise phys- 
iological relevance. 

Table 1 

Commercially available bioreactor systems for cell and tissue culture under fluid flow conditions. These table has a representation of different systems and is not 
exhaustive, with a wide range of different systems available for specific applications. ALI = Air-Liquid Interface, ECM = Extracellular Matrix. 

Manufacturer System Bioreactor 
Type 

Set-up Volume per 
culture 

Basic Control 
Functions 

Cell location Refs. 

Synthecon Rotary Cell Culture 
System 

Rotary Single, dual, or quad rotary 
vessels 

Customizable Rotation speed In suspension or on 
microcarriers 

[33] 

CelVivo ClinoStar TM / 
ClinoReactor TM 

Rotary Six rotary vessels in a 
stand-alone incubator 

10 mL Rotation Speed 
Temperature 
CO 2 Level 

In suspension or on 
microcarriers 

[30] 

Reprocell Alvetex® Perfusion 
Plate 

Pumped Plate with 4 interconnected 
wells 

10 mL Flow rate In scaffold, submerged or at 
ALI 

[34] 

Kirkstall Quasi Vivo® Pumped / 
Microfluidic 

Single or multiple connected 
chambers 

2 - 4 mL Flow rate In scaffold, submerged or at 
ALI, barrier model option 

[35] 

ibidi Pump System Pumped / 
Microfluidic 

Microslides with chambers 60 μL Flow rate Channel surface [36] 

Emulate Human Emulation 
System 

Pumped / 
Microfluidic 

Stretchable dual channel 
microchips with a porous 
membrane 

15 - 35 μL Flow rate 
Cyclic stretch 

Porous membrane, channel 
surface 

[31] 

ABLE® Biott® Magnetic Stir System Stirred Impeller stirred bioreactors 5 − 100 mL Stir speed In suspension or on 
microcarriers 

[37] 

Corning TM Spinner Flasks Stirred Impeller stirred bioreactors 125 mL – 36 L Stir speed In suspension or on 
microcarriers 

[38] 

Mimetas OrganoFlow® / 
OrganoPlate®

Rocked / 
Microfluidic 

Multichannel microchips 
with oscillatory perfusion 

50 μL Rocker speed 
Rocker angle 

On channel surface, 
on or in ECM 

[39] 
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ffective system for fields such as drug discovery, where quantities of
he test compounds may be limited [53] . A wide range of microfluidic
hips are commercially available and production of custom chips using
aterials such as polydimethylsiloxane or polymethylmethacrylate can

e performed with ease using several simple techniques [54] . These sys-
ems tend to be more sophisticated than other systems due to the need
or a large number of components and tubing to connect them and the
ubsequent control requirements. Many opportunities are feasible us-
ng this technique such as linking multiple cultures together to create
omplex multi-cellular systems designed to simulate crosstalk between
ifferent tissues [ 55 , 56 ]. 

Stirred bioreactors ( Fig. 4D ) is a technique commonly found for pro-
ucing larger quantities of cells and producing products such as anti-
odies or proteins but can also have utility for engineering cultured
issue models. Commercially available examples of these systems are
ommonly in the form of spinner flasks, such as the Able® Biott® and
orning TM systems [ 37 , 38 ]. These can come in a range of sizes to allow

or scale-up production and typically use a larger volume of medium
han other methods alongside batch feeding to maintain adequate nu-
rient levels across the culture period. The stir speed and shape of the
tirrer allows for significant control over the mass transfer and shear
4 
tress in the system. Variation of the stir speed in this manner has been
hown to impact the levels of different ECM components secreted by
hondrocytes [57] and affect properties such as albumin secretion in
epG2 hepatocellular carcinoma cells [58] . One of the most common
ses in tissue engineering is for the expansion of stem cells by main-
aining stem cell pluripotency and offering an alternative to methods
uch as feeder layers [59–61] . This technique can also be used along-
ide 3D scaffold cultures to allow dynamic fluid flow to support tissue
quivalents with a greater degree of structural control [62–65] . 

Rocked and shaken bioreactors ( Fig. 4E , F) are some of the sim-
lest methods for creating fluid motion. These utilise low-cost equip-
ent commonly found in the laboratory that can be housed within a cell

ulture incubator. They can be used in a variety of ways, such as with
tandard cell culture ware to provide additional mass transfer or bespoke
lasticware can be designed for purposes such as allowing cultures to
scillate between contact with air and medium. These systems are also
ighly scalable due to the ability to stack multiple plates vertically with-
ut additional modification of the system. Pumpless organ-on-a-chip
echnology is also available in the form of the Mimetas OrganoFlow
ystem [39] . This uses a rocker-based system to create fluid motion,
emoving the need for pumps and tubing and therefore requiring less
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omplex apparatus. Studies have shown the utility of rocked perfusion
o enhance mineral deposition with osteogenic progenitor cells [ 66 , 67 ],
s well as for the maintenance of precision-cut liver slices through en-
anced oxygen delivery [ 68 , 69 ]. Due to their simplicity and compatibil-
ty with standard culture plates, shaken bioreactors have been used in
any studies to investigate the effects of shear stress on endothelial cells

n 2D culture [70–72] . Some studies have also been demonstrated com-
atibility with Transwell® inserts, both using endothelial cells [73] and
enal tubular epithelial cells [74] . One of the main limitations with this
ethod is the lack of control over the direction of the fluid flow and the

ariability of the shear stress, with levels increasing with distance from
he centre of the plate [ 75 , 76 ]. 

These different bioreactor designs demonstrate the range of ways
hat fluid flow can be introduced into cell and tissue culture, with the
hoice often dependant on cell type, 2D or 3D model requirements and
he desired emulated physiological conditions. Suspension cells are com-
only cultured in stirred or rotated systems, where the exact position-

ng of the cell relative to the fluid flow direction is not crucial. Instead,
uid flow is intended to facilitate mass transfer to support prolifera-
ion and aggregate formation. Selection of stirring speed is used to tune
ggregate size and shape but is highly cell type and application depen-
ant. Higher stirring speeds in spinner flask systems used for human
nduced pluripotent stem cells have been shown to form more homoge-
ous round-shaped aggregates at higher stirring speeds without losing
heir pluripotency [77] whilst increasing the stirring speed too much
an correlated to a reduction in aggregate size and increasing levels of
ellular detachment from microcarriers [ 78 , 79 ]. As shear stress, velocity
nd pressure vary within stirred systems, shear stress values for suspen-
ion cells are not global but location dependant which should be taken
n account when planning stirred suspension cultures [80] . A general
ssumption for suspension cells is that they can withstand high shear
tress values, if they are naturally exposed to high flow rates in vivo like
rythrocytes or leukocytes [81] . However, stem cells are often expanded
n stirred systems and are more susceptible to shear stress, requiring fine
uning of the parameters to avoid loss of pluripotency [80] . 

Adherent cells require a substrate to grow on, which will affect perfu-
ion characteristics. Although microcarriers for cell adhesion in stirred
uspension cultures have been used, these systems do not allow for a
ight control of a delicate microenvironment which is often necessary
o archive desired tissue morphology and function. Adherent cells often
xhibit polarization with a distinctive apical and basal side crucial for
roper cell function and fluid flow affects this polarization [82] . Sepa-
ation of these distinct compartments also allows for investigations into
pithelial barrier and transport properties [83] , studies which are of
igh value in areas such as intestinal drug absorption [84] . It is there-
ore favourable to use systems that allow for controlled flow regimes,
ike pumped or gravity driven systems with directed fluid flow. These
orms of fluid flow allow for the incorporation of complex scaffolds and
ellular supports, providing a basis for physiologically relevant recre-
tions of tissue architecture [85] . Other cell type specific characteristics
hat should be taken into consideration when choosing a perfusion sys-
em, are metabolic activity, influencing how much medium is required,
he frequency of medium changes and build-up of harmful metabolites
s well as specific cues needed for certain differentiation processes such
s an air-liquid interface for the differentiation of keratinocytes in mod-
ls of the epidermis [86] . 

. Fluid flow parameters 

Bioreactor functions are centred around the controlled introduction
f fluid flow to a cell or tissue culture. The addition of fluid flow has a
ajor impact on a wide range of cell types with the exact properties of

he fluid flow leading to different effects between varying cell types and
issues [87] . Some of the key impacts of fluid flow, as shown in Fig. 5 ,
re on the mass transfer both in the form of nutrient delivery and waste
emoval [ 88 , 89 ], shear stress experienced by cells adjacent to the fluid
5 
ow [ 90 , 91 ], the convective mixing and resultant homogeneity of the
edia and the reduction in the size of the unstirred layers close to the

ell boundary [92] . 

.1. Mass transfer and nutrient levels 

As cells take up media constituents such as glucose, proteins and vi-
amins for metabolic purposes, the levels of such molecules need to be
eplenished to maintain consistent culture conditions and healthy cells
93] . Supraphysiological levels of nutrients such as glucose, pyruvate
nd glutamine are often used for cell culture medium to allow for this
eduction over time. While these concentrations were often derived em-
irically to maximise viability and proliferation, they do not necessarily
imic the environment in vivo and can induce further unwanted arti-

acts [94] . Many studies have demonstrated an induction of apoptosis
n high glucose medium with a range of cell types [95–97] , whilst im-
roved medium formulations have been shown to produce more phys-
ologically relevant metabolic levels and drug response in cancer cells
98–100] . On top of this, metabolic waste products such as lactic acid
nd ammonia can be damaging to cells and affect properties such as pH,
ith the levels of these building up over time in culture in the absence
f frequent media changes [101] . 

Within bioreactors, motion of the fluid improves the level of mass
ransfer through convective mixing, on top of the diffusive mixing found
n static culture. The mass transfer consists of the transport of both nu-
rients to tissue and of metabolites and waste products away from tissue
102] . Providing adequate mass transfer to cells can improve their pro-
iferation, viability and function [ 26 , 103 ]. This is particularly relevant
or the culture of stem cells which can have varied viability and differ-
ntiation states depending on nutrient availability [104] and for ex vivo

issue slices such as liver slices where high levels of oxygenation are typi-
ally required for long-term maintenance [105] . Effective mass transfer,
oth of nutrients to tissue and of metabolites and waste products away
rom tissue is therefore one of the key goals of fluid bioreactors for tissue
ngineering [102] . 

One of the most direct methods for increasing mass transfer is
hrough an increase in fluid flow rate in a bioreactor. This can lead
o an increase in convective mixing, as well as greater replenishment
f medium around the cell surfaces therefore aiding mass transfer to
nd from the culture. Measurement of the relationship between fluid
ow and mass transfer has been carried out for shaken bioreactors
106] , impeller-based systems [107–109] however is rarely performed
or bioreactors used in tissue engineering. The impact of fluid flow
ates on cultures is often measured through cell viability or prolifera-
ion [ 110 , 111 ], though other changes can also be readily performed in
ome cases, such as albumin secretion in liver models [ 112 , 113 ] or the
hickness and maturity of the epidermal barrier of skin models [114] . A
eneficial impact typically tends to correlate with increasing flow rate
ntil the point in which shear stress starts to have harmful impacts and
utweighs the benefits of mass transfer, after which a decrease is mea-
urable [ 111 , 112 ]. The impacts of shear stress within the system will be
overed in more depth in Section 3.3 . 

Another factor which affects mass transfer is the geometry of a sys-
em. This can be beneficial or detrimental, depending on the bioreactor
ype and method of fluid movement. A key example of where the geom-
try can increase mass transfer is found in stirred bioreactor systems,
n which the geometry of the impeller or stirrer has a major impact on
he mass flow rate. The number of blades and blade angle, along with
he impeller size, can lead to significant changes in mass transfer rates
hich in turn affects the performance of the cells within these systems
 109 , 115 , 116 ]. Other geometric features which significantly alter the
irection or rate of fluid flow, such as sharp corners, can lead to a shift
rom laminar flow towards turbulent flow. While generally regarded as
ess desirable in bioreactors than laminar flow, turbulent flow allows a
igher level of convective mixing within the fluid layers. It can therefore
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Fig. 5. Direct impacts of fluid flow in cell culture. Fluid flow 

aids with healthy growth of cells through a variety of mecha- 
nisms. The supply of fresh nutrients, as well as the removal of 
metabolic waste can reduce nutritional stress on the cells. A re- 
duction of the unstirred layer thickness and convective mixing 
aid with this process whilst also being useful for research such 
as transport studies. Shear stress presented to the cell surfaces 
creates mechanical signals which the cells respond to and can 
aid with maintaining physiological function however can have 
a detrimental effect at supraphysiological levels. 
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e useful in regions of medium which are not in contact with cells, such
s reservoirs, to maintain an even mix of molecules in the bulk medium.

The spatial position of cells also plays a role in the mass transfer and
utrient supply in a bioreactor system. Cells in direct contact with the
uid will see increased mass transfer whereas cells within the centre
f a tissue mass are primarily supplied by diffusion through the tissue.
iffusion of oxygen is a relatively slow process and in tissue it has typ-

cally been measured to reach a maximum depth of between 100 and
00 μm from the vasculature and therefore presents a limiting factor
or the size of tissue equivalents in the absence of vascularisation or
uid flow [ 117 , 118 ]. This is a problem commonly found in aggregates
nd spheroids, where interior regions suffer from a depletion of nutri-
nts alongside a build-up of waste products, leading to a necrotic core
 119 , 120 ]. Structures such as scaffolds or membranes used to support
ells can also suffer from nutrient deficiency due to the reduced diffu-
ion caused by the presence of the scaffold hence adequate mass transfer
lso plays an important role when using such materials [121] . The use
f scaffolds with pores or channels to allow the perfusion of medium
hough the tissue construct can be an effective way to overcome this,
ith structural properties such as pore size and tortuosity impacting the
ass transfer of solutes through the material [ 26 , 122 ]. Effective exam-
les of this are hollow fibre bioreactors which use permeable fibres to
ransport medium through the culture. A precisely controlled distance
etween the interior cells and the flow of medium maintains effective
ass transfer to all cells without limitations of diffusion distance. On

op of this, the fibres also offer protection from shear stress, allowing
igh mass transport whilst minimising shear stress-related damage to
ells [ 123 , 124 ]. 

.1.1. Oxygenation 

One specific example of the importance of mass transfer and nutrient
upply in vitro can be found in the case of oxygen. Oxygen is essential to
aintain viable growth and function however there is a wide variability

n the dissolved oxygen levels seen in vivo, both between different tissues
nd different cells within a tissue. Regions such as the peri ‑sinusoidal
one marrow have been found to experience an oxygen tension as low as
nd 0.64 kPa [125] whilst on the other end of the spectrum renocortical
issue and periportal liver tissue can both have levels reaching around
–10 kPa [ 126 , 127 ]. Cell culture medium in a 5% CO 2 , humidified in-
ubator typically has a dissolved oxygen level of around 18–19 kPa,
6 
hough this value is lower in the pericellular region due to the cellular
epletion and has been found to be near zero for cells with high oxy-
en consumption such as hepatoma cell lines and renal epithelial cells
 128 , 129 ]. Meanwhile, the value is around 13 kPa for arterial blood
130] . This demonstrates the large complexity of mimicking physiologi-
ally relevant oxygen concentrations in vitro and why there is not a “one
ize fits all ” approach to bioreactor design. 

Fig. 6 shows some of the different properties of cell culture systems
hich can impact the oxygen received by cells. At the cellular level,

actors such as cell density, quantity and metabolic rate all influence
issolved oxygen levels. Large quantities of cells or highly metabolic
issues deplete oxygen at a faster rate which may be higher than the
iffusion rate of oxygen to the cells leading to reduced oxygen levels
ver time [131] . A second problem with large quantities of cells occurs
hen considering the diffusion distance of oxygen. As mentioned in the
revious section, it is generally observed that the diffusion distance for
xygen within tissues is less than 200 μm. When creating tissues signif-
cantly larger than this a necrotic core is frequently reported and this
istance therefore presents a size limitation for avascular in vitro tissues
132–134] . For medium, different formulations have different rates of
xygen solubility and diffusion depending on properties such as salin-
ty and protein content [118] . The vessel used to hold cultures can lead
o variability in oxygen levels due to factors such as the diffusion of
xygen through the vessel walls. This effect has been investigated for
ncreasing the oxygen levels using highly gas-permeable materials in
oth static and dynamic culture systems [135–138] . The depth of the
ulture within the medium also leads to changes in oxygen concentra-
ion, with the major limiting factor being the diffusion rate through the
edia, the further a culture is from the air the lower the dissolved oxy-

en levels will be. Atmospheric pressure and oxygen levels also impact
he dissolution of oxygen into the media whilst aspects such as media
epth and flow rate affect the diffusion and transport of oxygen through
he media. 

Additional oxygenation systems are often used in conjunction with
erfusion bioreactors to achieve optimal conditions. These can range
rom placement of the bioreactor in an oxygenated incubator to self-
ontained oxygenation systems specific for the bioreactor [139] . Alter-
atively methods such as disruption of the gas-liquid boundary of the
edia has been used to increase oxygen concentration without an addi-

ional oxygen supply [140] . For applications which require lower oxy-
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Fig. 6. Properties which can impact the levels of dissolved 
oxygen in culture. The different properties can be divided by 
the scale upon which they act. At the smallest scale, the proper- 
ties of the cells can change the oxygen properties through vary- 
ing the rates of depletion in the surrounding media. Medium 

properties such as the molecular constituents have an impact 
through the changes in the oxygen solubility. Culture geometry 
such as the distance to the air-liquid interface and the perme- 
ability of vessel walls influence uptake into the medium. The 
atmosphere that the culture is in also has an impact, with fac- 
tors such as humidity, pressure and temperature affecting local 
levels of oxygen concentration. 

Fig. 7. Unstirred layers in static and dynamic cell culture con- 
ditions. In static culture the medium is mixed through diffusion 
which can lead to a depletion in concentration close to the cell 
surface, a region termed the unstirred layer (UL). The applica- 
tion of convective mixing to the medium, such as with fluid 
flow, greatly increases the distribution of molecules within 
the medium and reduces the thickness of the unstirred layer, 
where diffusion is predominant. This in turn leads to greater 
levels of solute concentrations at the cell surface. 
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en levels a commonly used method is to reduce the partial pressure of
tmospheric oxygen with technology such as hypoxic chambers. Alter-
atively reductions in oxygen delivery to media, either actively through
he control of flow rates or passively through oxygen-permeable mem-
ranes, can be another useful tool particularly if access to a gas supply
s limited [ 138 , 141–144 ]. This leads to wide variability in the effective-
ess of oxygenation systems and characterisation of oxygenation levels
s important if results can be accurately replicated [131] . 

.2. Reduction in unstirred layer thickness 

Unstirred water layers are regions close to membranes in which lim-
ted convective mixing occurs and so the majority of mixing occurs by
iffusion of molecules [145] . These vary in size and impact depending
n the particular solute, the viscosity of the fluid and any convective
ixing that the fluid is undergoing. Fig. 7 shows the effect that a larger
nstirred layer in static culture medium has on the solute concentration
or nutrients at the cell surface compared to in mixed medium. The ad-
ition of convective mixing reduces the thickness of the unstirred layer
nd therefore increases the concentration at the cell surface. The impact
n tissue culture is therefore unique to each individual tissue model and
he exact impacts can be difficult to predict. The first potential problem
aused by these is the diffusion of nutrients such as oxygen to the cells.
hilst uptake of oxygen into the cells depletes the concentration in these

egions, the limited diffusion can lead to reduction in oxygen available
o the cells and therefore lead to a greater level of oxygen stress than
xpected from the oxygen concentration in the bulk medium [146] . The
ize of the unstirred layers is generally regarded to be inversely propor-
ional to the diffusion coefficient for a molecule [147] . Oxygen, with
 high diffusion coefficient, can therefore be predicted to have a large
nstirred layer with a thickness up to several hundred microns, as has
een found for similar solutes such as carbon monoxide [148] , and is
7 
herefore a far more likely rate-limiting step for uptake into cells than
arriers such as the cell membrane. 

As well as potential nutrient and metabolite diffusion problems, an-
ther example of an issue which can be caused by unstirred water lay-
rs is additional inaccuracy in measuring cellular transport for drug
etabolism studies. The limitations to uptake caused by the unstirred

ayers can lead to a significant underprediction of uptake rates into cells.
his can lead to errors in the measurement of membrane transport, but
an also be problematic when calculating drug metabolism and clear-
nce due to becoming the major rate limiting step [ 149 , 150 ]. These
ffects have been heavily studied in the context of gut permeability and
epatocyte drug clearance with results showing that perfusion or agi-
ation of the medium can be an effective way to reduce the impact of
nstirred layers on permeability measurements [151–153] . 

.3. Shear stress 

Shear stress is caused by the flow of fluid across a cell and is propor-
ional to the fluid flow rate parallel to the cell surface. The level of shear
tress is a key property of fluid flow in native tissue and can vary over
any orders of magnitude between different regions in a tissue, such as

lood or interstitial fluid. Cells can detect and respond to shear stresses,
nd therefore an accurate replication of in vivo shear stress levels can
e beneficial for physiologically relevant function [ 154 , 155 ]. The mass
ransfer is also proportional to the fluid flow rate so this can lead to
he difficult position of balancing a high mass transfer with the typi-
ally low levels of shear stress required for many cells [156] . The use of
affles, porous membranes and specific topographies to shield the cells
rom the bulk levels of fluid flow can be an effective way to maintain
dequate mass transfer whilst keeping shear stress at a reasonable level
 63 , 157 , 158 ]. 

In vivo, high shear stress is primarily experienced by endothelial cells
ining blood vessels and these protect many of the other cell types from
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eing directly in contact with the blood flow. The level of shear stress
hat endothelial cells receive varies hugely between different regions
f vasculature with arterial endothelial cells experiencing levels around
.5 Pa while in smaller vessels such as the liver sinusoids a range of
round 5 to 10 mPa is experienced [ 159 , 160 ]. Factors such as varia-
ions in blood vessel diameter and bends in the vessels also contribute
o further variation in the shear stress levels. Shear stress applied to en-
othelial cells at these levels has been shown to have some beneficial
ffects such as promoting angiogenesis and inhibiting inflammatory re-
ponses [161] . 

Due to the shielding function of the endothelial cells, most non-
ndothelial cells experience levels of shear stress which are many orders
f magnitude lower and bioreactors often utilise shear stresses in the
icropascal region [ 162 , 163 ]. Higher arterial values can still be useful
ith these cells, however, for researching the effects of mechanical stim-
lation and response to injury, for example mimicking damage to the
ndothelial wall and subsequent cellular responses [164–166] . Values
f shear stress experienced by many cell types are difficult to acquire,
ither experimentally or computationally, due to the protection offered
y the endothelial cells and therefore a range of shear stresses are often
xplored to experimentally determine the optimum values. Shear stress
xperienced by cells through interstitial fluid flow outside the vascu-
ature has been the subject of numerous investigations, using in vivo,

n vitro and in silico studies [166–170] . Depending on the application,
xtensive reviews are available which provide helpful compilations of
xperimentally acquired shear stress data for various cell types, partic-
larly in the context of endothelial cells [ 164 , 171–173 ]. For example,
 recent publication on organ-on-a-chip applications refers experimen-
ally derived shear stress values for different cell types, which could
e used as a starting point for initial experiments to empirically deter-
ine which levels of shear stress are beneficial for the desired outcome

174] . In the case of cell types with limited literature available, shear
tress values from cell types residing in a similar environment to that
eing investigated could provide an initial estimation. 

The liver, as an example with a high level of vasculature, is often used
n fluid flow systems and many studies have performed this analysis to
xperimentally determine optimum conditions in vitro in the absence
f accurate in vivo values [ 162 , 175 , 176 ] . Computational fluid dynam-
cs (CFD) can be used alongside experimental methods to confirm that
he levels of shear stress are within a similar range to estimated physio-
ogical levels, and this analysis has been performed previously for many
ommercial and bespoke bioreactor systems [ 177 , 178 ]. As well as shear
tress , these simulations can be used to provide an insight into distribu-
ion and transport of nutrients such as oxygen, making them a powerful
ool for understanding the complex conditions within a bioreactor sys-
em [179] . The ability to fine-tune the shear stress of a bioreactors in
his way allows for accurate replication of in vivo conditions as well as
xpanding the possible applications and therefore increases the research
alue of a system [ 63 , 180 , 181 ]. While the use of CFD allows a bioreac-
or to be optimised for specific tissues, in practice this is not always
erformed as effectively as it could be. One recent review, for exam-
le, highlights that many bioreactors for bone tissue engineering are
esigned for generic bone tissue engineering, rather than for use mod-
lling specific bones, which could therefore limit their utility due to the
ide variability of conditions in different locations [182] . 

Viscosity of culture medium also has an impact on the shear stress
xperienced by cells under flow, however this is less well-studied com-
ared to many of the factors mentioned previously. For the purposes of
omputational modelling, medium formulations are often assumed to
ave a viscosity close to that of water however addition of components
uch as proteins can lead to significantly increased viscosity. Addition
f 10% foetal bovine serum, as is often used in cell culture, has been
easured to cause an increase in the viscosity of the medium by 20–
0% whilst further changes over time can also be caused by secretion
f proteins from cells during culture [183] . The presence of serum can
lso cause the medium to have the non-Newtonian behaviour of shear
 b  

8 
hinning, adding further complexity to shear stress modelling through a
eduction in viscosity at higher shear stresses [184] . 

.4. Flow direction and uniformity 

The direction of the flow may need to be altered to cater for different
issues as illustrated in Fig. 4 . The two most basic types of fluid flow are
cross the tissue or through the tissue and these can either be continuous
r pulsatile. Flow across a tissue can be performed in specific compart-
ents of a tissue: for example fluid flow over the epithelium ( Fig. 8A )
as been used for modelling intestinal epithelia [46] ; perfusion below
he stromal tissue ( Fig. 8B ) is widely used and has shown positive re-
ults for applications such as skin models and renal models [ 185 , 186 ];
ow all around a tissue can be useful for delivery of nutrients to tissues
ith high nutritional needs [187] . Flow through a tissue ( Fig. 8D ) can
e more useful for perfusion of larger constructs as this method can be
sed to aid diffusion of molecules such as oxygen into the centre of these
issues [ 134 , 188 ]. 

Further increases to the complexity and physiological relevance of
ow patterns can be the introduction of pulsatile or oscillatory flow. Pul-
atile flow ( Fig. 8E ), such as that created by peristaltic pumps, is a more
ccurate representation of the flow of blood in regions such as larger ar-
eries, replicating the conditions produced through the pumping mech-
nism of the heart. The addition of pulsatile flow to cultures can be
traightforward to implement and has been shown to create beneficial
onditions for arterial cell culture, with enhancements to endothelial
ell function and angiogenesis [189–191] . As an alternative to pulsatile
ow, reciprocal oscillatory flow can also be used, in which the flow al-
ernates in direction over a designated period ( Fig. 8F ). Oscillatory flow
atterns are highly relevant in vivo , especially in connective tissue, like
one tissue, and the vasculature. The effect of oscillatory flow perfu-
ion regimes, either continuous, intermittent or varying in flow rate, has
een studied for various cell types and tissue models. Intermittent os-
illatory flow stimulations of mesenchymal stem cells during otherwise
tatic conditions, have been shown to robustly upregulate osteogenic
ene expression, drive lineage commitment and enhance collagen secre-
ion and mineral deposition [192–194] . The application of continuous
scillatory flow regimes at low rates enhanced cell viability, uniform cell
istribution and early osteogenesis in scaffold-supported osteoblast-like
ell-based models [ 195 , 196 ]. In a combinatorial approach, bone-tissue
odels were continuously perfused at a low oscillatory rate with inter-
ittent high-rate bouts to archive mechanical stimulation which signif-

cantly increased prostaglandin E 2 levels, an important factor for bone
ormation [197] . 

Oscillatory flow can be induced using equipment such as a rocker cre-
ting a simple way to perfuse a model for media mixing whilst reducing
he volume of addition equipment required. Simple oscillatory flow in
his way has been used successfully for the differentiation of mesenchy-
al stem cells and the maintenance of precision-cut liver slices [ 67 , 68 ].
odifications of these methods can also be used to create more complex

ystems for specific applications such as stacked substrates for patterned
o-culture [198] and cultures with adjustable medium levels for raising
ells to the air-liquid interface [199] . 

Complex geometries, in particular the presence of sharp angles, can
ead to irregularities in the fluid flow and therefore mass transfer and
hear stress [200–202] , as well as leading to an increase in turbulence.
issue culture bioreactors frequently utilise laminar flow, in which the
otion of fluid particles is parallel to the bulk flow of the fluid, to cre-

te the desired conditions due to its uniformity and ease of modelling.
lood flow in vivo is also typically regarded as being laminar. Turbulent
ow, which is more chaotic and disordered, leads to irregularities in the
uid flow and increases the complexity of the systems from a modelling
erspective, though modern computational fluid dynamics software can
e used to model these systems with relative ease [203] . Turbulent flow
n vivo can be found in curved regions of the vasculature as well as at
ranch points and has been associated with increased risk of disease such
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Fig. 8. Methods for introducing fluid flow to an epithelial sub- 
mucosal tissue model. With certain complex tissues consisting 
of an epithelial layer and a stromal compartment there are 
many possible ways to introduce flow. (A) Flow along the ep- 
ithelial surface such as that found in the intestinal lumen (B) 
Flow along the stromal surface partially mimicking blood sup- 
ply to a tissue (C) Flow across all surfaces of the model (D) 
Flow perfused through the tissue which can be used to im- 
prove the diffusion of nutrients such as oxygen to the centre of 
thicker tissue constructs. (E) Pulsatile flow, such as that pro- 
duced by a peristaltic pump, can be used to mimic the pumping 
motion of the heart for modelling structures such as arteries. 

(F) Reciprocal oscillatory flow, which changes direction over a set period, allows convective mixing to be introduced using typically very simple apparatus such as 
a mechanical rocker. 
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s atherosclerosis [ 204 , 205 ]. The usefulness of turbulence within a tis-
ue culture bioreactor is therefore dependant on the application, with
urbulent regions effective for keeping the bulk medium mixed, though
ypically less desirable in regions of fluid that are in contact with cells
ue to the disruptive effects of the shear stress. 

. Flow-independent parameters 

Aside from fluid flow parameters there are many other properties
hich can influence the outcomes of perfusion bioreactor techniques.
ytocompatibility issues can be caused when working with certain ma-
erials. The operation of a bioreactor and some design parameters can
lso cause deleterious effects such as fluctuations in culture tempera-
ure or a constant deviation from the desired temperature. Some feed-
ng regimes can lead to issues such as media degradation, particularly
f media changes are carried out infrequently as in some batch-fed sys-
ems. High levels of user interaction and manual handling can also be
roblematic by introducing additional variability to cultures which may
mpact reproducibility. Designing a bioreactor with an appreciation of
hese problems and with an aim to work around them as much as possi-
le can lead to systems which more accurately agree with the theoretical
utcomes of the system and are therefore of improved research value. 

.1. Cytocompatibility of materials 

Routine cell culture ware has typically been made from materials
hich are known to have high cytocompatibility, with polystyrene be-

ng the most common material used for items such as multi-well plates
nd flasks. This is a material which is known to be very biologically
nert and compatible with a wide range of cell types which makes it
deal for culture of cells with minimal side effects [206] . However other
aterials exist that have been thoroughly characterised for biocompati-

ility and may represent alternative options for use in bioreactor design
 85 , 207 , 208 ]. 

Whilst polystyrene is a suitable material compatible with mass pro-
uction techniques such as injection moulding, there are many other
aterials which are easier to work with at the scale of individual labo-

atories. Hard plastics such as polycarbonate (PC), polyethylene tereph-
halate (PET) and polytetrafluoroethylene (PTFE) are commonly used in
ioreactors due to their ease of manufacture and minimal biological ac-
ivity. PC and PET are regularly used as they have reasonable chemical
esistance, high biocompatibility and can be readily treated to enhance
ellular adherence [ 209 , 210 ]. This has led to many cell culture mem-
ranes, such as Transwell® and Millicell®, being made from these poly-
ers. PTFE is highly inert and has a high melting temperature making

t suitable for repeated autoclaving. It is a useful material for creating
ioreactor components and is often used for the outer layer of magnetic
tir bars. PTFE is also highly hydrophobic and has an extremely low co-
fficient of friction. This makes it useful in the case of moving parts to
inimise wear, however it also means that PTFE requires further surface
odification to be viable as a growth substrate for cells [ 211 , 212 ]. 
9 
Rapid prototyping methods such as fused deposition modelling
FDM) or stereolithography (SLA) offer the ability to create custom de-
igns within a short turnaround time. However, some of the materials
ypically used for these techniques are of limited value for cell cul-
ure. Acrylonitrile butadiene styrene (ABS) and MED610 have both been
ound to cause changes to cell viability and gene expression, such as
n upregulation of oestrogen-response genes, in some cell lines, which
hows that materials should be carefully chosen to ensure there are
o specific biological effects with the cells of interest [213] . Polylac-
ic acid (PLA) is another material which is widely used for FDM and
as been shown by many studies to have a high level of biocompatibil-
ty [ 214 , 215 ]. Much like polystyrene used for conventional cell culture,
LA is a hydrophobic polymer and can benefit from surface modifica-
ion to boost its adherent properties if cells are to be grown directly onto
t [216] . 

A second problem found with techniques such as SLA is the leeching
f compounds such as photoinitiators and plasticizers into the medium.
ven with polymers which have been certified to be biocompatible, tox-
city issues have been identified with cell culture. The continual release
f photoinitiator into the medium for up to 7 days of culture has been
emonstrated, along with a consequent reduction in viability [ 217 , 218 ].
n some cases these issues can be reduced by post-manufacture treat-
ent with solvents such as ethanol [219] . 

Non-plastic materials are also often found in bioreactors. Glass and
tainless steel are two common examples of these. Glass has been widely
sed for cell culture since its inception as both a growth surface and as
 material for vessels. A high level of chemical resistance, minimal bi-
logical activity make glass a useful material for cell culture, and its
igh melting temperature makes it compatible with a range of heat
terilisation methods such as autoclaving and flaming, allowing glass
omponents to be easily sterilised and reused. For this reason, glass is
till commonly used for 2D culture on coverslips and slides. Drawbacks
f glass are its fragility, which means that handling can be more diffi-
ult, as well as being more difficult to manufacture at small quantities,
articularly in complex designs, which can lead to high costs for pro-
otyping. Stainless steel can also be used for components of bioreactors
nd is commonly found in large-scale stirred tank systems due to its me-
hanical properties, chemical resistance and ease of cleaning making it
uitable for repeated use [220] . For smaller bioreactor systems plastics
re typically used instead of stainless steel due to their lower cost and
ase of manufacturing, though some laboratories still use stainless steel
or many components of their bioreactors [221] . 

Other issues can occur from materials that may seem on the surface
o be ideal candidates for the creation of bioreactors. Commonly used
terilisation and disinfection procedures can cause changes to the chem-
cal properties for a material potentially leading to unwanted biological
ffects [ 222 , 223 ]. For example, treatment of some polymers with lab-
ratory disinfectant can lead to cytotoxicity from residual disinfectant
bsorbed into the polymer [224] whilst ultraviolet light (UV) treatment
an also cause problems with some plastics, leading to changes in sur-
ace properties if exposed for periods of several hours [225] . Autoclaving
enerally leads to minimal increases in cytotoxicity and in some cases
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as even caused materials to have improved biocompatibility after au-
oclaving, however it is not compatible with plastics with low melting
oints such as conventional polystyrene cultureware [226] . Due to the
ide range of available sterilisation methods, it is typically possible to
nd a method which is non-disruptive to the properties of the apparatus,
llowing the preferred materials to be used. 

.2. Temperature variation and fluctuation 

Cells and tissues require precise temperature control, typically at
7 °C, to maintain normal function and to promote reproducibility. Cell
ultures are very sensitive to increases in media temperature and an
ncrease of a few degrees can significantly reduce cell proliferation and
iability over prolonged periods [227–229] . The effect of changing tem-
erature goes beyond viability and proliferation, with many metabolic
rocesses also affected. Other metabolic events can be altered by the
hanging temperature leading to inaccurate results in drug toxicity ex-
eriments [230] whilst expression of a range of proteins varies with the
xtent of the temperature increase [231] . 

The use of electronic equipment for powering perfusion in some
ioreactor systems can impact the cultures through the effects it has
n the temperature. With equipment that is thermally separated from
he culture, for example power supplies which are outside the incubator
r at a distance from the culture vessels, the impact of this is negligible.
hen equipment is in direct contact with the culture vessel, for example

n the case of stirred or shaken bioreactors, undesirable additional heat
an be transferred into the culture system. Whilst the impact of this is
ikely to only changed the temperature by a few degrees, as discussed
n the previous paragraph this can have major repercussions over pro-
onged culture periods. As well as simply affecting cellular properties,
his can also introduce variability between experiments, particularly if
he contact regions have unequal heat distribution or if multi-culture
ystems are under different levels of load. 

The impact of lower temperatures on cultures tends to be less heav-
ly studied than increased temperatures but it has been shown to have
ffects such as a decreased metabolic rates and reduced proliferation
 232 , 233 ]. Differentiation can also be altered with reduced temperature,
ith one study demonstrating effects such as delayed early differentia-

ion and enlargement of granular cells in the epidermis of a full thickness
kin model when cultured at temperatures of 33 °C and 35 °C [234] . The
se of small fluid volumes or long lengths of tubing without adequate
nsulation or jacketing can lead to greater temperature fluctuation and
eductions below the desired temperature. Whilst measurement of this
ffect is carried out infrequently, studies have shown that it can be done
ith relative ease to confirm that growth conditions are maintained at
esirable levels for a range of system scales [ 45 , 235 , 236 ]. 

.3. Evaporation and degradation of culture medium 

The design and operation of a bioreactor system can have an impact
n the quality of the culture medium over time. Long culture periods
ithout media changes or use of small volumes can lead to high levels
f evaporation which can be problematic for cell cultures, even in a hu-
idified environment [237] . Large media volumes can be beneficial due

o the more homogeneous media composition achieved without media
hanges. However, this can be impacted by evaporation and the resul-
ant increase in the concentration of dissolved compounds over time.
se of media gas supplies such as oxygenators can also increase evap-
ration due to the addition of dry gas lowering the relative humidity,
nd bubble humidifiers are therefore often used [ 238 , 239 ]. Evaporative
oss of medium still occurs in unsealed systems regardless of whether
he environment is humidified. One study using a 24-well bioreactor
ystem found an evaporation rate of roughly 0.6% per day over a 9-
ay culture period [103] whilst another study showed an evaporation
ate of roughly 0.4 mL/day in a perfusion circuit at 20% relative hu-
10 
idity, whilst in the absence of humidity this was increased to around
.4 mL/day [240] . 

Another potential issue with larger media volumes with minimal me-
ia changes aside from evaporation is the degradation of media con-
tituents. Common media supplements such as L-glutamine and ascor-
ic acid are heat sensitive and therefore degrade over time in culture
 241 , 242 ]. The degree to which this is a problem varies depending on
pecific conditions such as the culture period however it can also be
ery variable between cell types, with some cell lines being shown to
e unaffected by L-glutamine degradation whilst others suffer a loss
n viability [243] . This can be avoided by topping up the supplements
eriodically either directly or through partial media changes. In some
ases supplements which are more stable can be used, for example in the
ase of L-glutamine a range of products using the L-alanyl-L-glutamine
re available which have reduced build-up of ammonia compared to L-
lutamine [ 244 , 245 ]. It is worth noting that not all supplements should
e periodically topped up due to potential cytotoxic effects from large
uantities of their degradation products [ 246 , 247 ]. 

Whilst replacement of the medium is beneficial for keeping nutrient
nd metabolic waste within desirable limits, it can also have undesir-
ble effects on the function of cells. Over time in culture a variety of
ecreted molecules comprising the cell secretome influence the cellu-
ar function, and this communication has a key role for determining
ulture fate [248] . Secreted factors influence the viability, proliferation
nd function of cells, as well as being able to direct differentiation [249] .
ith pluripotent stem cells, for example, autocrine factors are secreted

y the cells which aid with proliferation and maintenance of the un-
ifferentiated state, whilst paracrine factors from other cell types have
bility to lead embryonic stem cells down different pathways depend-
ng on the cells used for co-culture [250–252] . Whenever the medium is
hanged, these secreted factors are lost, and levels have to build back up
n the fresh medium. Recirculation of medium can allow these factors
o remain, whilst the use of conditioned medium also represents an al-
ernative method to provide cells with necessary factors, even between
edia changes. 

.4. User interaction and manual handling 

One problem which can occur in cell culture is the presence of bio-
ogical contamination within the system. This can be in forms such as
icrobial contamination or cross-contamination with different cell lines

253–255] . Microbial contamination in cell culture, such as by bacteria
r yeast, is an occasional occurrence in many laboratories and is often
aused by poor aseptic technique during handling [256] . Even with the
se of antibiotic and antimycotic agents it is still possible to get a con-
amination of these types, which negatively impact the experiments and
ead to incorrect results, wasting time and money [257] . 

Careful aseptic technique is used to reduce the chances of contam-
nations and means that for the majority of the time these are not a
roblem during cell culture, however all handling of a sterile system
ncreases the risk of contamination. Complex techniques and apparatus
ften require increased user interaction and therefore one challenge in
he design of bioreactor systems is reducing the amount of handling of
terile components that is required to minimise the risk of contamina-
ion. Through careful optimisation of the design parameters, systems
ave been developed which can minimise these aspects of handling to
aintain a high level of sterility [188] . 

One of the key uses of bioreactors for tissue engineering is to mea-
ure and control the conditions within the system, allowing fine tun-
ng for tissues and cells of interest. Recent designs are frequently using
ontinuous or non-invasive measurement systems to reduce the risk of
andling cultures for data collection. Such probes can be maintained in
he apparatus for the entire period and can be read through direct elec-
rical connections or contactless methods. These can often be readily
iniaturised and are now widely used in microfluidic culture systems
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or measurement of properties such as dissolved oxygen and pH [258–
60] . 

As well as the contamination risk, manual handling can also have an
mpact on the reproducibility of the results. The reproducibility of pub-
ished results is increasingly found to be a problem in cell biology and
he creation of bioreactors which keep processes as simple as possible is
ey to generating systems in which results can be accurately reproduced
etween different individuals and laboratories [261–263] . Studies have
hown that culture handling can be a potential source of error for assay
esults [264] , and therefore minimal handling during ongoing culture is
referable to enhance the reproducibility of work and is something that
hould be factored into the design of bioreactors. 

. Limitations and future directions 

While this review aimed to cover some of the major factors which
nfluence the function and physiological relevance of bioreactor technol-
gy for the field of tissue engineering, there are many more properties
hich did not fit within the scope of this work. In a theoretical ‘perfect’
ioreactor system we might aim to control every environmental prop-
rty which affect the cultures, with factors not mentioned here such as
ressure and pH all at tightly controlled physiological levels whilst other
actors such as oxygen might have their in vivo tissue oxygen gradients
ecreated. The reality is that with each additional factor controlled for,
he subsequent complexity of the system increases and as such there is
 trade-off between control and the time, cost and expertise required to
evelop and use the bioreactor. 

A common concomitant of advancing system complexity is manual
andling, increasing the contamination risk and disruption of the cell
ulture environment. While basic perfusion can be introduced rather
imple with a rocker, more elaborate flow patterns may require pumps
ith adequate control units that can be space consuming and technically

omplex. High system complexity is also more prone to error, especially
n long-term experiments that require steady and tightly controlled con-
itions. Each additional component of a system has to be compatible
ith the cell culture environment and is a possible source of variation
hich has to be considered and accounted for in experimental planning.

ntroduction of complex flow patterns also requires extensive testing to
alidate correct fluid flow within the system. 

Further complexity is found through the interplay between different
roperties. Much like how mass transfer and shear stress are intrinsically
inked to flow rate, so are other factors together such as carbon dioxide
evels and the pH of the medium. These relationships make the creation
f ideal conditions more difficult, with the movement of one towards
ore physiological levels having the potential to move the other fur-

her from them, and this is something that has not been covered in this
eview. In such cases it is often that a compromise must be found which
romotes the physiological function of cells as best as possible within
he limits of the system. New culture platforms are being created at great
peed to push these boundaries and ongoing technological advances are
urther supporting the capacity for replication of physiological condi-
ions and monitoring these in real time. Non-invasive monitoring of
actors such as pH, glucose and oxygen concentration in the medium
an give a real-time view of conditions over an entire culture period
265] whilst new sensors are being developed to allow a wider range
f proteins to be continually monitored [ 266 , 267 ]. Highly penetrative
maging using multiphoton microscopy can allow detailed analysis of
hick tissue equivalents and can be minimally invasive through the use
f methods like second harmonic generation, which can allow label-free
isualisation of proteins including collagen I [ 268 , 269 ]. 

Another potential limitation is the difficulty determining the ideal
uid flow conditions for a given organ due to the complexity of tis-
ue structure. As a prime example, in the liver the commonly used cells
or modelling drug metabolism in vitro are hepatocytes. These cells ex-
erience low levels of shear stress due to the protective effect of the
inusoidal endothelial cells however also have high levels of mass trans-
11 
er due to the highly permeable, fenestrated surfaces of the sinusoidal
ndothelial cells [270] . These low shear stress conditions are signifi-
antly different to the experience of sinusoidal endothelial cells, as well
s Kupffer cells, the resident liver macrophages, which reside within the
inusoidal lumen [271] . The variability is further complicated by the
utrient gradient present in the liver lobule, with periportal cells expe-
iencing high levels of oxygenation whilst pericentral cells experience
t at reduced levels, a factor which helps to determine the specific cell
unction [272] . These cell-specific conditions are key to accurately reca-
itulating a tissue in vitro , however, also introduce significant technical
hallenges. Studies often develop models for studying a specific physi-
logical condition and can therefore minimise the complexity in terms
f number of cell types and spatial organisation. This makes it easier
o provide biomimetic conditions to the cells that are included however
an limit the transferability of models between different applications. 

. Conclusion 

The development of perfusion bioreactors is a fast progressing field
nd new systems being produced for a wide range of different applica-
ions the requirement for characterising the properties of systems in as
uch depth as possible is increasingly important to ensure reproducibil-

ty and applicability of results between systems [263] . In a perfusion
ioreactor a key aspect is the properties of the fluid flow. With proper-
ies such as flow rate, shear stress and fluid mixing all having significant
mpacts on the health of tissues these need to be tailored or the tissue of
nterest. Modelling of the fluid flow is a powerful tool for both charac-
erisation and development of a system and is now routinely carried out
or newly developed bioreactor systems [273–276] . The ability to accu-
ately model the flow in a system computationally without the need for
ime intensive prototyping and testing can speed up the initial stages
f design and allow issues to be picked up early in the development
rocess. 

A series of other properties can impact the tissue health. Factors such
s cytotoxicity of materials are universal to the design of any system and
herefore care should be taken to select materials which are most appro-
riate and effective for the requirements of a system. Other factors tend
o be specific to particular methods being utilised such as evaporation
f media, temperature fluctuations and media degradation which are of
oncern for systems with low volumes or long culture periods. Mean-
hile, some properties are far more subjective and need to be weighed
gainst the criteria for the system. High levels of user interaction can
ave an impact on the success and reproducibility of culture techniques,
nd therefore minimising the need for interaction where possible is gen-
rally preferable. While some of these parameters may be of less impor-
ance in the early development stages of a bioreactor, reproducibility,
ase of use and cost should generally be regarded as key aims for systems
hich are aiming for wider adoption. 

The factors considered herein aim to cover a range of possible re-
uirements for benchtop perfusion bioreactor systems. The range of ap-
lications for these systems coupled with individual constraints such as
eadily available equipment and space means that there is no one-size-
ts-all approach to creating perfusion bioreactors for tissue engineering.
here is also a range of properties found in vivo which can be controlled
n top of those dealt with specifically by bioreactor systems and can
ave an impact on cell and tissue culture outcomes such as medium com-
osition, heterocellularity and cellular patterning. These are all factors
hich also need to be taken into account when designing the optimum

onditions to encompass the huge complexity of physiologically tissue
icroenvironment. By discussing these key factors, and examining the

omplex interactions between them, this review aims to promote the
uture development of benchtop bioreactor systems for culturing tissue
quivalents. A reduction in development cost, both financially and in
ime spent on optimisation, through incorporating these properties in
he early stages of the design process will support more novel bioreac-
or technology to reach routine use in laboratory experiments. Further
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o this, with the wide range of different bioreactor systems in use, thor-
ugh understanding and reporting of culture conditions can improve
omparability between studies and boost the research impact of future
tudies. 
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